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Abstract

Purpose: To introduce, develop, and evaluate a novel denoising technique for diffusion MRI that

leverages nonlinear redundancy in the data to boost the SNR while preserving signal information.

Methods: We exploit nonlinear redundancy of the dMRI data by means of kernel principal

component analysis (KPCA), a nonlinear generalization of PCA to reproducing kernel Hilbert

spaces. By mapping the signal to a high-dimensional space, a higher level of redundant

information is exploited, thereby enabling better denoising than linear PCA. We implement KPCA

with a Gaussian kernel, with parameters automatically selected from knowledge of the noise

statistics, and validate it on realistic Monte Carlo simulations as well as with in vivo human brain

submillimeter and low-resolution dMRI data. We also demonstrate KPCA denoising on multi-coil

dMRI data.

Results: SNR improvements up to 2.7× were obtained in real in vivo datasets denoised with

KPCA, in comparison to SNR gains of up to 1.8× using a linear PCA denoising technique called

Marchenko-Pastur PCA (MPPCA). Compared to gold-standard dataset references created from

averaged data, we showed that lower normalized root mean squared error was achieved with

KPCA compared to MPPCA. Statistical analysis of residuals shows that anatomical information is

preserved and only noise is removed. Improvements in the estimation of diffusion model

parameters such as fractional anisotropy, mean diffusivity, and fiber orientation distribution

functions were also demonstrated.

Conclusion: Nonlinear redundancy of the dMRI signal can be exploited with KPCA, which

allows superior noise reduction/SNR improvements than the MPPCA method, without loss of

signal information.
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1 ∣ INTRODUCTION

Diffusion MRI (dMRI) is a noninvasive imaging modality that allows the characterization of

tissue microstructure of biological tissues with an unrivaled level of quality and detail. When

diffusion-encoding gradients are played out, the MR signal becomes sensitive to the

diffusion of water molecules and their interaction with the surrounding microstructure.1

Hence, the dMR signal, carrying unique information, can be used to probe the

microstructural environment of tissues. The characteristic attenuation of the dMRI signal

during the diffusion probing time, however, makes the signal-to-noise ratio (SNR) of the

diffusion-weighted (DW) MR images inherently low.2 This is of particular concern for high-

resolution dMRI, as the SNR decreases even further due to a decrease in the voxel size. Low

SNR not only complicates visual inspection but hampers quantitative analysis of informative

tissue parameters, for example, by reducing the accuracy and precision of the parameter

estimates.3

Increasing the SNR in dMRI is a major goal for the MRI community. Ultrahigh field dMRI,
4-6 advanced dMRI acquisition protocols,7-14 or noise reduction techniques,3,15-17 to name a

few, are complementary approaches that have been shown to enhance the SNR. In this work,

we focus on noise removal techniques, in particular, the thermal noise at the reception of the

radiofrequency signal,15 which further propagates to the dMRI signal domain during image

reconstruction.18

Noise reduction or denoising can be done by averaging16: the subject is imaged several

times with identical image parameters, and the resulting images averaged. Under some

statistical assumptions, this simple technique can increase the SNR by a factor of Nscans
with Nscans the number of repetitions. Evidently, this approach requires additional scan time

and, as the acquisition time of a conventional dMRI protocol is already relatively long,

averaging becomes impractical for routine use.

From a signal processing perspective, denoising can be seen as a post-processing approach,

where an algorithm attempts to remove the noise, that is, reduce the noise standard

deviation, while maintaining the noise-tree signal undistorted. Trivially formulated,

denoising has been a longstanding problem in image processing, where many challenges

need to be confronted, which are further aggravated in quantitative image modalities such as

diffusion MRI. Indeed, early computer vision-based denoising algorithms applied to dMRI

have shown to be detrimental to parameter estimation quality.3 Some exemplar cases are the

popular total variation–based noise removal techniques19,20 or more recently, nonlocal

means algorithms.21,22 Other shortcomings are the loss of spatial resolution due to blurring

in the presence of partial volume effects.

On the other hand, denoising algorithms that depart from exploiting spatial similarity but

leverage “redundancy” of the dMRI signal along diffusion direction have been shown to
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suppress noise significantly while preserving the dMRI signal, with no apparent blurring or

biases. Principal component analysis (PCA)–based methods belong to this category of

methods. PCA-based methods were first used in,23 and ever since, have been thoroughly

validated for diffusion MRI parameter quantification and substantially refined and improved.

Most of the improvements that PCA algorithms have witnessed are based on the estimation

of the number of signal-only principal components. By removing the rest of the components,

attributed to noise, denoising is performed. While this threshold was heuristically set in,23

the criterion was formalized in,3 where an elegant approach was proposed relying on the

theory of random covariance matrix theory, in particular, exploiting the universal

Marchenko-Pastur law for eigenvalues. The MPPCA method of3 has also been extended to

general noise models other than the additive white Gaussian noise case.24

All dMRI PCA denoising methods are limited by the degree of redundancy in the signal

with respect to the dimensionality of the data, that is, the number of gradient directions.

Several factors, including spatial resolution, number of b-values, number of gradient

directions, determine the amount of redundancy in the data. The capability for noise

reduction is hampered if the SNR is very low as in high-resolution diffusion MRI. We would

like to emphasize here that this limitation is not attributable to the PCA method at hand but

in the assumption that the covariance matrix of the signal is of sufficiently low rank.

Fortunately, there exist nonlinear redundancies which are not captured by the linearity

assumption implicitly adopted in PCA, but that can be exploited to enhance the SNR of

dMRI substantially more than possible with current state-of-the-art approaches. The

fundamental idea is to look for high-dimensional nonlinear spaces where the covariance

matrix of the transformed dMRI signal turns out to be of low rank. Enforcing this prior

knowledge, that is, applying PCA in the transformed domain, we can denoise the signal in

the high-dimensional space and map it back to the original space. As a unified approach, this

operation exploits the nonlinear relationships within the data, and is referred to as a

nonlinear generalization of PCA. The whole process can be carried out by a technique called

kernel principal component analysis (KPCA),25 where a kernel function implicitly

determines the mapping of the dMRI signal to a high-dimensional Hilbert space.26

In this work, we introduce KPCA denoising to the dMRI community and showcase it with a

Gaussian kernel that maps the dMRI signal to an infinite dimensional space where

redundancy is exploited. The parameters of the kernel as well as the rank of the covariance

matrix are chosen in a data-driven manner, as those that provide the best signal

representation according to the mean square error (MSE) between the denoised and the

underlying noise-free signal. The Stein unbiased risk estimate (SURE) is used as a proxy of

the MSE,27-29 circumventing the need for the unobservable noise-free signal. Only

knowledge of the noise statistics is required, which we input to the algorithm with state-of-

the-art noise mapping techniques.

We thoroughly validate KPCA with realistic Monte Carlo simulations as well as with several

in vivo human brain datasets acquired with submillimeter spatial resolution. In addition,

KPCA was validated on a conventional (low-resolution) multi-shell dMRI dataset. Finally,

KPCA denoising was demonstrated in an in vivo human brain multi-coil dMRI dataset,
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capturing nonlinear redundancies in the coil and gradient directional domains

simultaneously. In all cases, we confirmed superior noise reduction compared to the linear

MPPCA method, which immediately translates to higher SNR enhancement, while

preserving signal reliably, as confirmed by residual analysis. Finally, improved diffusion

parameter estimation was invariably found when dMRI datasets were denoised with KPCA.

A preliminary version of this work has been presented as an abstract at the ISMRM 2020.30

2 ∣ THEORY

2.1 ∣ Redundancy of dMRI signals in canonical spaces: PCA denoising

In dMRI, it is often assumed that the diffusion signal carries redundant information between

the gradient directions (also referred to as q-space). Redundancy can be elegantly captured

by covariance matrix analysis. Let x ∈ ℝM be the diffusion MR signal with M the number of

gradient diffusion directions. Its second-order statistical characterization is given by its mean

μ ∈ ℝN and covariance matrix Cx ∈ ℝM × M. The diffusion signal x is said to be “redundant”

if Cx is rank-deficient, with rank K substantially smaller than the dimensionality M. In that

case, Cx, a low-rank matrix, can be written with eigenvalue decomposition

Cx = ∑k = 1
K λkukuk

T. The low-rank diffusion signal x with these statistical properties is given

by the so-called “spike” model31:

x = μ + ∑
k = 1

K
λk

1 ∕ 2vkuk, (1)

where vk are independent and identically distributed (IID) random variables with zero mean

and unit variance. The diffusion signal is always corrupted by noise, w ∈ ℝM, which is

typically modeled as additive and with zero mean, that is, y = x + w. Denoising the signal y
can be formulated as an estimation problem, where the goal is to estimate the noise-free

signal x from the observed data y. As Cw is a full-rank matrix (noise is not redundant), it is

precisely the low-rank nature of Cx in comparison to Cw (K < < M) that allows to “separate”

signal from noise, that is, estimating x reliably. Low-rank denoising is usually performed in

image patches, each one containing N diffusion signals xn, n = 1, …, N, with mean μ and

covariance matrix Cx. For the noisy spike model,

yn = xn + wn = μ + ∑
k = 1

K
λk

1 ∕ 2vknuk + wn, (2)

the optimal estimate of xn in terms of the norm ∑n = 1
N ∣ ∣ yn − xn ∣ ∣2

2 (assuming rank K

known) is given by32

xn = μ + ∑
k = 1

K
λk

1 ∕ 2vknuk, (3)
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where λk, vkn and uk are obtained from the singular value decomposition (SVD) of the noisy

data matrix Y = [y1 − μ, y2 − μ, …, yN − μ], that is,

Y = NUΛ1 ∕ 2VT (4)

by nullifying components with index k > K, and being μ the sample mean of yn. This

denoising framework is also called PCA denoising, with uk as the principal components. As

already mentioned in the introduction, all of the PCA-based dMRI denoising

methods3,22,24,33 fundamentally differs in the the way K is estimated. No improvements are

made in the intrinsic data model. In this work, we instead reconsider the low-rank model of

Equation (3). In particular, we are interested in the intrinsic redundancy in the noise-free

image x. If K is comparable to M, the optimal solution of Equation (3) can hardly denoise,

no matter which PCA algorithm we employ. MRI artifacts, partial volume effects, higher

spatial resolution, nonconventional dMRI sequences, to name a few, all of these factors may

increase the original rank K of the signal. A possible way to increase the redundancy is to

focus on M, rather than K, and increase the dimensionality of the signal by adding more

gradient directions. Theoretically appealing, this modus operandi will necessarily necessitate

additional scan time, which is often of concern in clinical settings.

In the quest for data redundancy, we look for information redundancy in data domains which

are not necessarily the canonical space where conventional PCA is applied. The next section

is devoted to motivate and formalize our approach, after which we present the novel

denoising method in Section 3.1.1.

2.2 ∣ Redundancy of dMRI signals in high-dimensional Hilbert spaces

Our starting point is a function ϕ( · ) that maps the diffusion signal x from the native space

ℝN to a “feature” space ℱ, often high-dimensional, P > > M, with P = dim(ℱ). We will deal

with the definition of ϕ( · ) later, but for now let us assume that the transformed data ϕ(x) is

redundant, that is, the covariance matrix of ϕ(x) is of rank Kℱ < < P, even if native rank K

is high. For example, any mapping which makes data “sparser” in the feature domain will

“compress” the information more than in the native space. This redundancy translates into a

low-rank covariance matrix Cϕ(x). We can exploit this redundancy to denoise data in the

feature space and eventually return to the native space to get the denoised signals xn. Note

that the entire process can be seen as a way to exploit nonlinear redundancy that the dMRI

signal can carry, and that could be otherwise difficult to capture with conventional PCA.

In ℱ, similar to PCA, the optimal estimates of ϕ(xn) of rank Kℱ are those minimizing the

error ∑n = 1
N ∣ ∣ ϕ(yn) − ϕ(xn) ∣ ∣2

2. They can be shown to be the projection of the mapped

noisy signals ϕ(yn), n = 1, …, N, onto the feature space, Pϕ(yn),

ϕ(xn) = Pϕ(yn) ≜ ϕ + ∑
k = 1

Kℱ
λk

1 ∕ 2vknuk . (5)

Ramos-Llordén et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2021 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In Equation 5, ϕ is the mean of ϕ(yn), n = 1, …, N, uk are the nonlinear principal component

directions, and the rest of parameters are obtained (we maintain the notation of Equation 3)

from the SVD of centered noisy projected data matrix

Φ = [ϕ(y1) − ϕ, ϕ(y2) − ϕ, …, ϕ(yN) − ϕ] . (6)

While the low-rank denoising is performed in ℱ, we would like to come back to the native

space. If we want to denoise the signal y* at the center of the patch, we then look for that x
which, after being mapped to the feature space, ϕ(x), turns out to be the closest to the

projection Pϕ(y*) (Equation 5), that is,

x∗ = arg min
x

‖ϕ(x) − Pϕ(y∗)‖2
2 . (7)

A fundamental result that is of high relevance for this work is the following. To apply PCA

in the feature space ℱ defined by the mapping ϕ( · ), and to solve Equation 7 in order to

return to the native space, we do not need to know ϕ( · ) explicitly, but just the inner product

of the form ⟨ϕ(x), ϕ(y)⟩ for x and y in ℝM. Since ⟨ϕ( · ), ϕ( · )⟩ is a symmetric, positive

definite function, it automatically defines a kernel function in ℝM × ℝM as k(x, y) = ⟨ϕ(x),

ϕ(y)⟩. Conversely, choosing a kernel function k( ·, · ) implicitly defines a mapping ϕ( · ).26

Therefore, it is the kernel function that implicitly defines the feature space. Features spaces

with this property are called reproducing kernel Hilbert spaces, and applying PCA in the

feature space is termed KPCA.26 In the next section, we present our Kernel PCA denoising

method in detail, elaborating on the selection of the kernel as well as the rank Kℱ.

3 ∣ METHODS

3.1 ∣ KPCA denoising

3.1.1 ∣ KPCA algorithm—Given a kernel k( ·, · ), the denoised signal x∗ in the feature

space defined by k( ·, · ) can be written as34

x∗ = arg min
x

k(x, x) − 2 ∑
n = 1

N
γnk(x, yn), (8)

with γ = [γ1, γ2, …, γN]T = ∑k = 1
Kℱ βkαk + 1 ∕ N(1 − 1T ∑k = 1

Kℱ βkαk), 1 an N-dimensional

column vector with all entries equal to one, and αk, the first Kℱ eigenvectors that solve the

following eigenvalue problem:

HKHαk = Nλkαk with Nλk‖αk‖2
2 = 1, (9)
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where H = I − 1
N 11T is a “center” matrix and K, the so-called kernel matrix (N × N), Kmn =

k(yn, ym). Finally, the coefficients βk, the components of projection of ϕ(y*) onto the k-th

nonlinear principal component uk, can be computed as

βk = ∑
n = 1

N
αknk (y∗, yn), (10)

with αkn the nth coefficient of αk, and k (y∗, yn) equal to35

k (y∗, yn) = k(y∗, yn) − 1
N ∑

i = 1

N
k(y∗, yi) − 1

N ∑
i = 1

N
k(yi, yn) + 1

N2 ∑
i, j = 1

N
k(yi, y j) . (11)

The interested reader can find the mathematical proof of the derivation of KPCA in34 and in

Section 1.1 of the Supporting Information of this submission.

3.1.2 ∣ The choice of the kernel function—We showcase KPCA denoising for dMRI

with a Gaussian kernel function,

k(yi, yn) = e
−

‖yi − yn‖2
2

2h2
,

(12)

with h the scale parameter. Gaussian kernels have shown excellent performance in machine

learning tasks and are particularly interesting for dMRI denoising for the following reasons.

The implicit feature space that the Gaussian kernel function generates can be shown to be

infinite-dimensional.26 As data tend to be sparser in high-dimensional spaces, higher

redundancy is achieved by mapping the data with ϕh( · ). As implied by the notation, we can

control the shape of the mapping with the scale parameter h, and, in fact, the components of

ϕh(yn) decay with increasing h. In that sense, by varying h, we can adapt the level of

redundancy of the dMRI signal in the feature space. This aspect will be of high interest for

the automatic selection of parameters. Finally, it is possible to demonstrate that, when h →
∞, KPCA with a Gaussian kernel behaves as linear PCA in the canonical space.36 Hence,

linear PCA is a particular case of KPCA with Gaussian kernel functions. It is therefore

expected that our KPCA denoising will perform typically better, as we confirm in this paper.

More details about the implicit mapping related to the Gaussian kernel and the

demonstration of the asymptotic equivalence of KPCA and PCA are given in the Supporting

Information, (Section 1.2 and 1.3, respectively).

In addition, there are computational advantages in choosing the Gaussian kernel. The

solution of Equation 8 can be obtained in very short computational time with the

approximation given in37
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x∗ =
∑n = 1

N γnexp −
‖x∗ − yn‖2

2

2h2 yn

∑n = 1
N γnexp −

‖x∗ − yn‖2
2

2h2

≈
∑n = 1

N γn(1 − 1 ∕ 2‖Pϕ(y∗) − ϕ(yn)‖2
2)yn

∑n = 1
N γn(1 − 1 ∕ 2‖Pϕ(y∗) − ϕ(yn)‖2

2)
. (13)

being ∣ ∣ Pϕ(y∗) − ϕ(yn) ∣ ∣2
2 calculated analytically. Details are given in Section 1.4 of

Supporting Information. Finally, in the discussion session, we elaborate on possible

improvements of KPCA denoising by selecting more complex kernels.

3.1.3 ∣ Automatic parameter selection driven by noise statistics—Two

parameters need to be selected for our KPCA method: the scale parameter h and the rank

Kℱ. Ideally, we would like to select those that best represent the noise-free signal x*, for

example, by quantifying the mean squared error, (risk) E{ ∣ ∣ x∗ − x∗(h, Kℱ) ∣ ∣2
2 } for

different choices of h and Kℱ. Obviously, the ground-fruth signal x* is unobservable, and

hence the MSE is not computable. Instead, we use the SURE.27 Minimizing SURE can act

as a surrogate for minimizing the MSE, with the critical difference that it does not require

knowledge of x*.28 For an AWGN model like that of Equation 2, SURE can be computed

from the noisy signals yn, the denoised signal x∗(h, Kℱ), and the standard deviation of the

noise, σ. We estimate the noise maps of the DWI images using the method presented in,38

with the assumption of Gaussian distributed data, which holds in our experiments as we

show in the subsequent section. Then, for every voxel in the image patches, we fix σ and

applied grid search minimization to get the optimal h and Kℱ with respect to the SURE cost-

function. We used the efficient implementation of the SURE method based on Monte Carlo

sampling.29 We refer the reader to Section 1.5 of the Supporting Information for more

details about the SURE method for optimal parameter selection. In addition, a discussion is

provided at the end of the paper about the extension of SURE to other noise models as well

as different techniques to estimate h and Kℱ that may be of interest.

An illustrative scheme of the KPCA denoising method used in this work is presented in

Figure 1. Code will be publicly available at https://github.com/gabrll and https://github.com/

pnlbwh.

3.2 ∣ Experimental validation

We validated KPCA denoising using simulated and in vivo human brain dMRI data, both

quantitatively and qualitatively, and compared our results with MPPCA denoising.3 Both

algorithms were implemented in a sliding-window fashion, where for each patch, only the

signal at the center was denoised. The selection of the parameters for KPCA was done as

follows. The standard deviation of the noise was estimated with the method of.38 The set of

possible values of Kℱ to minimize the SURE was chosen to be in the range [1, 30], and the

scale parameter of the Gaussian kernel h, was parameterized by h = c σmin-class where

σmin-class is the average minimum distance between all pairs of signals in the patch,37 and
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the values for c was chosen from ten equidistant points in the interval [0.6, 6] (see Section

1.4 of the Supporting Information).

3.2.1 ∣ Simulations—A Monte Carlo–based experiment was conducted to assess the

benefits of KPCA denoising in subsequent diffusion parameter estimation. Similar to the

patch-based simulation experiment in,3 we generated 5 × 5 × 5 signals based on a diffusion

tensor (axially symmetric) model and a total of M gradient directions uniformly spread on

the sphere with a given b-value, b. The underlying fractional anisotropy (FA) and mean

diffusivity (MD) for each tensor in the pach was sampled from a distribution with fixed

mean FAGT and MDGT, and a standard deviation of 10% with respect to the mean. MC =

5000 zero-mean uncorrelated Gaussian noise realizations were added to each of the noise-

free N = 125 signals. The standard deviation of the noise was parameterized by a nominal

SNR value, that is, σ = 1/SNR.

The MC = 5000 noisy patches were then denoised with MPPCA and KPCA, and the

denoised signals were compared to the ground-truth signal. Experiments were conduced for

different (a) number of diffusion directions, M ∈ [32, 64, 128], (b) b-values, b ∈ [1200,

1500, 2500]s/mm2, (c) SNR values, SNR ∈ [5, 8, 15], and (d) representative FA in both gray

and white matter, FAGT ∈ [0.2, 0.6]. MDGT = 8 · 10−4 mm2/s was considered in both cases.

The normalized root mean square error (NRMSE) was used to compare the denoised signals

with respect to the ground-truth signal. Diffusion tensor parameters were estimated from the

log-linearized signals with a Linear Least Squares (LLS) estimator. Next, the FA and MD

were estimated and compared to the ground-truth FA and MD, FAGT and MDGT. To assess

how denoising affects accuracy and precision, the bias and standard deviation of the

estimates of the dMRI signals, FA and MD were calculated.

3.2.2 ∣ In vivo human brain submillimeter resolution dMRI data—Whole human

brain in vivo submillimeter dMRI data were acquired and reconstructed with the generalized

slice dithered enhanced resolution (gSlider) technique,8 and denoised with KPCA and

MPPCA. Two datasets with different spatial resolutions were considered. Both datasets were

acquired in accordance with the IRB approval from Massachusetts General Hospital for

obtaining in vivo human MRI scans.

660 μm isotropic gSlider data: A total of 46 thick sagittal slices were acquired (Siemens 3T

Connectom scanner) with in-plane resolution 660 μm and matrix size 332 × 180, covering

the full brain (FOV = 220 × 118 × 151.8 mm3). The diffusion protocol consisted of M = 64

DW images (diffusion directions uniformly distributed along sphere) with b = 1500 s/mm2

and 7 b0-images. Data was acquired10 with a single-shot EPI sequence: 32 coil channels,

Muti-Band = 2, partial Fourier = 6/8, phase-encoding (superior-inferior axis) under-sampling

factor Rin-plane = 2, TR/TE = 4400/80 ms, 5 radiofrequency encoding pulses. The total

acquisition time was about 25 minutes. Three repetitions were acquired to construct a gold-

standard reference. Conventional gSlider8 was used to reconstruct the data and obtain whole

brain isotropic 660 μm resolution. Prior to gSlider reconstruction, slice and in-plane

GRAPPA was used for k-space and SMS reconstruction, and real-valued data was obtained

with background phase correction.16 Eddy-current and motion were corrected between all
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acquisitions using the FSL technique FLIRT. The 3 datasets were then denoised with KPCA

and MPPCA, and compared to the averaged dataset, which is considered here as the gold-

standard reference. Both algorithms were implemented in a voxel-wise fashion, with a

sliding window of [5 × 5 × 5] voxels.

860 μm isotropic gSlider data: Whole human brain gSlider-SMS data were collected from a

healthy male volunteer on a Siemens 3T Prisma scanner. Four scans of the full brain (FOV =

220 × 220 × 163 mm3) were obtained. A total of 38 thick axial slices were acquired with in-

plane resolution of 860 μm and matrix size 256 × 256. The diffusion protocol consisted of

64 DW images (diffusion directions uniformly distributed along sphere) at b = 2000 s/mm2

and 8 b0-images. Data were acquired11 with a single-shot EPI sequence: 32 coil channels,

Muti-Band = 2, partial Fourier = 6/8, phase-encoding (posterior-anterior axis) under-

sampling factor Rin-plane = 3, TR/TE = 3500/81 ms, 5 radiofrequency encoding pulses. The

total acquisition time was about 20 min. Four repetitions were acquired to construct a gold-

standard reference. Data was preprocessed and reconstructed as described for the 660 μm

case. After affine registration, one of the datasets was denoised with KPCA and MPPCA

(identical window size as before), and compared to the averaged dataset, the gold-standard

reference.

2.2.1 ∣ Quantitative validation—We assessed the performance of KPCA denoising in

signal preservation and parameter estimation, quantitatively. The NRMSE was used to

compare the signal of the denoised DW images with the signal of the averaged dataset. As in

the simulation experiment, accuracy and precision results were reported. To assess the

ability of KPCA denoising for SNR enhancement, we estimated the noise maps (noise

standard deviation) of the denoised datasets with the homomorphic approach.38 The SNR

gain was defined as the ratio between the standard deviation of the noise in the original

dataset and that of the denoised datasets. To demonstrate that KPCA preserves the

underlying diffusion signal reliably, we calculated the normalized residuals between the

noisy datasets and the denoised versions, and checked if any anatomical structure was

present.3

We conducted DTI analysis and high angular resolution diffusion imaging (HARDI)

validation. FA and MD maps were estimated with dtifit from FSL, and compared to the

maps from the reference set. The NRMSE, bias, and standard deviation were used to assess

the improved quality in parameter estimation. HARDI analysis was carried out with

MRtrix3.39 Fiber orientation distribution functions (fODFs) were calculated in white matter

area only, with the single-shell single-tissue constrained spherical deconvolution (CSD)

technique.40 For each voxel, main fiber peaks were extracted, and the angular error

compared to those from the reference set were calculated. The variability in the estimation

of the ODF peaks was probed with the coherence metric, κ, (κ ∈ [0, 1]), which was

originally proposed in41 and used in.3 A high value of κ indicates low angular variability,

that is, high angular precision.

3.2.3 ∣ In vivo human brain low-resolution dMRI multi-shell data—KPCA

denoising was validated on a more conventional multi-shell dMRI dataset, with an isotropic

spatial resolution of 1.5 mm. From a healthy male volunteer, whole brain data was acquired
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on a SIEMENS 3T Prisma scanner with a 2D single-shot EPI sequence and the following

acquisitions parameters: 32 coil channels, Multi-band = 2, matrix size = 160 × 160 × 93,

partial Fourier = 6/8, phase-encoding (posterior-anterior axis) under-sampling factor

Rin-plane = 2, and TR/TE = 2515/96 ms. K-space data were reconstructed with GRAPPA and

coil-combined with the adaptive combine algorithm. The diffusion protocol consisted of 30

diffusion directions (equally spread along the sphere) for b-values of 1500 and 3000 s/mm2,

and 7 b0-images. Magnitude data was corrected for EPI distortions with FSL’s tool eddy.42

Five repetitions were acquired. The average of the acquired 5 scans was considered as the

ground-truth dataset. KPCA and MPPCA denoising use information for the 2 shells

simultaneously (eg, M = 30 × 2 = 60), with a window size of [5 × 5 × 5]. All data were

acquired in accordance with the IRB approval from Brigham and Women’s Hospital for

obtaining in vivo human MRI scans. Accuracy, precision, and NRMSE were reported for

denoised dMRI signal, FA and MD results, as well as mean kurtosis (MK). Residual analysis

was also carried out, and result for SNR-enhancement were also given.

3.2.4 ∣ Capturing nonlinear coil and diffusion redundancy simultaneously—
We investigated whether KPCA denoising can work at the reconstruction level, for example,

by denoising multi-coil and diffusion data simultaneously. To that end, we used an in vivo

human brain DW image dataset comprising of 1 b0-image and 15 diffusion gradient

directions that were uniformly spread over the sphere (b = 1200 s/mm2). The acquisition

protocol was as follows: With a 3T Philips scanner, an axial slice was acquired with a single-

shot EPI sequence, matrix size = 70 × 91, in-plane resolution of 2 mm, multi-coil system

with eight channels and no undersampling factor. All data were acquired in accordance with

the IRB approval from the University of Valladolid, Spain, for obtaining in vivo human MRI

scans. To create a gold-standard reference, 20 repetitions of the same axial slice were

obtained. Prior to denoising, k-space data were transformed into image space with an inverse

Fourier transform. Similar to approaches in,24,33 complex-valued images were transformed

into real-valued images with the background phase estimation technique.16 Phase estimation

was obtained by taking the complex argument of the image resulting from the inverse

Fourier transform of low-pass filtered k-space data (center of the k-space with Hamming

window). Complex conjugate phase correction was applied, and the real part was retained.

Note that this technique preserves Gaussian statistics if the background phase is accurately

estimated.5 No statistical correlation was assumed between the noise properties of the

different coils. To apply denoising, the coil and the diffusion dimension were merged into a

single dimension, M = 8 channels × 15 diffusion directions = 120. The size of the patch was

[7 × 7]. As in the previous experiment, the NRMSE, the noise maps, and the normalized

residuals were calculated both from the denoised dataset with MPPCA and KPCA. NRMSE

maps for diffusion derived metrics, FA and MD were also computed.

4 ∣ RESULTS

4.1 ∣ Simulations

NMRSE results for the case b = 1200 s/mm2 and M = 64 directions are shown as bar plots in

Figure 2, whereas the rest of results, including bias and standard deviation of the estimates,

are shown in Table format in the Supporting Information (Tables S1-S9). In general, KPCA
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achieves the lowest NRMSE results in signal quality, FA and MD, and shows a significant

improvement in estimation of FA for low SNR values, for example, SNR = 5 and SNR = 8,

which correspond to real SNR values (defined as the the noise-free dMRI signal divided by

sigma) of 2 and 3, typically encountered in real data noisy scenarios as those like

submillimeter resolution data shown in this paper. The lower NRMSE of KPCA in

comparison to MPPCA comes from a simultaneous reduction of bias and precision. In

practically all cases, results are statistically significant as confirmed with a Welch’s t-test

(see caption on Tables S1-S9).

Interestingly, the improved performance of KPCA over MPPCA denoising is quite evident

for reduced number of diffusion directions M = 32 or M = 64. This is attributed to the lack

of enough “linear” redundancy of the dMRI signal K compared to low values of

dimensionality M. KPCA, however, as it performs low-rank denoising in a high-dimensional

space (P > > M), can achieve superior noise reduction, and hence, improved parameter

estimation.

4.2 ∣ In vivo human brain submillimeter resolution dMRI data

Denoised images with MPPCA and KPCA from the 660 and 860 μm resolution datasets are

shown in Figures 3 and 4, respectively. The original dataset (no denoising) as well as the

gold-standard reference, 3 averages for the 660 μm case and 4 averages for 860 μm case, are

also shown.

Visually, KPCA denoising achieves a higher noise suppression than MPPCA without signal

loss. No anatomical structure can be seen in the ‘residual’ images (original—denoised DW

image) shown in Figure 5 and Figure S2 of the Supporting Information (860 μm dataset).

Statistical analysis of residuals confirms signal preservation in KPCA denoising. Any

anatomical structure in the residual dataset will make the standard deviation higher than the

noise standard deviation σ.3 By analyzing the σ-normalized residuals r,3 we found that in

both cases, 660 and 860 μm resolution data, r approximately follows a zero-mean Gaussian

distribution with standard deviation 0.82 and 0.79, respectively, see blue dotted-blue line

graphs representing the estimated pdf, p(r), of normalized residuals (logarithmic plot on the

left, linear plot on the right). As the standard deviation is lower than the unit (see solid

black-line representing zero-mean standard Gaussian distribution), we then can conclude

that no anatomical structure is lost in KPCA denoising. The pdf p(r) was estimated with a

kernel density estimator. The solid blue-line represents the analytical Gaussian pdf that best

fits the data in a Maximum Likelihood sense.

The estimated noise maps after denoising are presented in Figure 6 and Figure S3 of the

Supporting Information. Note that the noise mapping method38 we use to estimate σ
assumes either a Gaussian or Rician distribution. Since, by assumption, the original data is

Gaussian distributed (real-value phase corrected images16) and the residuals are shown to be

Gaussian, our assumptions are well founded.

KPCA achieves higher noise suppression while still reliably preserving signal, supported by

the previous experiment with residuals. The lowest levels of noise are found when the
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original data is denoised with KPCA, indicating that KPCA enhances the SNR to a greater

extent than what is achievable with MPPCA denoising. The SNR gain is more than 60%

higher compared to MPPCA, see Table 1. Superior noise removal performance as well as

reliable signal preservation make the NMRSE (compared to the averaged data case)

substantially lower than MPPCA, both in white and gray matter (Table 1).

In good agreement with the findings from the simulation experiment, denoising improves

diffusion parameter estimation, and in particular, KPCA denoising helps estimate

quantitative parameters with lower statistical error. NRMSE of both estimated FA and MD

are considerably lower (Table 1) when DTI is applied after KPCA denoising compared to

MPPCA. The improvement is significantly noticeable in gray matter. Cortical gray matter

seems better delineated in the FA maps that are obtained after denoising data with KPCA

(see color-encoded FA maps in Figure 7). This is highly relevant since mapping cortical gray

matter is one of the main motivations of ultra-high resolution dMRI protocols.43. In fact,

error maps also suggest that the estimation of FA is improved to a greater extent in cortical

areas. Color-encoded FA maps as well as errors map for the 860 μm case are shown in

Figure S4 of the Supporting Information. The improvement in NRMSE comes from a

marked reduction in both accuracy and precision, see Table S10 and S11, respectively. For

comparison, NRMSE values in FA, MD, and signal are similar to those reported in the

reconstruction method presented in,10 where the same 660 μm gSlider dataset was used. It

should be noted though that establishing a rigorous comparison is complicated since, in the

work of,10 NRMSE results were given over the whole brain and not classified into different

brain tissues (eg, WM and GM), as we do here. Furthermore, no metrics related with

accuracy and precision were provided.

fODF estimation becomes more robust after denoising, and more accurate and precise

angular directions can be achieved if data is first denoised with KPCA. As shown in Table 1,

lower angular errors (mean of the errors for the first, second, and third peak) are achieved

with KPCA. Graphs of the prevalence/probability of angular errors in the 660 μm data are

shown in Figure 8 and Figure S5 (860 μm). Results are statistically significant as confirmed

by a Wilconson signed-rank test.44,45 In particular, the null hypothesis of the median of the

angular errors of MPPCA and KPCA being equal was rejected with P < .01. Similar

conclusions can be reached when comparing the angular errors of the noisy data to those of

KPCA.

Clearly, the distribution of the KPCA angular errors is shifted to the left more than that of

MPPCA and the original data, demonstrating lower angular errors in the white matter map

obtained from the dataset denoised with KPCA rather than that obtained from the MPPCA

denoised or original data. Graphs of the fODFs plotted in the 3-fiber crossing area of Figure

8 shows lower peak variability with KPCA denoising, a direct consequence of higher noise

suppression. The coherence metric, κ, proposed in41 is in agreement with this observation.

As shown in the plot, both in Figure 8 and Figure S5, the prevalence graphs of κ for the

KPCA are shifted to the right more than that of MPPCA or the original data. As a result,

overall coherence metric values are higher for KPCA (Table 1), indicating higher angular

precision could be achieved if data is denoised first with KPCA.
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4.3 ∣ In vivo human brain low-resolution dMRI multi-shell data

KPCA denoising achieves superior noise removal performance than MPPCA in the

conventional low-resolution dMRI multi-shell dataset, see Figure S6. Denoised DWI images

are comparable to the 5-average scan, which serves as ground-truth. SNR enhancement was

2 times bigger than that obtained of MPPCA (Figure S7), and NMRSE maps contain

substantially lower NMRSE values in the case of KPCA compared to the MPPCA and noisy

map. As in the previous experiment, no anatomical structure can be seen in the residual

maps (Figure S8), suggesting good signal preservation. Improved accuracy, precision, and

lower NRMSE were found when estimating FA, MD, and MK from data that were denoised

with KPCA compared to MPPCA. All of these results can be found in Tables S12-S14 of the

Supporting Information.

4.4 ∣ Capturing nonlinear coil and diffusion redundancy simultaneously

Coil DWI images as well as coil-combined DW images are presented in Figure 9. The sum

of squares (SoS) method was employed for coil combination.

As in the previous experiments, KPCA achieves higher noise suppression than MPPCA, and

the result is comparable to the twenty average case. As expected, differences in noise

reduction are less notorious in the SoS images, as this technique already denoises the data

due to averaging. However, higher noise reduction and good structure preservation is still

observed by inspecting the DW images that are denoised with KPCA. Similar to the

experiment with high-resolution dMRI data, σ-normalized residual maps of the multi-coil

data show no anatomical features, and signal preservation is confirmed by statistical residual

analysis (Figure S12 of the Supporting Information). Furthermore, normalized residuals

follow a Gaussian distribution with standard deviation less than one. Noise maps presented

in Figure S13 show higher SNR enhancement when KPCA denoising is applied, compared

to MPPCA, ie, 2.48× and 1.73×, respectively. NRMSE values (maps in Figure S14) in the

whole brain were also lower for KPCA than MPPCA. Improved estimation of FA and MD

compared to MPPCA is achieved as well, please see Table S15-S17 in the Supporting

Information.

5 ∣ DISCUSSION

We have shown using realistic simulations and in vivo dMRI experiments that it is possible

to achieve superior noise suppression than state-of-the-art linear PCA denoising (MPPCA)

while preserving the dMRI image structure, if nonlinear redundancies in the data are

exploited. No signal structure is removed, as confirmed by the residual analysis. The KPCA

denoising methodology can be used to enhance the typically low SNR of dMRI protocols,

without compromising signal integrity.

To exploit nonlinear redundancy of the dMRI signal the key point is to apply PCA in a

reproducing kernel Hilbert space where the low-rank assumption of the covariance matrix

holds to a greater extent than in the canonical linear PCA space. It is precisely at very low

SNR and reduced number of diffusion directions where the benefits of KPCA denoising over

linear PCA are highly evident. If the rank K is not much lower than M, the portion of the
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eigenspectrum that is suppressed with linear PCA-based methods may not be large.

Therefore, the percentage of accumulated noise in the preserved principal components will

be substantial. With KPCA, this problem is bypassed, as the eigenspectrum is “augmented’

in the high-dimensional feature space ℱ, where thresholding is applied. Thereby, a large

amount of the spectrum is suppressed, that is, more level of noise is reduced.

As the kernel determines the feature space, the choice of the kernel is an interesting problem

that deserves to be discussed. We motivated the selection of the Gaussian kernel in Section

3.1.2. Though it provided excellent results, other kernels that are specifically tailored to

certain features of the dMRI signal, for example the angular information, can be used. This

could be accomplished by defining a corresponding spherical covariance function for the

diffusion directions, as done in,46,47 and incorporating this covariance matrix into the

conventional Gaussian kernel.

The selection of the rank Kℱ and the kernel parameters clearly affects the performance. The

SURE method allows us to rely on the statistical distribution model of the data, providing

the optimal representation in the MSE sense. Originally, the SURE approach was conceived

for additive noise models where the covariance of the noise is diagonal and parameterized by

a single noise level σ. This case gives excellent results in all of our experiments. However, it

can be extended to other statistical distributions,48 including Gaussian noise models with

arbitrarily complex covariance matrices. This could be of interest in scenarios where noise

correlation does exist. That could be the case of the multi-coil data experiment of this paper,

where correlation between channels may exist and different noise levels can be measured. It

could be of help too in cases where there exist noise correlation between different images,

which could happen if they are preprocessed in a joint fashion.

We have demonstrated that KPCA can work at the reconstruction level, for example,

denoising data with joint information from coil channels and diffusion directions, with

accurate signal preservation and substantial noise reduction. Denoising at this early stage in

the processing pipeline has some advantages. The most obvious is the possibility of

modeling noise distribution accurately,24 which permits an optimal selection of rank and

kernel parameters with the SURE method. As mentioned in the previous paragraph, we have

assumed an uncorrelated Gaussian distribution for all of our experiments with excellent

results. While this assumption is reasonable in most of the cases considered in his paper, the

actual distribution may deviate from the Gaussian distribution, due to data processing

algorithms (eg, motion correction). Therefore, the performance of denoising could be

suboptimal. However, noise distributions in the reconstruction step, (after GRAPPA or

SENSE reconstruction) have been studied/modeled extensively,18 and Gaussian distributions

have shown to be a very accurate model for real-valued images obtained with GRAPPA/

SENSE plus background phase correction. Superior denoising capabilities of KPCA are

expected if denoising is done at this stage. It is important to recognize possible risks of

denoising at the reconstruction level. The phase correction technique considerably

influences the denoising step (see [24] for a more comprehensive analysis). Phase estimation

should be accurately estimated to remove random phase variations between directions and
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channels. Otherwise, remaining artifacts/variations can reduce the signal redundancy and

hence undermine the benefits of KPCA denoising at this early stage.

It is worth noting that random matrix theory in kernel matrices has received less interest for

optimal rank selection than in the conventional PCA case. The difficulty of tracking noise

statistics over the kernel transformation, and the asymptotic approximations necessary to

obtain meaningful theoretical results49 makes this line of action impractical. This is one of

the main benefits of the SURE method. Indeed, though KPCA denoising performs the low-

rank decomposition in the feature transformed space, where noise statistics are difficult to

model, the optimal selection of the rank and the scale parameter is done in the native space

after reconstruction, where the assumed noise distribution model is well defined.

We would like to emphasize the broad applicability of KPCA denoising beyond

conventional dMRI pulse sequences. We envisage even further benefits of using KPCA

denoising compared to conventional PCA in situations where the complexity of the dMRI

signal increases. New developments in diffusion sequences such as multidimensional

dMRI50-53 are highly attractive applications for KPCA denoising. It is part of our future

work to extensively evaluate KPCA denoising in tensor-encoding dMRI data54 and extend

our preliminary experiments on this kind of data. Combination of relaxometry and diffusion

MRI data may be another application where the nontrivial redundancy between different

modalities could be better exploited with KPCA.55-58

It is very common to incorporate denoising mechanisms into reconstruction problems as

regularization terms.10,11,59 In this regard, we believe KPCA denoising could be easily

accommodated into this framework, and superior results cold be obtained than those

algorithms that employ linear PCA-based regularization terms. We are currently exploring

this line in our future work.

Finally, we would like to discuss some limitations of the current implementation of KPCA,

for example, computation time. In general, computation time of KPCA is higher than that of

MPPCA. This is due to the calculation of kernel distance as well as the SURE-method to

select rank and optimal kernel parameters. Nevertheless, we foresee a considerable reduction

in time with improvement in code-programming as well as with numerical approximations

for nonlinear distances involved in the kernel (eg, Gaussian functions).

6 ∣ CONCLUSION

We introduce to the dMRI community a novel denoising technique, Kernel PCA, which goes

beyond the linear compressibility assumption of PCA-based methods and exploits the

nonlinear redundancies that is intrinsic to dMRI data. Substantially superior SNR-enhanced

dMRI data can be obtained compared to PCA, without compromising signal integrity, in a

short-computation time, and with no manual parameter tunning. We showcase the power of

KPCA denoising with several in vivo whole human brain submillimeter resolution datasets

as well as conventional spatial resolution multi-coil dMRI data. Improved diffusion

parameter estimation was observed in all cases compared to state-of-the-art PCA denoising,

for example, MPPCA. We believe KPCA denoising could be beneficial in any diffusion MRI
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processing pipeline and particularly critical when processing very low SNR data, as in high-

resolution dMRI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.
Sliding-window version of KPCA denoising. For a given patch of N dMRI noisy signals, (1)

the similarity between each pair, yi, yn, are calculated as k(yi, yn), and represented by the

centered K matrix, HKH. Solving the eigenvalue problem (2), we obtain the eigenvectors αk

and eigenvalues λk associated to the mapping ϕh( · ), which defines the feature space where

linear PCA is performed. The best feature space, that is, optimal h, and optimal rank Kℱ are

selected as those that, after reprojection of the low-rank denoised signal to the native space,

give the best signal representation in terms of the Stein Unbiased Risk Estimate (SURE) (3).

Finally, the denoising signal at the center of the patch (4) is obtained by applying low-rank

denoising (with optimal Kℱ) in the optimal feature space and reprojecting
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FIGURE 2.
Quantitative results from the MC-based simulation experiment. For representative cases of

both white and gray matter, b = 1200 s/mm2 and M = 64, the NRMSE (%) of the dMRI

signal, FA and MD estimates are shown for different SNR values (the corresponding mean

SNR over all diffusion directions, SNRdwi, is given as a reference). Differences are

statistically significant as confirmed by a Welch’s t-test (P < .01)60
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FIGURE 3.
Mid-axial, coronal and sagittal slices of denoised DW images at 660 μm isotropic resolution

and b-value of b = 1500 s/mm2. Acquisition times are reported as well
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FIGURE 4.
Mid-axial, coronal and sagittal slices of denoised DW images at 860 μm isotropic resolution

and b-value of b = 2000 s/mm2. Acquisition times are reported as well
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FIGURE 5.
Residual maps from the 660 μm resolution datasets after being denoised with KPCA. On top

of the figure, the residual map from a given DW image, which shows no anatomical

information. On the bottom, the probability density function of the residuals (r) normalized

by the level of noise, σ. For the statistics, the normalized residuals are taken for all diffusion

directions and number of repetitions. Note that the residuals for KPCA approximately

follows a Gaussian distribution (blue dotted line on both plots representing the estimated

pdf). On blue solid-line the optimal analytical zero-mean Gaussian distribution that best fits

the data (maximum likelihood sense). Note that the standard deviation of the normalized

residual, 0.82, is lower than 1 (black-line represents a zero-mean standard Gaussian

distribution)
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FIGURE 6.
Maps of the NRMSE (hot colormap) and noise level (gray colormap) for the denoised DW

images at 660 μm isotropic resolution and b-value of b = 1500 s/mm2. Observe that KPCA

denoising obtains the lowest level of noise (highest SNR gains) and lowest NRMSE
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FIGURE 7.
Color-encoded FA maps of the denoised DW images at 660 μm isotropic resolution and b-

value of b = 1500 s/mm2 as well as corresponding NRMSE maps. Note the better

delineation of cortical gray matter in KPCA denoising
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FIGURE 8.
Angular error as well as angular precision, probed by coherence metric κ, for the peaks of

the fODFS estimated with CSD after denoising the 660 μm isotropic resolution DW images

(b = 1500 s/mm2). Further, corresponding fODFs maps in a representative crossing-fibers

area are displayed. Observe the lower variability in the fODFs of KPCA denoising compared

to MPPCA
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FIGURE 9.
Mid-axial, coronal, and sagittal slices of multi-coil denoised DW images. DW images coil-

combined with the SoS method are also shown
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