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Background. Recent research found that N5-methylcytosine (m5C) was involved in the development and occurrence of numerous
cancers. However, the function and mechanism of m5C RNA methylation regulators in clear cell renal cell carcinoma (ccRCC)
remains undiscovered. This study is aimed at investigating the predictive and clinical value of these m5C-related genes in
ccRCC. Methods. Based on The Cancer Genome Atlas (TCGA) database, the expression patterns of twelve m5C regulators and
matched clinicopathological characteristics were downloaded and analyzed. To reveal the relationships between the expression
levels of m5C-related genes and the prognosis value in ccRCC, consensus clustering analysis was carried out. By univariate Cox
analysis and last absolute shrinkage and selection operator (LASSO) Cox regression algorithm, a m5C-related risk signature
was constructed in the training group and further validated in the testing group and the entire cohort. Then, the predictive
ability of survival of this m5C-related risk signature was analyzed by Cox regression analysis and nomogram. Functional
annotation and single-sample Gene Set Enrichment Analysis (ssGSEA) were applied to further explore the biological function
and potential signaling pathways. Furthermore, we performed qRT-PCR experiments and measured global m5C RNA
methylation level to validate this signature in vitro and tissue samples. Results. In the TCGA-KIRC cohort, we found
significant differences in the expression of m5C RNA methylation-related genes between ccRCC tissues and normal kidney
tissues. Consensus cluster analysis was conducted to separate patients into two m5C RNA methylation subtypes. Significantly
better outcomes were observed in ccRCC patients in cluster 1 than in cluster 2. m5C RNA methylation-related risk score was
calculated to evaluate the prognosis of ccRCC patients by seven screened m5C RNA methylation regulators (NOP2, NSUN2,
NSUN3, NSUN4, NSUN5, TET2, and DNMT3B) in the training cohort. The AUC for the 1-, 2-, and 3-year survival in the
training cohort were 0.792, 0.675, and 0.709, respectively, indicating that the risk signature had an excellent prognosis
prediction in ccRCC. Additionally, univariate and multivariate Cox regression analyses revealed that the risk signature could be
an independent prognostic factor in ccRCC. The results of ssGSEA suggested that the immune cells with different infiltration
degrees between the high-risk and low-risk groups were T cells including follicular helper T cells, Th1_cells, Th2_cells, and
CD8+_T_cells, and the main differences in immune-related functions between the two groups were the interferon response
and T cell costimulation. In addition, qRT-PCR experiments confirmed our results in renal cell lines and tissue samples.
Conclusions. According to the seven selected regulatory factors of m5C RNA methylation, a risk signature associated with m5C
methylation that can independently predict prognosis in patients with ccRCC was developed and further verified the predictive
efficiency.

1. Introduction

Renal cell carcinoma (RCC) accounts for approximately 90%
of all kidney tumors [1].

Clear cell renal cell carcinoma (ccRCC) is the most com-
mon histological subtype of RCC, accounting for 70% [2].
Surgical treatment is still an effective way to treat ccRCC,

because it is not sensitive to radiotherapy and chemotherapy
[3, 4]. However, nearly a third of patients were reported
experiencing a recurrence after surgery with a median sur-
vival time of 1.9 years, resulting in a worse overall survival
(OS) [5]. Due to the unclear biological progression and
molecular mechanism of ccRCC, it is difficult to predict
the prognosis of patients with ccRCC accurately. Therefore,
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we urgently need to find the potential developmental mech-
anisms of ccRCC and search for new therapeutic targets with
better diagnostic and prognostic value.

RNA methylation accounts for more than 60 percent of
all RNA modifications, where N5-methylcytosine (m5C)
RNA methylation is the second common type, only inferior
to N6-methyladenosine (m6A) methylation [6]. m5C RNA
methylation, discovered in 1925, is widely distributed in var-
ious types of RNA methylation, including messenger RNA
(mRNA), transport RNA (tRNA), enhancer RNA (eRNA),
and ribosomal RNA (rRNA) [7, 8]. Recent studies revealed
that 5-methylcytosine (m5C) methylation modification of
the transcriptomes, mainly concentrated in 3′ untranslated
regions (3′ UTRs), played an essential role in the regulations
of mRNA such as its splicing translation and stability and is
even involved in the interactions between RNA and protein
[9–11]. The methyltransferase complex of m5C was com-
posed of “writers” (NSUN2, NSUN3, NSUN4, NSUN5,
NSUN7, NOP2, DNMT1, TRDMT1, DNMT3A, and
DNMT3B) that, respectively, install and reverse the methyl-
ation; “eraser” (TET2) that is a demethylase and RNA-
binding protein; and “readers” (ALYREF) that recognize
mRNA m5C sites [10, 12–14].

Recently, increasing studies have suggested that m5C
methylation also plays a vital role in pathological conditions
such as cancer [15]. Chen et al. revealed that m5C methyla-
tion could promote the pathogenesis of human bladder
urothelial carcinoma by stabilizing oncogene mRNAs [16].
Another study indicated that gene signatures of m5C meth-
ylation genes might predict prognoses of patients with head
and neck squamous cell carcinoma [9]. However, the poten-
tial mechanisms of m5C RNA modification involved in the
development of ccRCC were still unknown.

In this present research, we aim to explore the associa-
tion between ccRCC patients with the expression of RNA
m5C modification genes in the TCGA-KIRC cohort. Fur-
thermore, the relationships between the genes and the clini-
copathological parameters were also analyzed. Then, we
screened out seven m5C RNA methylation-related genes to
construct a risk signature model to predict the overall sur-
vival (OS) of the patients with ccRCC. The prediction accu-
racy of this risk signature was further validated in the testing
group and the entire cohort, respectively.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. All public gene
expression data, along with their clinical annotations such
as age, gender, grade, stage, TNM classification, and survival
status, were acquired from TCGA (http://cancergenome.nih
.gov/). The gene expression profiles of 539 ccRCC cases and
72 normal controls were analyzed for further research, and
513 ccRCC patients with complete clinical information,
including OS, were further selected from the 539 ccRCC
cases (Table 1).

2.2. Identification of Differentially Expressed m5C-Related
Genes in TCGA Database. We screened differential expres-
sion genes (DEGs) according to the adjusted p value <

0.05, log2 fold change > 1 or <−1 between the ccRCC tissue
samples and normal renal tissue samples. The m5C RNA
methylation regulator genes were further screened from
DEGs. Univariate Cox regression analysis was used to evalu-
ate the m5C RNA methylation regulator genes significantly
related to OS according to p value < 0.05.

2.3. Construction of PPI Network and Correlation Analysis.
Protein–protein interaction (PPI) network was constructed
for these twelve m5C methylation regulators using the
STRING online database (http://string-db.org/). Moreover,
by using the Pearson correlation analysis, we performed
the correlation analysis among these regulators and the dif-
ferent clinicopathological parameters were also analyzed

Table 1: Clinicopathological characteristics of patients in the
TCGA-KIRC cohort.

Characteristic

Training
cohort

(n = 267)

Testing cohort
(n = 246)

Entire cohort
(n = 513)

Number % Number % Number %

Age (years)

≤65 174 65.2 164 66.7 338 65.9

>65 93 34.8 82 33.3 175 34.1

Gender

Male 185 69.3 151 61.4 336 65.5

Female 82 30.7 95 38.6 177 34.5

Pathological stage

Stage I 137 51.3 118 48.0 255 49.7

Stage II 30 11.2 24 9.8 54 10.5

Stage III 58 21.8 64 26.0 122 23.8

Stage IV 42 15.7 40 16.2 82 16.0

Histological grade

G1 8 3.0 5 2.0 13 2.5

G2 109 40.8 114 46.3 223 43.5

G3 110 41.2 94 28.2 204 39.8

G4 40 15.0 33 13.5 73 14.2

T stage

T1 141 52.8 120 48.8 261 50.9

T2 38 14.2 28 11.4 66 12.9

T3 83 31.1 92 37.4 175 34.1

T4 5 1.9 6 2.4 11 2.1

N stage

N0 122 45.7 112 45.5 234 45.6

N1 9 3.4 5 2.0 14 2.7

Nx 136 50.9 129 45.5 265 51.7

M stage

M0 214 80.1 196 79.7 410 79.9

M1 40 15.0 37 15.0 77 15.0

Mx 13 4.9 13 5.3 26 5.1

Outcome

Alive 189 70.8 162 65.9 351 68.4

Dead 78 29.2 84 34.1 162 31.6
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based on the TCGA database. Wilcoxon’s test compared the
diverse expression of m5C RNA methylation regulators
between ccRCC samples and normal samples.

2.4. Consensus Clustering Analysis to Define m5C Subtypes.
To reveal the relationships between the expression levels of
m5C-related genes and the prognosis of ccRCC, the tumor
samples were clustered into different groups with the R
package “Consensus Cluster Plus.” To verify different gene
expression patterns in different ccRCC groups, principal
component analysis (PCA) was further performed. We per-
formed Kaplan-Meier survival analysis to reveal the differ-
ences in OS between different clusters. Additionally, we
applied the Chi-square test for comparing the clinicopatho-
logical parameters including gender, grade, age, TNM stage,
and stage between different clusters.

2.5. m5C-Related Prognostic Signature Generation and
Prediction. Univariate cox analysis was carried out to iden-
tify possible prognostic m5C RNA methylation regulators
in ccRCC. Then, m5C RNA methylation-related risk score
was constructed by using the LASSO Cox Regression algo-
rithm in the training cohort. The m5C-related risk signature
was calculated with the following formula:

Risk score = 〠
n

i=1
coef ið Þ × x ið Þ, ð1Þ

where n, coefðiÞ, and xðiÞ represent the number of genes,
coefficient, and the relative expression value of each gene,
respectively. On the basis of the median score in the training
cohort, we divided all ccRCC patients into the low-risk and
high-risk groups. Log-rank test and Kaplan-Meier curve
were applied, respectively, for revealing whether the risk
score can differentiate the OS in ccRCC patients. To evaluate
the predictive ability of these risk model, we further analyzed
the receiver operating characteristic (ROC) curve and the
area under the ROC curve (AUC) by the package of “survi-
valROC” in R language.

2.6. Validations of the Seven-Gene Risk Score in the Testing
and the Entire Cohort. The seven-gene risk score was further
verified in the testing and entire cohort. Log-rank test and
Kaplan-Meier curve were applied, respectively, for revealing
whether the risk score can differentiate the OS in ccRCC
patients. ROC and AUC were further analyzed in the testing
and entire cohort.

2.7. Construction and Validation of Nomogram. The nomo-
gram was applied to predict survival of ccRCC patients.
Selected seven m5C RNA methylation regulators genes and
survival states were used to build the nomogram using R
“rms” packages. The calibration curve was used to evaluate
the accuracy of the nomogram in differentiating between
patient groups.

2.8. GO and KEGG Pathway Enrichment Analyses. GO and
KEGG enrichment analyses of seven selected genes were
performed with R packages “clusterProfiler,” “enrichplot,”

and “ggplot2.” Only terms with both p and q values of <
0.05 were considered significantly enriched.

2.9. Single-Sample Gene Set Enrichment Analysis (ssGSEA).
To further evaluate the prognostic value of this risk model
in TCGA, single-sample Gene set enrichment analysis
(ssGSEA) was performed in two different risk score groups.
When the false detection rate (FDR) was less than 0.25 and
the normalized p value was less than 0.05, it was considered
to be significantly enriched.

2.10. Clinical Tissue Samples. We gathered clear cell renal
cell carcinoma (ccRCC) tumors and adjacent normal tissue
samples from patients who had undergone radical nephrec-
tomy surgery in The First Affiliated Hospital of Nanjing
Medical University between January 2003 and March 2019.
This study was ethically authorized by Ethics Committees
of the First Affiliated Hospital of Nanjing Medical Univer-
sity. All the patients signed the agreement for permission
that their tissue samples and other clinical information
may be used for further research purposes.

2.11. Cell Culture. The renal cancer cell lines (786-O, Caki-1)
and the human renal tubular epithelial immortalized cell line
(HK-2) were purchased from the Type Culture Collection of
the Chinese Academy of Sciences (Shanghai, China) and
cultured in RPMI 1640 (786-O); McCoy’s 5A (Caki-1) and
DMEM/F12 (HK-2) (Gibco, Thermo Fisher Scientific,
USA) containing 10% fetal bovine serum (FBS; Gibco,
Thermo Fisher Scientific, USA) and 1% penicillin/strepto-
mycin (Gibco, Thermo Fisher Scientific, USA). All cell lines
were cultured at 37°C in a humidified incubator containing
5% CO2.

2.12. Total RNA Isolation and qRT-PCR. Total RNA was
extracted from cultured cell lines and tissue samples using
TRIzol reagent (Thermo Fisher Scientific, USA) and subse-
quently reverse transcribed into cDNA using PrimeScript
RT reagent (Takara, Japan), according to the manufacturer’s
instructions. qRT-PCR experiment was performed with
SYBR Premix Ex Taq Reagent (Takara, Japan) using the Ste-
pOne Plus Real-Time PCR system (Applied Biosystems,
USA). The primers used for qRT-PCR were listed in
Table S1. The mRNA expression level was calculated using
the 2−ΔΔCt method and normalized against β-actin with
ABI StepOne software version 2.1.

2.13. Determination of Total m5C RNA Modification Level.
Total m5C RNA modification level was detected in 200 ng
of total RNA extracted from cells using the EpiQuik Global
RNA Methylation Assay Kit (5 Methyl Cytosine, Fluoromet-
ric) (Abcam, USA) according to the manufacturer’s proto-
cols. Briefly, m5C in RNA is detected using capture and
detection antibodies and then quantified fluorometrically
by reading the fluorescence in a microplate spectrophotom-
eter. The detected signal was calculated by reading wave-
length of 530/590 nm using a microplate reader. The
experiments were performed in triplicate.
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Figure 1: Continued.
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2.14. Statistical Analysis. All statistical data and figures were
analyzed by R 4.0.3. Using Wilcoxon’s test, we assessed the
different expressions of m5C RNA methylation regulators
between ccRCC patients and normal tissues. The correlation
analysis among m5C RNA methylation regulators was car-
ried out by the Pearson correlation analysis. The chi-
square test was performed to evaluate the association
between the risk score and clinicopathological parameters.
All statistical results with p < 0:05 were considered statisti-
cally significant.

3. Results

3.1. Screening Differently Expressed m5C Methylation
Regulator Genes in ccRCC. According to the previous studies
[10–12], we analyzed 12 m5C RNA methylation-related
genes, including NSUN5, ALYREF, DNMT3B, DNMT3A,
NSUN2, NOP2, DNMT1, NSUN3, NSUN4, NSUN7,
TET2, and TRDMT1. Firstly, we learned the mechanism of
N5-methylcytosine (m5C) RNA methylation, and the sketch
map was shown in Figure 1(a). We analyzed the mRNA
expression levels of 12 m5C RNA methylation genes in renal
clear cell carcinoma (ccRCC) (n = 539) and normal samples
(n = 72) obtained from the TCGA-KIRC database. The heat-
map indicating the expression levels of m5C regulatory genes
showed that 12 m5C RNA methylation regulators were dif-
ferently expressed in ccRCC tissues compared with normal
tissues (Figure 1(b)). As shown in the boxplot, NSUN5,
ALYREF, DNMT3B, DNMT3A, NSUN2, NOP2, and

DNMT1 were upregulated, while NSUN3, NSUN4, NSUN7,
and TET2 were downregulated (Figure 1(c)). Besides, the
expression level of 12 m5C-related genes in various tumors
obtained from the TCGA database was also analyzed
(Figure S1).

3.2. Functional Annotation and Pathway Enrichment
Analyses of Twelve m5C-Related Genes. To identify the func-
tion and potential pathway involved in ccRCC of m5C RNA
methylation genes, we perform GO and KEGG enrichment
analyses. Our results revealed that these m5C RNA methyla-
tion genes were remarkably enriched in the biological pro-
cesses (BP) associated with methylation, macromolecule
methylation, RNA methylation, and RNA modification.
Among the molecular function (MF) analyses, they were sig-
nificantly enriched in chromosomal region, heterochroma-
tin, and organellar large ribosomal subunit. Through the
cellular component (CC), m5C RNA methylation genes were
significantly enriched in methyltransferase activity, methyl-
transferase activity, RNA methyltransferase activity, and
rRNA methyltransferase activity (Figures 2(a) and 2(b)).

KEGG pathway analysis found that m5C RNA methyla-
tion genes were mainly enriched in cysteine and methionine
metabolism, microRNAs in cancer, mRNA surveillance,
spliceosome, and RNA transport (Figures 2(c) and 2(d)).

3.3. Construction of a PPI Network and Correlation Analysis.
To further explore the underlying mechanism, the PPI net-
work was constructed on the basis of the STRING database.
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Figure 1: Different expression of m5C RNA methylation-related genes in ccRCC. (a) Schematic flow chart of N5-methylcytosine (m5C)
RNA methylation. (b) The heatmap of twelve m5C RNA methylation regulators in 539 ccRCC and 72 normal tissues from the TCGA
database. The color bar from red to green denotes high to low gene expression. (c) The expression of twelve m5C RNA methylation
regulators in normal tissues and ccRCC from the TCGA database. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. ns: no significance.
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PPI network analysis showed that NSUN5, NSUN3,
NSUN4, NSUN7, NOP2, and TET2 were the essential genes
(Figure 3(a)). In correlation analysis, we found that these
genes were strongly correlated at the transcriptional level
(Figure 3(b)). Among the regulatory factors of m5C RNA
methylation, the positive interaction between NSUN3 and
TET2 (r = 0:7) and the negative interaction between
NSUN5 and TET2 (r = −0:31) were the most significant
(Figure 3(c)). In addition, a network diagram showed the
interaction, function, and prognostic value between twelve
m5C RNA methylation regulators (Figure 3(d)).

3.4. Genetic Alterations of m5C RNA Methylation Regulators
and Association with Immune Cell Infiltration. Then, we
investigate the relationship between twelve m5C RNA meth-
ylation regulators and CNV mutations. We observed wide-
spread CNV on twelve m5C RNA methylation regulators
through copy number variation (CNV) analysis. Among
these genes, NOP2, ALYREF, NSUN2/3, and TRDMT1
showed high CNV amplification frequency. In contrast,
NSUN4/5/7, TET2, and DNMT1/3A/3B had significantly
high CNV deletion frequency (Figure 4(a)). The locations
of CNV of twelve m5C RNA methylation regulators on chro-
mosomes are shown in Figure 4(b). Nevertheless, the effects
of CNV of the m5C RNA methylation regulators-based sig-
natures were further analyzed to clarify the association with
different immune cell infiltrations. Adopting the TIMER data-
base, the CNV of the identified m5C regulators signatures,
including deep deletion, arm-level deletion, diploid/normal,
arm-level gain, and high amplification, significantly affected
the infiltration levels of B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells in ccRCC
(Figures 4(c)–4(n)). These results illustrated the underlying
mechanisms that m5C RNA methylation regulators had piv-
otal regulatory effects on the tumor immune microenviron-
ment for ccRCC patients.

3.5. Consensus Cluster Analysis to Define m5C Subtypes. We
used unsupervised consensus clustering analysis to identify
two subtypes based on the m5C RNA methylation regulator
expression profiles. Clearly, k = 2 was assumed to be the
most appropriate choice for dividing the tumor samples into
two different clusters (Figures 5(a)–5(c)). Additionally, the
principal component analysis (PCA) was performed to com-
pare the transcriptional profile between the two clusters, and
the result was shown in Figure 5(d). For comparing the over-
all survival (OS) of ccRCC patients between the two clusters,
the Kaplan–Meier method was applied. The result indicated
that the ccRCC patients in cluster 1 had a significantly lon-
ger OS than cluster 2 (p = 0:006) (Figure 5(e)). The compar-
ison of clinicopathological features between the two clusters
indicated a significant difference in terms of the stage
(p < 0:01), grade (p < 0:001), and TNM stage (p < 0:001),
while there was no significant difference in age and gender
between the two clusters (Figure 5(f)). The clinicopatholog-
ical features between two clusters were shown in Table 2.
In conclusion, the results above suggested that the clustering
was intimately connected with the clinicopathological char-
acteristics of ccRCC.

3.6. Prognostic Risk Signature of m5C RNA Methylation
Regulators. Then, we performed univariate Cox regression
analysis based on the expression levels of these regulators from
TCGA to investigate the prognostic value of these twelve m5C
RNA methylation regulators in ccRCC. The results suggested
that eleven regulators were significantly associated with overall
survival (OS) (p < 0:05), among which, TET2, NSUN3,
NSUN4, NSUN7, and TRDMT1were considered as protective
genes with HR < 1, while NSUN5, NSUN2, DNMT3B,
DNMT3A, ALYREF, and NOP2 were considered as risky
genes with HR > 1(Figure 6(a)). Furthermore, ten genes were
intersected from differentially expressed genes and genes
related to OS by the Venn diagram (Figure 6(b)). The LASSO

Decreasing Increasing

z−score

logFC
Upregulated

hsa00270

hsa05206
hsa03015

hsa03040

hsa0
30

13
hs

a0
50

14

hsa05168

ID
hsa00270

Description

hsa05206
hsa03015
hsa03040
hsa03013
hsa05014
hsa05168

Cysteine and methionine metabolism
MicroRNAs in cancer

mRNA surveillance pathway
Spliceosome

RNA transport
Amyotrophic lateral sclerosis

Herpes simplex virus 1 infection

(d)

Figure 2: Enrichment plots of twelve m5C RNA methylation-related genes by performing GSEA. (a) GO enrichment analysis of twelve m5C
RNA methylation-related genes in the TCGA-KIRC cohort. (b) KEGG pathway analysis of twelve m5C RNA methylation-related genes in
the TCGA-KIRC cohort.

7International Journal of Genomics



DNMT3B

NOP2

NSUN2

DNMT3A

NSUN4

TRDMT1

NSUN3

TET2

NSUN5

ALYREF

DNMT1

NSUN7

(a)

NSUN3

NSUN5

DNMT1

DNMT3A

DNMT3B

TRDMT1

ALYREF

TET2

NSUN4
NSUN7

NOP2

1 0.5 0 −0.5 −1

NSUN2

(b)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1D
N

M
T3

B

N
O

P2

N
SU

N
2

D
N

M
T3

A

N
SU

N
4

TR
D

M
T1

N
SU

N
3

TE
T2

NSUN5

ALYREF

DNMT3B

NOP2

NSUN2

DNMT3A

DNMT1

NSUN7

NSUN4

TRDMT1

NSUN3

TET2

1 0.4

1

0.31

0.05

1

0.44

0.46

0.47

1

0.13

0.26

0.22

0.52

1

0.11

0.09

0.31

0.34

0.38

1

0.04

0.4

0.13

0.41

0.42

0.49

1

−0.02

−0.18

−0.1

−0.18

0.02

−0.06

−0.16

1

−0.13

0.06

−0.08

−0.09

0.08

0.22

0.16

−0.13

1

−0.33

−0.16

−0.09

−0.23

0.14

0.3

0.14

0.01

0.35

1

−0.24

−0.18

−0.12

−0.22

0.11

0.22

0.18

0.34

0.23

0.59

1

−0.31

−0.24

−0.04

−0.17

0.24

0.4

0.19

0.43

0.22

0.65

0.7

1

–1<=r<=1
–1 indicates perfect negative correlation
+1 indicates perfect positive correlation

N
SU

N
5

A
LY

RE
F

D
N

M
T1

N
SU

N
7

1

1

1

(c)

Figure 3: Continued.
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Cox regression analysis, including these ten genes, was per-
formed to predict the prognosis of ccRCC through m5C
RNA methylation regulators better. Consequently, seven
genes, composed of NOP2, DNMT3B, NSUN3, NSUN5,
TET2, NSUN2, and NSUN4, were screened for the construc-
tion of a prognostic risk signature via LASSO Cox regression
analysis (Figures 6(c) and 6(d)). The expression levels of the
seven genes selected out in various cancers on the basis of
the TCGA database were consistent with the result we
obtained in ccRCC (Figure S1B-H). The risk score for each
patient was calculated with the following formula (Table 3):

m5CRisk Signature = 0:358712202257608 ∗NOP2 +
0:229671617272167 ∗ NSUN2 + 0:150827601647872 ∗
NSUN5 + 0:453815651228113 ∗DNMT3B + ð−
0:00949630611801698Þ ∗NSUN3 + ð−0:604181882439325Þ
∗ TET2 + ð−0:09915438936325Þ ∗NSUN4:

For the sake of evaluating the prognostic value of the risk
signature, 267 random selected ccRCC patients with com-

plete follow-up information in the training cohort were
divided into the high-risk group (135 patients) and the
low-risk group (132 patients) according to the calculated
median risk score above, and the overall survival of the
two groups was compared. The result indicated that the
low-risk ccRCC patients had a better prognosis with a lon-
ger OS (Figure 6(e)). The time-dependent ROC curve
analysis suggested that the prognostic signature with the
AUC values for the 1-, 2-, and 3-year survival in the train-
ing cohort were 0.792, 0.675, and 0.709, respectively
(Figure 6(f)). The result of PCA in the training cohort was
shown in Figure S5A, and the result of stochastic neighbor
embedding (t-SNE) was displayed in Figure S5B. The
heatmap showed higher expression levels of the seven risk-
related m5C RNA methylation regulators (NOP2, DNMT3B,
NSUN3, NSUN5, TET2, NSUN2, and NSUN4) in the high-
risk group compared to the low-risk group (Figure 6(g)).
The distributions of the risk scores and their survival status
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Figure 3: PPI network and correlation analyses of m5C RNA methylation-related genes. (a) PPI network of the eleven differentially
expressed m5C RNA methylation regulatory genes. (b) Correlation analysis at the transcriptional level. (c) Pearson’s correlation analysis
of these m5C RNA methylation-related genes in the TCGA. Note: ‘r’ denotes Pearson’s correlation coefficient whose value ranges
between -1 (perfect negative correlation) and +1 (perfect positive correlation). (d) A network plot of the function and correlation
analysis by Cox test.
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Figure 4: Continued.
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were displayed (Figure 6(h)). These results, taken together,
suggested that this risk score was a good predictor for the
prognosis of ccRCC.

3.7. m5C Risk Signature Can Be an Independent Prognostic
Factor. So as to explore whether the risk signature can act
as an independent prognostic factor, the univariate and mul-
tivariate Cox regression analyses were performed in the
training cohort. The results indicated that the risk score
was significantly related to the worse OS with HR = 2:796
(p < 0:001, 95% CI 1.977−3.954) (Table 4). Moreover, grade
(HR = 2:242, 95% CI 1.682−2.988, p < 0:001), stage
(HR = 1:862, 95% CI 1.541-2.251, p < 0:001), T stage
(HR = 1:943, 95% CI 1.538-2.456, p < 0:001), M stage
(HR = 4:073, 95% CI 2.634-6.300, p < 0:001), and N stage

(HR = 2:932, 95% CI 1.516-5.668, p < 0:001) were also sig-
nificantly associated with the OS according to the univariate
Cox analysis (Table 4). In addition, the risk score was also
related to the worse OS with HR = 1:779 (p = 0:002, 95%
CI 1.594−2.147) according to the multivariate Cox analysis
(Table 4). In conclusion, these results above suggested that
signature-based risk score can be an independent prognostic
factor for ccRCC.

3.8. Validation of the Risk Signature in the Testing Cohort
and Entire Cohort. To further verify the prognostic accuracy
of the risk score, we tested it in the testing cohort and the
whole cohort. The results of the univariate Cox regression
analysis indicated that the risk score in the testing cohort,
and the entire cohort was significantly related with the worse
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Figure 4: Correlations between CNV and immune cell infiltrations of twelve m5C modification regulators in ccRCC. (a) The copy number
variation (CNV) frequency percentage of m5C regulators in ccRCC. The red dot represents the CNV amplification, and the green dot
represents the CNV deletion. (b) The location of CNV of m5C regulators on chromosomes. (c–n) Correlation analysis between the CNV
of m5C-related signature and immune cell infiltration. (c) NOP2. (d) NSUN2. (e) NSUN3. (f) NSUN4. (g) NSUN5. (h) NSUN7. (i)
DNMT1. (j) DNMT3A. (k) DNMT3B. (l) TRDMT1. (m) ALYREF. (n) TET2. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. ns: no significance.
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Figure 5: Consensus clustering analysis shows two clusters of ccRCC patients with differential prognosis. (a) Cumulative distribution function
(CDF) curves for the consensus score (k = 2 to 9). (b) The tracking plot for k = 2 to 9. (c) Consensus clustering matrix for the optimal cluster
number, k = 2. (d) Principal component analysis of the total RNA expression profile. ccRCC in cluster 1 and 2 are marked in red and blue,
respectively. (e) Kaplan-Meier overall survival (OS) curve for ccRCC patients in cluster 1 and 2. (f) The expression heatmap of the 12 m5C
methylation regulatory genes in cluster 1 and cluster 2 patients that were stratified according to the clinicopathological parameters: namely,
N stage (N0, N1, or NX), M stage (M0, M1, or MX), T stage (T1-T4), AJCC stages (stages I, II, III ,or IV), grade (G1-G4), gender (male or
female), age (>65 y or <65 y), and survival status (alive or dead). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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OS with HR = 5:245 (95% CI 1.792-15.355, p = 0:002) and
HR = 2:796 (95% CI 1.977-3.954, p < 0:001), respectively
(Table 4). Similarly, patients were divided into two groups
according to the median risk score, respectively. Kaplan–
Meier curves analysis in the testing cohort demonstrated
that the patients in low risk had longer OS than those in high
risk (Figure 7(a)). To detect the effectiveness of this model,
the ROC analysis of 1/2/3-year OS was carried out in the
testing cohort. The AUC values for the 1-, 2-, and 3-year
survival in the testing cohort were 0.660, 0.642, and 0.683,
respectively (Figure 7(b)). The results of PCA and t-SNE
in the testing cohort were shown in Figure S5C and
Figure S5D, respectively. The heatmap in the testing cohort
showed that higher expression levels of the seven risk-
related m5C RNA methylation regulators in the high-risk

group compared to the low-risk group (Figure 7(c)). The
distributions of the risk scores and the patient survival
status between the low- and high-risk groups in the testing
cohort were displayed in Figure 7(d). Similar results were
further verified in the entire cohort. The result of Kaplan–
Meier curves analysis in the entire cohort showed that the
patients in low risk had longer OS than those in high risk
(Figure 8(a)). The ROC values of 1-/2-/3-year OS in the
entire cohort were 0.740, 0.664, and 0.699, respectively
(Figure 8(b)). The result of PCA in the entire cohort was
shown in Figure S5E. The result of t-SNE in the entire
cohort was shown in Figure S5F. The heatmap in the entire
cohort showed that these seven risk-related m5C RNA
methylation regulators were highly expressed in the high-
risk group compared to the low-risk group (Figure 8(c)).
The distributions of the risk scores and the patient survival
status between the low- and high-risk groups in the entire
cohort were displayed (Figure 8(d)).

3.9. Construction of Nomogram in the Training Cohort, the
Testing Cohort, and the Entire Cohort. In order to predict
the 1-year, 2-year, and 3-year overall survival of each
patient, the nomograms were designed in the training
cohort, testing cohort and whole cohort, respectively. The
expression signature for the seven risk-related genes was
used as variables. Figure 9(a) presented the seven variables
of the training cohort, and the calibration curve compared
well with the ideal model was shown in Figure 9(b). The
nomograms for 1-, 2-, and 3-year OS were also constructed
in the testing and entire cohort. The results in the testing
cohort and the entire cohort were similar with that in the
training cohort and were displayed in Figures 9(c) and
9(d) and Figures 9(e) and 9(f), respectively. These results
above, taken together, suggested that m5C risk signature is
a good predictor for the prognosis in ccRCC.

3.10. Kaplan-Meier Survival Curves of m5C RNA
Methylation Regulators in ccRCC Patients. We further ana-
lyzed the association between the seven selected m5C RNA
methylation regulator genes and the OS and disease-free sur-
vival (DFS) of ccRCC patients in the TCGA database.
Kaplan-Meier survival curves and log-rank test showed that
the OS of ccRCC patients with higher expression of
DNMT3B, NOP2, NSUN2, and NSUN5 was significantly
shorter compared to those with lower expression. In contrast,
ccRCC patients with higher expression of NSUN3, NSUN4,
and TET2 will have longer OS than those with lower expres-
sion (Figure S2A-G). Moreover, higher expression of
NSUN3, NSUN4, and TET2 was correlated with significantly
longer disease-free survival (DFS). However, there were any
significant differences in the DFS of ccRCC patients with
differential expression of NOP2, NSUN2, NSUN5, and
DNMT3B (Figure S3A-G). Overall, our results demonstrated
that these seven m5C RNA methylation regulators are
potential prognostic biomarkers that can accurately predict
survival outcomes of ccRCC patients.

3.11. GSEA Analysis Reveals Potential Signaling Pathways
Related to Risk Score. To further understand the biological

Table 2: Clinicopathological features between two clusters.

Characteristic Cluster 1, n (%) Cluster 2, n (%) p value

Age (years)

≤65 304 (66.5) 35 (58.3)
0.210

>65 153 (33.5) 25 (41.7)

Gender

Male 299 (65.4) 38 (63.3)
0.749

Female 158 (34.6) 22 (36.7)

Pathological stage

Stage I 234 (51.2) 25 (41.6)

0.003∗∗
Stage II 47 (10.3) 7 (11.7)

Stage III 113 (24.7) 9 (15.0)

Stage IV 63 (13.8) 19 (31.7)

Histological grade

G1 12 (2.6) 2 (3.3)

<0.001∗∗∗G2 205 (44.9) 19 (31.7)

G3 187 (40.9) 18 (30.0)

G4 53 (11.6) 21 (35.0)

T stage

T1 240 (52.4) 25 (41.7)

<0.001∗∗∗T2 56 (12.3) 10 (16.7)

T3 158 (34.6) 17 (28.3)

T4 3 (0.7) 8 (13.3)

N stage

N0 211 (46.1) 24 (40.0)
0.001∗∗N1 8 (1.8) 6 (10.0)

Nx 238 (52.1) 30 (50.0)

M stage

M0 376 (82.3) 36 (60.0)
<0.001∗∗∗M1 60 (13.1) 17 (28.3)

Mx 21 (4.6) 7 (11.7)

Outcome

Alive 320 (70.0) 33 (55.0)
0.019∗

Dead 137 (30.0) 27 (45.0)

Total

517 457 60
∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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Figure 6: Construction and evaluation of the m5C RNA methylation-related prognostic risk signature in the training cohort. (a) Univariate
Cox regression analysis results show the p values and hazard ratios (HR) with confidence intervals (CI) of the twelve m5C RNA methylation
regulatory genes. (b) The Venn diagram between differentially expressed genes and genes related to OS. (c, d) The 7 prognostic risk signature
genes were selected by LASSO Cox regression analysis. (e) Kaplan-Meier survival curves show the overall survival (OS) rates of high-risk
(n = 135) and low-risk (n = 132) ccRCC patients of the training cohort. The high-risk group shows shorter OS compared to the low-risk
group. (f) The accuracy and reliability of the prognostic risk signature in determining the 1-year, 2-year, and 3-year survival outcomes of
the high- and low-risk patients in the training cohort. (g) The expression heatmap of the seven prognostic risk-related m5C RNA
methylation regulators in the high-risk (blue) and low-risk (pink) ccRCC patients of the training cohort. ∗∗p < 0:01; ∗∗∗p < 0:001. (h)
The distributions of risk scores of the high-risk (red) and low-risk (blue) ccRCC patients and corresponding survival time (the red dots
represent the dead patients and the blue dots represent the alive patients) in the training cohort.
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function and potential signaling pathways between the high-
risk and low-risk groups, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEEG) pathway anal-
yses were performed. The results of GO analysis indicated
that the high-risk group are enriched in the regulation of
various enzyme activities, such as negative regulation of
hydrolase activity, negative regulation of proteolysis and so
on (Figure 10(a)). Moreover, KEGG pathway analysis sug-
gested that these genes were associated with various
cancer-related pathways, including ERBB pathway, MAPK
pathway, mTOR pathway, renal cell carcinoma, pathway in
cancer, TGF-β pathway, and Wnt pathway, which gives a
clue of the underlying mechanism in the pathogenesis of
ccRCC (Figure 10(b) and S4, Table 5). Further, ssGSEA
analysis was applied to explore the different infiltration
degrees of immune cell types, immune-related functions,
and immune-related pathways between the low-risk group
and the high-risk group. The results indicated that the
immune cells with different infiltration degrees between the
two groups were T cells including follicular helper T cells,
Th1 cells, Th2 cells, and CD8+ T cells (Figure 10(c)). The
main differences in immune-related functions between the
two groups were the interferon response and T cell costimula-
tion (Figure 10(d)). The above results revealed that these seven
selected genes were tumor-related, and the risk score can inde-
pendently predict prognosis in patients with ccRCC.

3.12. Verification of Seven m5C RNA Methylation Regulators
in Tissue Samples and Cell Lines. To further verify seven

selected m5C RNA methylation-related genes’ mRNA
expression pattern in ccRCC, we performed qRT-PCR
experiment in ccRCC tissue samples and cell lines. Among
these m5C RNA methylation genes, we observed the signifi-
cantly upregulated expression level of NOP2, NSUN2,
NSUN5, DNMT3B, and TET2 in the renal cancer cell lines
(786-O, Caki-1) compared with human renal tubular epithe-
lial immortalized cell line (HK-2) (∗∗p < 0:01), while NSUN4
was downregulated in renal cell lines. However, NSUN3
mRNA expression level showed no significant difference
(Figure 11(a)). Furthermore, we explored these m5C RNA
methylation-related genes’ expression level in clinical tissue
samples, which was consistent with our results in the TCGA
database and cell lines (Figure 11(b)). In addition, m5C RNA
modification levels in the cell lines were measured by Global
RNA Methylation Assay Kit. m5C RNA modification levels
in renal cancer cell lines (786-O, Caki-1) were dramatically
higher than that in HK-2 cell lines (Figure 11(a)).

4. Discussion

Renal clear cell carcinoma (ccRCC), the most common type
of adult kidney carcinoma, is characterized by poor progno-
sis and high risk of metastasis and recurrence [17]. No effec-
tive therapeutic strategies for ccRCC patients with advanced
stage or metastasis were founded, and the rate of 5-years
disease-free survival in patients with metastasis is only 12%
[18]. Therefore, identifying the effective diagnostic and
prognostic biomarkers for early diagnosis and accurate

Table 3: List of m5C RNA methylation-related genes for constructing prognostic risk score.

Genes Types Coefficient
Univariate Cox analysis

HR 95% CI p value

NOP2 m5C writer 0.3587 2.701 2.097-3.480 <0.001
NSUN2 m5C writer 0.2297 1.812 1.185-2.771 0.006

NSUN3 m5C writer -0.0095 0.567 0.332-0.969 0.038

NSUN4 m5C writer -0.0992 0.547 0.344-0.871 0.011

NSUN5 m5C writer 0.1508 2.333 1.714-3.176 <0.001
DNMT3B m5C writer 0.4538 2.039 1.557-2.670 <0.001
TET2 m5C eraser -0.6042 0.531 0.366-0.770 <0.001
HR: hazard ratio, estimated from Cox proportional hazard regression model; CI: confidence interval of the estimated HR.

Table 4: Univariate and multivariate Cox regression analyses of the TCGA cohort for risk score of m5C-related genes.

Variable
Univariate Cox regression Multivariate Cox regression

HR 95% CI p value HR 95% CI p value

Age 1.023 1.005-1.041 0.012 1.033 1.013-1.054 0.001

Gender 0.951 0.666-1.541 0.951 1.205 0.769-1.887 0.416

Grade 2.242 1.682-2.988 <0.001 1.529 1.088-2.149 0.014

Stage 1.862 1.541-2.251 <0.001 1.435 0.843-2.441 0.183

T 1.943 1.538-2.456 <0.001 1.010 0.618-1.651 0.969

M 4.073 2.634-6.300 <0.001 1.714 0.751-3.912 0.201

N 2.932 1.516-5.668 0.001 1.593 0.768-3.304 0.211

Risk score 2.796 1.977-3.954 <0.001 1.779 1.594-2.147 0.002

HR: hazard ratio, estimated from Cox proportional hazard regression model; CI: confidence interval of the estimated HR.
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Figure 7: Continued.
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prognosis is urgent to improve and prognose survival out-
comes of ccRCC patients. The malignant progression and
prognosis of ccRCC were associated with epigenetic mod-
ifications, including DNA methylation [19], histone modi-
fication [20], microRNA changes [21, 22], and RNA
modification [23, 24]. The m5C methylation, the second
common methylation modification, plays essential roles in
various cellular, biological, and pathological processes. The
methylation of cytosine is regulated by the genes that we call
“writers,” “erasers,” and “readers.” The “writers” can upregu-
late m5C methylation, and the “erasers” can reverse the level
of m5C methylation. The “readers” can bind to an m5C site
and modulate differential biological signals.

Recent research revealed that m5C methylation is associ-
ated with prognosis in many cancers [9, 16]. The molecular
mechanisms associated with the prognosis of ccRCC are still
unknown. Therefore, we explored the relationship between
m5C methylation regulators and the prognosis of ccRCC in
this study.

In the present study, we found that eleven of twelve m5C
RNA methylation regulators were abnormally expressed in
ccRCC, among which, ten genes were associated with the
prognosis. According to these ten selected m5C RNA meth-

ylation regulators, two clusters with significant differences of
OS were distinguished in the ccRCC patients of TCGA.
Moreover, on the basis of the training cohort, seven genes
(NOP2, NSUN2, NSUN3, NSUN4, NSUN5, TET2, and
DNMT3B) were screened for the construction of a prognos-
tic risk signature. The results showed that the risk score was
effective in predicting the clinical outcomes of ccRCC. Sim-
ilarly, the independent prognostic value of this seven-gene
risk score was represented again in the testing and the entire
cohort, indicating that the risk signature had good perfor-
mance in prognosis prediction. Univariate and multivariate
Cox regression analyses in the whole cohort showed that
age, stage, grade, TNM stage, and risk score were signifi-
cantly associated with OS. the risk score could also predict
the prognosis of the ccRCC patients with different clinico-
pathological parameters. The above results, taken together,
suggested that the clinical outcomes were worse in the
high-risk ccRCC patients than in the low-risk.

In our study, the higher expression level of NSUN4,
NSUN3, and TET2 presented a better prognosis in ccRCC
patients, indicating that these three genes might inhibit the
progression of ccRCC. NSUN4 is a dual functional mito-
chondrial protein, enabling 12S rRNA methylation and
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Figure 7: Validation of the prognostic risk signature in the testing cohort. (a) Kaplan-Meier curve analysis shows the OS of high-risk (n = 10
) and low-risk (n = 236) ccRCC patients in the testing cohort. (b) ROC curve analysis in the testing cohort shows the false positive rate vs.
true positive rate plots based on the prognostic risk signature. The AUC values for 1-year (green), 2-year (blue), and 3-year (red) survival
rates are also shown. (c) The expression heatmap of the seven prognostic-risk related m5C RNA methylation regulators in the high-risk
(blue) and low-risk (pink) ccRCC patients of the testing cohort. ∗∗p < 0:01; ∗∗∗p < 0:001. (d) The distributions of risk scores of the high-
risk (red) and low-risk (blue) ccRCC patients and corresponding survival time (the red dots represent the dead patients and the blue
dots represent the alive patients) in the testing cohort.
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coordinating mitochondrial assembly [25]. NSUN4 partici-
pates in cell proliferation and differentiation, protein biosyn-
thesis, and cancer [26]. He et al. reported a high expression
of NSUN4 in advanced liver cancer [27], contrary to our
results. The reason may be that advanced tumors require a
lot of energy and tumor cells improve their mitochondrial
activity and obtain more energy by self-upregulating NSUN4

and other genes. NSUN3 was a putative methyltransferase in
mitochondria [28], whose aberration may lead to a variety of
diseases [29, 30]. Many studies have reported that TET2 can
inhibit tumors, and its mutation can induce the occurrence
and development of tumors [31–34]. Our results are consis-
tent with the above results, indicating that TET2 is a tumor
suppressor gene.
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Figure 8: Validation of the prognostic risk signature in the whole TCGA-KIRC cohort. (a) Kaplan-Meier curve analysis shows the OS of
high-risk (n = 258) and low-risk (n = 259) ccRCC patients in the entire TCGA cohort. (b) ROC curve analysis in the entire cohort shows
the false positive rate vs. true positive rate plots based on the prognostic risk signature. The AUC values for 1-year (green), 2-year (blue),
and 3-year (red) survival rates are also shown. (c) The expression heatmap of the seven prognostic-risk related m5C RNA methylation
regulators in the high-risk (blue) and low-risk (pink) ccRCC patients of the entire cohort. ∗∗p < 0:01; ∗∗∗p < 0:001. (d) The distributions
of risk scores of the high-risk (red) and low-risk (blue) ccRCC patients and corresponding survival time (the red dots represent the dead
patients and the blue dots represent the alive patients) in the entire cohort.
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In contrast, the higher expression level of the other genes
NOP2, DNMT3B, NSUN2, and NSUN5, the worse progno-
sis of ccRCC patients may have, which indicated that these
four genes might promote the development of ccRCC. The
high expression of NSUN5 can promote the proliferation
of colon cancer cells [35], and the high expression of
NOP2 can promote the metastasis of prostate cancer and
the proliferation of liver cancer cells [36, 37]. We came to
the same conclusion about NSUN5 and NOP2 genes in
our study. DNMT3B is expressed as an oncogene in various
of tumors, including leukemia, liver cancer, and bladder can-

cers [38–40]. Several studies have reported that NSUN2 can
promote the development and metastasis of tumors [41–43].

To further understand the biological function and poten-
tial signaling pathways of these genes, we performed GO,
KEGG, and ssGSEA analyses between tissues with different
risk scores. The results above indicated that patients in the
high-risk group might have the following changes in their
bodies that result in a poor prognosis. Firstly, many articles
have reported recently that the occurrence and development
of tumors are related to inflammatory stimulation. Patients
in the high-risk group may experience large inflammatory
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Figure 9: Nomograms to predict the survival rate of ccRCC patients in the training cohort, testing cohort, and the entire cohort. (a) The
nomogram of used to predict the survival time, and (b) the calibration map used to predict the 3-year rate in the training cohort. (c)
The nomogram used to predict the survival time, and (d) the calibration map used to predict the 3-year rate in the testing cohort. (e)
The nomogram of used to predict the survival time, and (f) the calibration map used to predict the 3-year rate in the entire cohort.
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responses, resulting in more inflammatory cell infiltration
and ultimately the inhibition of several key enzyme activi-
ties, which can induce cell apoptosis and mutation [44–46].

Secondly, the functions of various T cells including follicular
helper T cells, Th1 cells, Th2 cells, and CD8+ T cells were
suppressed in the high-risk group, causing the tumor cells

Table 5: Gene set enrichment analysis result of the high-risk group.

Gene set name NES NOM p-value FDR q-value

KEGG renal cell carcinoma 2.21 0.000 0.017

KEGG TGF beta signaling pathway 2.19 0.002 0.016

KEGG WNT signaling pathway 2.15 0.000 0.013

KEGG ERBB signaling pathway 2.11 0.000 0.011

KEGG pathways in cancer 2.02 0.006 0.015

KEGG MAPK signaling pathway 1.98 0.008 0.017

KEGG mTOR signaling pathway 1.98 0.004 0.017

NES: normalized enrichment score; NOM: nominal, FDR: false discovery rate. Gene sets with NOM p value < 0.01 and FDR q value < 0.02 are considered
significant.
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Figure 10: GSEA enrichment analysis. (a) The results of GO analysis in ccRCC with high-risk (red) and low-risk (blue) patients. (b) The
seven most significantly enriched signaling pathways from KEGG. (c, d) Single-sample GSEA (ssGSEA) analysis showing the types of
infiltrating immune cells (c) and the immune-related functions (d) in ccRCC with high risk (red) and low risk (blue). ∗p < 0:05, ∗∗p <
0:01, and ∗∗∗p < 0:001. ns: no significance.
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to escape immunity and resulting in a poorer prognosis
[47–49]. Thirdly, various cancer-related pathways, including
ERBB pathway, MAPK pathway, mTOR pathway, pathways
in cancer, TGF-β pathway, and Wnt pathway, were more
likely to be activated, leading to poor outcomes. The mRNA
expression level of m5C RNA methylation regulators and the
global m5C RNA methylation level were measured in vitro
and tissue samples, which is consistent with our above in
silico analysis.

Some limitations of this study are noteworthy. The
results of the current study, obtained by bioinformatics anal-
ysis, were not entirely accurate so that more experimental
and clinical studies were still needed to further verify our
results and find out the potential mechanism of m5C RNA
methylation in ccRCC.

5. Conclusions

Our results demonstrated that eleven out of twelve m5C
RNA methylation regulators are dysregulated between
ccRCC tissues and normal tissues, among which ten genes
were associated with prognosis. We defined m5C molecular
subtypes and constructed a m5C methylation-related risk
signature in the training cohort, by which the OS rate of
ccRCC patients can be forecasted independently. The effi-
ciency of the risk signature was further proved in the testing
and whole cohort, respectively. The overall survival rate of
patients with high risk may be lower. In addition, we found
out the potential pathways of m5C RNA methylation-related
genes in ccRCC and verified our results in vitro and clinical
tissue samples.
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Figure 11: Verification of seven m5C RNA methylation-related genes in vitro and tissue samples. qRT-PCR experiment verified in renal
cancer cell lines (a) and ccRCC tissue samples (b). NOP2, NSUN2, NSUN5, DNMT3B, and TET2 were significantly upregulated in cell
lines and tissue samples, while NSUN4 was downregulated. However, NSUN3 mRNA expression level showed no significant difference.
m5C RNA modification levels in the cell lines were measured by Global RNA Methylation Assay Kit (A). The bar graphs represent
means ± standard deviation. ∗∗p < 0:05.
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Figure S1: the expression levels of m5C regulatory genes in
tumors. (A) The heat map of twelve m5C-related genes in
various tumors obtained from the TCGA database. (B–H)
The expression levels of the seven prognostic-risk signature
genes in various cancers in the TCGA database with the cor-
responding high or low expression. (B) NOP2. (C) NSUN4.
(D) NSUN3. (E) NSUN2. (F) DNMT3B. (G) TET2. (H)
NSUN5. Figure S2: Overall survival (OS) from the TCGA-
KIRC database with high or low expression of the seven
prognostic-risk signature genes by Kaplan-Meier survival
curve. Overall survival analyses of seven prognostic-risk sig-
nature genes in the TCGA-KIRC cohort by Kaplan-Meier
with a log-rank test. (A) NOP2. (B) NSUN2. (C) NSUN3.
(D) NSUN4. (E) NSUN5. (F) TET2. (G) DNMT3B. Figure
S3: disease-free survival (DFS) from the TCGA-KIRC data-
base with the high or low expression of the seven prognostic
risk signature genes by Kaplan-Meier survival curve.
Disease-free survival analyses of seven prognostic-risk signa-
ture genes in the TCGA-KIRC cohort by Kaplan-Meier with
a log-rank test. (A) NOP2. (B) NSUN2. (C) NSUN3. (D)
NSUN4. (E) NSUN5. (F) TET2. (G) DNMT3B. Figure S4:
KEGG pathways enrichment plot. (A) TGF-β signaling
pathway. (B) Renal cell carcinoma. (C) Wnt signaling path-
way. (D) ERBB signaling pathway. (E) mTOR signaling
pathway. (F) Pathways in cancer. Figure S5: the analyses of
PCA and t-SNE between the high-risk and low-risk patients
in the training cohort, testing cohort, and entire cohort,
respectively. (A, B) The results of PCA (A) and t-SNE (B)

between the high-risk (red) patients and the low-risk (blue)
patients in the training cohort. (C, D) The results of PCA
(C) and t-SNE (D) between the high-risk (red) patients
and the low-risk (blue) patients in the testing cohort. (E, F)
The results of PCA (E) and t-SNE (F) between the high-
risk (red) patients and the low-risk (blue) patients in the
entire cohort. Table S1: oligonucleotide sequences used in
this study. (Supplementary Materials)
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