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Abstract

Sample size calculations for two-arm clinical trials with a time-to-event endpoint have
traditionally used the assumption of proportional hazards (PH) or the assumption of exponentially
distributed survival times. Available software provides methods for sample size calculation using
a nonparametric logrank test, Schoenfeld’s formula for Cox PH model, or parametric calculations
specific to the exponential distribution. In cases where the PH assumption is not valid, the
first-choice method is to compute sample size assuming a piecewise linear survival curve (Lakatos
approach) for both the control and treatment arms with judiciously chosen cut-points. Recent
advances in literature have used the assumption of Weibull distributed times for single-arm trials,
and, newer methods have emerged that allow sample size calculations for two-arm trials using

the assumption of proportional times (PT) while considering non-proportional hazards. These
methods, however, always assume an instantaneous effect of treatment relative to control requiring
that the effect size be defined by a single number whose magnitude is preserved throughout the
trial duration. Here, we consider the scenarios where the hypothesized benefit of treatment relative
to control may not be constant giving rise to the notion of Relative Time (RT). By assuming that
survival times for control and treatment arm come from two different Weibull distributions with
different location and shape parameters, we develop the methodology for sample size calculation
for specific cases of both non-PH and non-PT. Simulations are conducted to assess the operation
characteristics of the proposed method and a practical example is discussed.
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Introduction

Two-arm randomized control trials (RCTs) are considered the gold standard in phase Il

and phase 111 clinical trials as they allow biomedical researchers to measure and assess the
benefit of a new experimental treatment relative to a standard control. When the primary
endpoint in such RCTSs constitutes time-to-event data, existing methods for sample size
calculation are traditionally done assuming either proportional hazards (PH) or by assuming
that the survival time follows an exponential distribution. Standard statistical software can
be used to perform the sample size calculations using the non-parametric logrank test

of Freedman (1982) or Lachin and Foulkes (1986). Other popular options include the
Schoenfeld (1981, 1983) sample size formula for semi-parametric PH model of Cox (1972),
or the Bernstein and Lagakos (1978) sample size formula using the F-test for exponentially
distributed survival times. Typically, a statistician consults his/her research collaborators
about the design inputs such as one-sided or two-sided hypotheses, type | error, power,
accrual time, follow-up time, effect size, and the proportion of dropouts expected during
the trial. Once this is done, sample size calculation often proceeds by first calculating the
number of events required to be observed in the trial, followed by calculations that account
for potential administrative censoring and random loss to follow-up or drop-outs in order to
get the number of subjects that need to be enrolled in the study.

When the underlying assumptions do not hold, the above-mentioned traditional methods
may not be preferred and there is a need to develop a method that is derived under more
realistic assumptions, provides high power while controlling for the type | error, and one
which provides related estimates that are easy to understand. Often the indication of the
inappropriateness of the underlying assumptions is available through published results of
previously conducted similar studies and through subject matter discussions with biomedical
collaborators. For example, when designing a two-arm phase 111 RCT, such indications
about the non-constancy of the hazard ratio (HR) may be available through results of a
phase |1 study by means of observed-vs-expected plot and the log-log survival plot thus
making it less appropriate to still assume PH for the current phase 111 study. Likewise, the
Kaplan Meier (KM) plot together with a log-survival (LS) plot may bring into question the
assumption of exponentially distributed survival times. Thus, other methods are needed to
perform the sample size calculations in these situations.

Recent advances in literature in the last ten years have proposed alternate methods of sample
size calculation for certain special scenarios when the above-mentioned assumptions are

not valid. For example, finding the PH assumption to be quite restrictive, Royston and
Parmar (2013) have proposed sample size calculation on the basis of restricted mean survival
time (RMST) whereas Zhao et al. (2016) has proposed a calculation on the basis of event
rates. In cases where the lack of PH assumption is due to there being a ‘cured’ fraction

in both the study arms, Xiong and Wu (2017) have developed sample size calculations for
the “cure-rate’ model by improving on the calculations proposed by Wang et al. (2012).
Likewise, Gigliarano et al. (2017) have discussed comparison of two survival curves for the
log-scale-location family of survival time models, and, Phadnis et al. (2017) have developed
sample size calculations when survival times follow a three-parameter generalized gamma
distribution using the concept of Proportional Time (PT). Recent developments in the last
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two years include contributions by Magirr and Burman (2019) who have shown that their
modestly weighted logrank tests provides high power under a delayed-onset treatment effect
scenario, and, Jimenez et al. (2019) who have studied the properties of the weighted log-
rank test in designing studies with delayed effects. As all these methods are yet to find
wide-spread acceptance (perhaps, due to the lack of free and commercial software), another
approach to calculate sample sizes is by using simulations by assuming piecewise constant
hazards in each of the two arms. This approach requires the statistician to judiciously choose
time intervals such that in each interval of time the hazard in each of the two study arms

is a constant though this hazard may change from one interval to another. Then assuming

a constant hazard ratio, one can find the sample size that yields an acceptable value of
power corresponding to pre-determined effects size by using simulations. Thus, though
different hazard shapes emerging from distributions other than the exponential distribution
can be approximated, the effect size is still defined by means of a constant HR thereby
restricting its use when such a restriction is not appropriate (we discuss this more in Results
section). In recent literature, Mok et al. (2019) have used the piecewise HRs to account

for the possibility of non-PH in an oncology trial. Also, Gregson et al. (2019) provide a
good overview of different methods of accounting for non-PH for time-to-event outcomes in
clinical trials in cardiology.

The default (or ‘go-to”) method for sample size calculation in the non-PH case, is thus

the method proposed by Lakatos (1988) that uses Markov state transition probabilities

to perform the sample size calculations. This requires the user to have a good idea of

how the survival curves in the two arms look under the alternate hypothesis. Then the
statistician constructs time intervals such that the true shape of the two survival curves is
well approximated by piece-wise linear functions. This method offers flexibility in terms of
incorporating loss to follow-up, non-compliance, and administrative censoring while being
able to calculate sample sizes for the two arms by considering any general shape of the
two survival curves. The limitations are that some trial and error is required to determine
the number of piece-wise intervals in addition to making many critical assumptions about
the transition probabilities. It is important to note that this method allows effect sizes to
vary over the course of the trial (small effect at the beginning and large effect at the end,
or vice-versa). Due to its generalizability, this method is available in popular software like
SAS, R, nQuery, and PASS. The advantages and disadvantages of the methods using the
logrank statistic for sample size calculation under the exponential distribution, PH and
non-PH scenarios has been studied by Lakatos and Lan (1992).

In this paper, we discuss a new parametric approach to calculate sample sizes for a two-

arm RCT allowing for non-PH as well as for non-PT (this concept is explained in the
Methods section) using Weibull distributions with different parameters for the two arms.
That is, we propose a method of sample size calculation that can be used for both of the
following scenarios: {i} new treatment shows a small improvement in longevity compared to
a standard control during the early period of the trial and the magnitude of this improvement
increases as the trial progresses, and, {ii} new treatment shows a large improvement in
longevity compared to a standard control during the early period of the trial and the
magnitude of this improvement decreases as the trial progresses. We do not allow arbitrary
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crossing of two survival curves in our proposed method, but allow it at reasonably small or
large values of the survival percentiles.

Our method is motivated by a combination of the previous works done by us and by

other authors and we have structured in the following way. Section 2 discusses two
motivating examples highlighting the need for adopting our proposed method for sample
size calculations. The main methodology is explained in Section 3 wherein the test
statistic development is followed by calculation of sample size accounting for administrative
censoring, and, this is further followed by justification for inflation to the sample size due
to dropouts. We also discuss an alternate model formulation and offer two ways to analyze
the data after the trial is concluded. Analytical and simulation-based results are discussed
in Section 4 to provide insights into the operation characteristics of the proposed method.
In Section 5, we summarize and discuss the advantages and limitations of our method

and suggest recommendations for future research in this area. We have used SAS software
(2017) for creating macros that implement our proposed method. Some details related to
mathematical derivations and ancillary topics are mentioned in the Appendix.

2 Motivating Examples

We discuss two examples representing the two main scenarios that highlight the application
of our proposed method. Additional variations of these two main scenarios are discussed in
the Results section to allow the reader to assess how the sample size calculations vary as a
function of the varying design inputs.

The first example concerns the design of a two-arm phase 111 RCT for treating patients
suffering from chemotherapy refractory advanced metastatic biliary cholangiocarcinoma,

a “rare” but aggressive neoplasm. Such patients undergo an initial treatment followed by

a second-line treatment. Researchers are interested in comparing a new experimental (E)
second-line treatment to a standard control (C) second-line treatment with progression-free
survival (PFS) as the time-to-event endpoint (hereafter the letters E and C are used for
recurring references to experimental treatment and standard control respectively). The PFS
for the C arm has been studied in a prior single-arm phase Il study with results being
reported using a KM curve in addition to reporting the median of 4 months and interquartile
range (IQR) of 2—7 months. The researchers hypothesize that in the two-arm trial under
consideration the E arm will show a clinically meaningful improvement in the median PFS.
However, they are also of the opinion that this improvement in longevity measured in the
metric of time will be gradual. That is, the improvement for 10! percentile of PFS will

be by a factor of 1.5 and as the effect of treatment improves with passage of time, the
improvement for 90" percentile of PFS will be by a factor of 2. That is, the effect size of
interest is improvement in the median PFS but that this improvement is not instantaneous
upon delivery of treatment, rather, it increases gradually over time. In other words, the new
treatment confers an improvement in longevity for a range of survival quantiles (though the
median is of specific interest to the researchers). Accrual and follow-up times are both 12
months, type | error is taken at 5% for a one-sided test (which is acceptable for rare cancers)
with a target power of 80%. Thus, contrary to the assumption of PH or of exponentially
distributed times, the effect size is not defined through a single constant number such
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as a hazard ratio or constant ratio of medians (note using the exponential distribution
assumptions, the ratio of medians is the same as ratio of means or the ratio of any two
quantiles of time). This example thus represents frequently real-life scenarios in cancer trials
where researchers expect long-term survivors to benefit maximum from a new treatment

but expect only small realistic improvements for the short-term survivors. This scenario is
represented in Figure 1 (some notations are explained later in the Methods section). Due to
varying magnitudes of the expected improvement during the trial, the research hypothesis
intends to find a clinically meaningful improvement in median PFS.

The second example (See Figure 2) is representative of a real-life scenario pertaining to
surgery as an experimental treatment whose performance is compared to a non-surgical
standard-of-care control. Researchers hypothesize that patients randomized to receiving
surgery, will, following surgery, experience an immediate benefit in terms of improved
longevity which is considerably large in magnitude, but that this improvement will wane as
time progresses. That is, the improvement for 10t percentile of Overall Survival (OS) will
be by a factor of 2 and as the effect of treatment improves over time, the improvement for
90 percentile of OS will be by a factor of 1.5. Again, the effect size used to do the sample
size calculations will be based on a clinically meaningful improvement of median OS, with
all other design parameters the same as in the first example.

In both the above-mentioned examples, researchers would like to perform a sensitivity
analyses by varying some of the design parameters. For example, if the calculated sample
size is very large, researchers would like to consider larger values of accrual and follow-up
time and re-do the sample size calculations. Likewise, they also want to assess how sample
size calculations change when the improvement factors of 1.5 and 2 are defined at the 25t
and 75t percentile of survival time in place of the 10" and 90t percentiles of survival
time. In the next section, we develop the methodology for performing the calculations by
imposing some restrictions on the crossing of the survival curves of the two arms.

3 Methods

As both scenarios discussed in Section 2 are concerned with improvement in longevity as
a measure of assessing the E vs C benefit, we develop a modeling framework in which

the main calculations are performed in the metric of time. This is also inspired by the

fact that in our collaborations with biomedical researchers, we found that they were more
comfortable in defining E vs C benefit in terms of median survival time rather than a
hazard ratio. Here it should also be noted that when the survival times in the two arms
follow an exponential distribution then an effect size definition in terms of ratio of medians
can, by taking the reciprocal, be expressed as a hazard ratio. But when the assumption of
exponential distribution is suspect, a closed form conversion formula may not always be
available. For example, an oncologist may hypothesize that new treatment increases the
median survival time in control group of 6 months to 9 months. This implies the effect size
defined as ratio of medians is 1.5 but without the assumption of exponential distribution, one
cannot say the study should be powered to detect a HR of 6/9 = 0.667.
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3.1 Modeling framework and concept of Relative Time

Recent papers for sample size calculation for single arm trials such as Wu (2015) and
Phadnis (2019) have used the assumption of Weibull distributed time for the standard control
arm. The Weibull distribution is a two-parameter distribution whose probability density
function is:

ft)= %tﬁ‘ lexp(-(1/0)’) 0,6>0,1>0 0

Here, @is a scale parameter and S is a shape parameter that determines the shape of the
hazard function (8>1 gives hazard that increases over time, S<1 gives hazard that decreases
over time, and S=1 represents the special case of exponential distribution with constant
hazard). Both Wu (2015) and Phadnis (2019) have used a point estimate of gin their
sample size calculation and have recommended that users obtain an estimate of g from prior
historical studies. Through simulation studies, Phadnis et al. (2020) have investigated how
accurate the estimate of g is when it is estimated from the x-y coordinates (x = time, y

= survival probability) of a KM plot published using prior study data. Their simulations
suggest that for prior studies with moderate right-censoring of up to 40%, a sample size

of 50 keeps the average relative bias (ARB) consistently below 10% even when only 3

X-y coordinate pairs are used to estimate S and the accuracy increases (ARB decreases) as
information from more x-y coordinates is used. Additionally, the scaled root mean square
error (SRMSE) and coefficient of variation (CV) are maintained below 20% and 12%
respectively. Encouraged by these results, in our current proposal also, we assume that g for
the standard control arm is either known or can be estimated with reasonably accuracy from
prior study data or published KM plots. We call this By with the subscript 0 indicating the
control arm.

Next, we briefly discuss the concept of Relative Time although an excellent description of
the same can be found in Cox et al. (2007). Relative time can be defined as the ratio of times
at which exactly 100*p % of the individuals in one study arm experience an event of interest.
Due to the dependence on p, it is denoted as RT(p). Thus, the interpretation of RT(p) is that
the time required for 100*p % of the individuals in one study arm to experience an event is
RT(p)-fold times the time required for 100*p % of the individuals in other study arm. That
is,

11(p)

RT(p) = 00 o)

Here, t;(p) = S,-‘l(l — p) is the inverse survival function for study arm 7(7=0, 1). Let 6;

and g; (for /=0, 1) represent the scale and shape parameters of two different Weibull
distributions for C and E. From (2) we also have 1-p=S{¢{,0)} and from (1) we know that

SAUP}y=exp[-{t{p)! O}P1 leading to
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1 1/p;
1(7) = oiflogl 1)) ®
Thus RT(p) can be expressed as
() _0 %
_ulp) o1 1 B1 Ao ()
RT(p) = to(p) 90l10g(1 —P)’

On the logarithm scale, equation (4) becomes

log(RT(p)} = {log(6y) ~ log(60)} + (5 = ) e log 12| ®

From equations (4) and (5) we see that when B1=8, the dependency on p disappears and in
that case RT(p) is a constant and can be called ‘Proportional Time (PT)’ which reduces, in
our case to a standard accelerated failure time (AFT) model using the assumption of Weibull
distributed survival times. In case of the Weibull, this also simultaneously results in the PH
assumption being true, but this is not true for other distributions. See Cox et al. (2007) for
more details on this topic where the Weibull is a special case of the generalized gamma
distribution and how the PT assumption reduces to a standard AFT model.

up the hypotheses

As an example in a practical RCT setting, we consider the scenario that researchers consult
a statistician to design a trial such that an improvement in median survival time in C (say, 4
months) to E is detectable with 80% power using a one-sided (or two-sided) hypotheses after
incorporating the information that at £,=0.10, R7{p;)=1.5 and £=0.90, R7{(,)=2. Since the
median survival time in C is known, we have 6y=(0.5)/{In (2)}¥/A0. Taking logarithm on
both sides of (4) and writing it as two separate equations, first with p;=0.10, R7{p;)=1.5,
and, second with »=0.90, R7{m»)=2, we have two equations with two unknowns and we can
calculate 6, and g1 thereby determining the survival curves for C and E. Given these values,
we can calculate the desired effect size at p,j=(1+)/2 as

1 1

1(pmia) 61 [ ( 1 )}171 “h
RT(p, ;) = —2% — _log|-—-—— ©)
(Pmid) 10Pmia) 001 AT = P

We can now write down our hypotheses in the following way:
Ho: RT(pmia) <1

Hy: RT(ppig) > 1 0

Noting that for p;=0.10 and p%=0.90, we have p;~=0.5 with £(0.5) and £(0.5) representing
the median survival time in the C and E respectively, our hypotheses will be

Biom J. Author manuscript; available in PMC 2022 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Phadnis and Mayo

Page 8

Ho: RT(0.5) <1 .
H;: RT(0.5)> 1 ®

That is, if the researchers desire to draw inference on the improvement in median survival
time for E vs C, the statistician can ask them to provide information of py and g, such that
Pmic=(p1+)/2 is ensured. Alternatively, in our SAS code, we have also allowed the user
to choose a pyseZ0migand define the hypotheses at this o, value. It should be noted that
although the examples considered by us use a one-sided type I error of 5% (owing to the
specific disease under consideration), a type | error of 2.5% (or any other reasonable value)
can also be dealt by our proposed method.

An important feature of our proposed method are the user-defined inputs at py, p,
RT{p) and RT{py). These inputs determine the value of R7{p,;4) through equation (6).
That is, information about p;and ~7{p)) for /=2 are enough to perform the sample size
calculations due to the fact that (5) can be seen as a straight-line equation of the type
11
B ho
plays the role of the slope with this straight line passing through the [x, }{ coordinate

logllog(1 _]

y = by+ byx in which by = log(6;) — log(8y) plays the role of an intercept and »; =

pairs

p.)],log{RT(pj)}]. If instead, user-inputs are defined with /2, then sample
J

size calculations can still be performed at p,,;y = %ijj but the straight-line is no longer

guaranteed to pass through the [x; J] coordinate pairs

log[log(l_;pj)], log{ RT(pj) }} Instead,

|} toe( RT (i)}

For example, the user inputs 5p=0.5, median survival in C arm = 4 months, p;=0.1, p»,=0.9,
RT(p1)=1.5, and RT{(»)=2 will yield R7(0,;)=R7(0.5)=1.788 (see also Section 3.6).
Instead if the user inputs are p1=0.1, 1%=0.25, p3=0.75, p4=0.9, RT(p1)=1.5, R7(,)=1.667,
RT{(p3)=1.833, and R7{p4)=2 then the value of p,;gis still 0.5, but R7{p,iz)=R7(0.5) will
be 1.773 instead of 1.788 resulting in a slightly increased sample size. Thus, although

in principle pyand R7{p)) with />2 can be used to perform the calculations, researchers
may find it practically friendly to inform the statistician about the hypothesized RT(p)-fold
improvement at only two percentiles of survival data.

it will be the “line of best fit” passing through the mean |log log( _
L = Pmid

3.3 Development of a new test statistic

Let 9; for /=0, 1 be the maximum likelihood estimate of &;in the C and E arms

respectively. Then we know that for the Weibull distribution with all observations as events
(no censoring) with d;events in the A" arm

6; = ©

1/5;
d. ﬂ 1
Y=t
d;
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Since each #;~weibull(6;,8)), it can be shown that (see Appendix A.1) @,-~GG(d,» ,9,-/d,-” bi, ﬁ,-)

where the letters GG stand for a 3-parameter generalized gamma distribution.

From this we get

@’[log(l——pm,d);ﬂl ~GG di . 91' T s ﬂi (10)

Using a reparameterization by taking 4; = 1/,/d;, o; = 1/(p;,/d;) and
1

0 oel )|

advantage of this reparameterization is that we can see that as the number of events d;
increases, A;decreases towards 0. Even for d=25, we get 1=0.2. A well-known property of
the GG distribution is that as A,—0, the distribution converges to a lognormal distribution.

we can say that §;[log{1/(1 — p,,,,-d)}]”ﬂi ~GG(4; , pj» 07). The

ui = log

That is, denoting Q; = 6;[log{1/(1 — pmid)}]”ﬂi , We get Q; ~ Lognormal(y;, ;). See Stacy and
Mihram (1965) and Cox et al. (2007) for more properties of the GG distribution along with
a brief discussion in the Appendix A.2 mentioning how some popular distributions such

as Weibull, lognormal, gamma, ammag, inverse Weibull, inverse gamma, and exponential
are special cases. Appendix A.3 further elaborates the Relative Time framework using a
Venn diagram and briefly explains where the proposed method fits in this framework. Some
additional discussion is provided describing the motivation to choose the proposed method
(two different Weibull distributions) based on practical considerations.

Klein and Moeschberger (2003) discuss that the three-parameter GG distribution is
infrequently used to model time-to-event data for reporting analysis results. Instead, after
fitting a GG distribution to a dataset, Klein and Moeschberger (2003) mention that based
on estimate of A, statisticians often choose a two (or single) parameter distribution. In
practice, an estimate of 0.2 or lower for A will be a comfortable justification for using

a lognormal distribution. In the context of our topic, d=25 should be considered large
enough for us to claim Q; ~ LN(y;, 5;). Then using the relationship between a lognormal and
Gaussian distributions, we can also say that In(Q;)~ N(u;, o;). In this notation, note that the o;

is standard deviation and not variance.
That is, we now develop a new test statistic on asymptotic normality in the following way.
Q' =log(Q1) —log(Qo) ~ N(kg, 04) (11)

andad=116%+0%= L-F !

2 2
d1p1  dohy

1 1

O ool — L V181 o
90[10g(1 —Pmid)]

If we define an allocation ratio as r= &;/ap, then we have

where pg = uy — po = log
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IR\

65= dio(l + 1):( 1 +i)/\/d70 (12)

Thus, our newly proposed test statistic is defined as

_ O — g
Z= s (13)

Thus, under the null Hy we have Z~N(0,1), and under the alternate H; we have Z~N(u/ o4
1). Then, for a one-sided test with a given allocation ratio 7, the number of events in the two
study arms can be calculated as

o M] L
O~ 1 Tog{RT (pia) ) Bt B

d1 = rd()

(14)

where a is the type | error for the one-sided test and w is the target power of the test. For a
two-sided test, we can use a/2 in place of a.

Thus, knowledge of S through the historical study and the calculation of 8, through the
effect size pre-specification allows us to perform the sample size calculations.

The interesting feature of the formula in (14) is that when B;=6y=p, that is, for the special
case of proportional time (PT), it reduces to

1+r
rﬂ2

do = (Za)+Zl—a)

o 7 (15)
log(e—o)

Then letting g=ap/(ap+dy) and 1-g=ai/(ap+d}) as the proportional of events in the C and E
arms respectively, we can re-express the formula in (13) as

2

_ (Zco +Z - a) 1

dO = : 0 [](1 — q) (16)
Blog\ g
which further simplifies to
2
V4 Z_
dn = ( ot 4] a) an

7 41— glod(Apr)

which is the exact same sample size formula obtained by Schoenfeld (1981) for the Cox
PH model. That is, we can interpret our new sample size formula in (14) as an extra
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adjustment to Schoenfeld formula when accounting for the two different shape parameters of
two different Weibull distributions. Alternatively, the Schoenfeld formula can be thought of
as a special case of our newly developed sample size formula.

3.4 Calculation of sample size accounting for administrative censoring

Assuming a uniform accrual, the censoring distribution function G(J) is given by

I ifr<f
G(t) = %f_t iff<t<a+f (18)
0 otherwise

where gand fare the accrual and follow-up time respectively. Then the probability that a
subject experiences an event during the trial in arm 7(/=0, 1) is

o0

v = / G(). fi(t)at (19)

0

where 7{J is 2 with 6=6;and S=p;. Dividing the number of events obtained through the
sample size formula in (14) by v=(vy+11)/2 gives the sample size adjusted for administrative
censoring. Alternatively, v;can be calculated using Simpson’s rule by

v = 1- E{Sl(f)+4Sl(f+Osa)+ S,'(f+a)} (20)

where S{(9) is the survival function of the Weibull with =6;and 8=8;.

3.5 Reformulation as an Extended Cox model and accounting for dropouts

Thus far, we have accounted for administrative censoring in the sample size calculation.
Before proceeding to the discussion about adjusting for random loss to follow-up, we briefly
discuss the topic of reformulation using an Extended PH model. It should be noted that

the method of analysis consistent with the sample size calculation should be pre-specified

in the study protocol (although one may use another simpler sample-size method to get

an approximation, or alternatively, even change the chosen method of analysis later in

the Statistical Analysis Plan). As the proposed method involves two different Weibull
distributions, the most direct way to analyze the data after study completion is to fit the

data from each study arm using two separate Weibull fits. See Section 3.7 for more details
on this process.

As many researchers are accustomed to a hazard ratio interpretation when summarizing RCT
data, they would like to know how the HR changes over time given that the PH assumption
is not true. In this context, we can see that the ratio of hazards for the two study arms at time
tis
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m() _ 510" o

— = 21
Ro0) ~ Bog, )

The above equation can be reformulated as
hy(2) = ho(1) . exp{roX + 71X - log(t)} 22)

where X is the indicator variable with X=0 indicating C arm and X=1 indicating the
E arm, /() is the hazard of the C arm at time £ yy = log{(ﬁl/ﬁo)(eoﬂo/elﬂl)} is the time-

independent change is hazard for E vs C, and can be interpreted as the hazard at ¢=

1. Similarly, y1=p1-f is the regression coefficient for the interaction between the study
arm and logarithm of time. Due to the additional interaction term, Equation (22) can thus
be considered as an Extended Cox model. That is, two different Weibull distributions
corresponding to two study arms can be fit using a single semi-parametric extended Cox
model. The converse, however, is not necessarily true.

The advantage of this reformulation is that the parameters of a semi-parametric model are
obtained through maximization of the partial likelihood. Since the partial likelihood is only
evaluated at the event times and not at the time of right censoring, we can argue that to
account for loss due to drop-outs (right-censored observations), we can inflate the sample
size calculated after using (14) and (19) by simply dividing by 1 minus the drop-out rate.
Thus, for a drop-out rate p, the final sample size in the two study arms can be calculated as

=T = 0 @3)
ny =rny

3.6 Disallowing arbitrary crossing of survival curves from the two arms

The main research question in RCTs with time-to-event endpoint often pertains finding
statistical evidence to show that a new experimental treatment outperforms a standard
control. To be consistent with this overall goal, we do not allow any arbitrary crossing of
two survival curves from the C and E arms. For example, it is possible that the 10t and 90t
percentile of PFS is higher in E compared to C, but for a different early (or late) percentile
1(p), say 5" (or 95™) percentile, S(#,)} is higher for C compared to E. Suppose this early
inversion at 51 percentile (due to crossing of the two survival curves) is not consistent with
the real-life application under consideration for biological/clinical reasons, then in that case
we have added an error check in our SAS code informing the statistician that the current set
of inputs entered are inappropriate and need to be reconsidered. For example, consider the
following user inputs for our proposed method in the case of the first cholangiocarcinoma
example:

User Inputs:
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One-sided test, a=0.05, w=0.8, $y=0.5, median survival in C arm = 4 months, p;,=0.1,
/=0.9, RT(m)=1.5, RT(»)=2, r=1, a&=12, £12, p=0.2, §,;,~0.001, §,2,=0.999

Here, gin represents the smallest value for p at which the crossing of two curves

is permitted as considered plausible based on biological/clinical considerations. Thus
0<@mi<p1 is the range for g,,,;; and plays a role in the sample size calculation when
RT(01)<RT(»). Analogously, g, represents the largest value for p at which the crossing of
two curves is permitted. Thus pr<g,a,<1 is the range for g, and plays a role in the sample
size calculation when RT{p)<RT(1).

The above input parameters are obtained from the information provided by the research
collaborators, but that R7{p)=1.5<RT7{,)=2 results in crossing of the two survival curves
at p=0.00135. At p=0.001 this combination results in £7{0.001)=0.972 which is less than
1 implying that at very early in the observation window, survival in arm C is better than
that in arm E. If this inversion of survival benefit is biologically/clinically impossible (as in
the case of this cholangiocarcinoma trial, the SAS output generates an error message and
recommends the user to take one of the following actions:

i Decrease the user-input value of p; OR
ii. Increase the user-input value of R7{p;) OR
iii.  Increase the user-input value of p, OR
iv. Decrease the user-input value of R7{p,) OR

V. Choose a larger value for g, (that is, relax the percentile at which the two
Curves can cross)

Alternatively, keeping p; and p same as earlier, we make a recommendation to the user for
inputting values for R7{p;) and R7{p,) such that /£7{0.001)>1 is always maintained. For the
choice of initial user inputs discussed in this example, we recommend using R7{p;)=1.52
and RT{(»)=1.98. This results in a sample size of 270 in each arm such that we have

80% power to detect R7{0.5) of 1.788 as greater than 1 with a type | error of 5% using a
one-sided test. These values of R7{p)=1.52 and R7{»)=1.98 are used by us in the Results
section related to this example. In other real-life applications where gy, OF G2y are not as
extreme, a statistician can simply execute our code without expecting an error message. For
example, the combination of p;=0.1, 1=0.9, R7()=1.5, RT(»)=2 and g;;;;=0.01 will not
produce an error message. Sample size in this case will still be 270 in each arm.

As a second example (for some other trial), if a researcher selects p;=0.1, %=0.9,
RT(p)=1.25RT(»)=3 (with all other user inputs same as in the above example), then the
two survival curves will cross at p=0.0469 indicating probable early toxicity. Thus, in this
case, setting g,,;=0.05 will yield a sample size of 180 in each arm without displaying an
error message. But if we choose g,,;,=0.03, then an error message with a recommendation
(similar to the first example) will be displayed. If none of the recommendations are
acceptable, the user will be prompted to consider R7{p;)=1.37, R7{»)=2.92 while retaining
/m=0.1, 1=0.9, g,;=0.03. This yields a sample size of 168 in each arm.
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3.7 Data Analysis after completion of trial

For data analysis to be consistent with the proposed method of sample size calculation,
PROC LIFEREG in SAS can be used to fit data separately from both study arms by holding
the shape parameters 5 and B; constant. PROC LIFEREG will give estimates of g, and

6 along with their corresponding standard errors. Then equation (5) can be used to obtain
RT(pyiq) as a point estimate of R7{pm;,). The delta method can be used to utilize the
standard errors of 9, and 8, to obtain the standard error of RT(p,,;4) and results can be

reported with a 100(1-a)% confidence interval.

For analyzing data with the semi-parametric extended Cox model, PROC PHREG in SAS
can be used to obtain 7, and 7 along with the corresponding standard errors. At any time #*

of interest, the HR can be calculated as H R(r*) = exp{79 + 71 .In(#*)} with the corresponding
100(1-a)% confidence interval given by exp[{7g + 71log(s)} + 1.645 - SE{7q + 71log(r)}]. See
Section 4.3 for simulation results justifying data analysis using this Extended Cox model.

3.8 Sample size adjustments for extra covariates in the model

The sample size formula given in (23) assumes that the randomization process in an RCT
balances out the effect of any additional covariates that could be associated with the time-to-
event endpoint. In case such extra covariates exist, extra adjustments to the sample size

can be made using a variance inflation factor (VIF) adjustment proposed by Hsieh and
Lavori (2000) in the context of a Cox model. Briefly, if the main covariate of interest

(the study arm: standard control or new treatment) is denoted by X1 with X5,X3,...,Xk

being the extra covariates and -y»,vs,..., Yk their corresponding regression coefficients in

the Extended Cox model hy(=hg(). exp{yoX1+ty1X1.10g ()+y2Xo+y3X3+...+yiXk, then
if p2,, is the proportion of variance explained by the regression of X; on X5,X3,..., Xy then

the conditional variance of X1|X,Xs,...,Xk is smaller than the marginal variance of X4 by a
-1 . .

factor of (1 = pz,y) - Thus, to preserve power, we can use this VIF to calculate the adjusted

sample size using the formula Nugjusred = N,Dml/(l - p%ov). Thus, in the presence of extra

covariates, the Extended Cox model can be used to analyze data from such a clinical trial.

4 Results

We now discuss the results emanating from the analytical calculations discussed in the
previous section as well as from evaluating the performance of the proposed method using
simulations.

4.1 Sample size comparison: Proposed method vs Lakatos method

Table 1 displays the sample size calculation comparing the proposed method to the
popularly used Lakatos (piecewise linear survival) method for different settings. For all
scenarios presented in this table, we have a one-sided test with a=0.05, target power «=0.8,
median survival in C arm = 4 months, /=1, &=12, /=12, p=0. The left panel in this table
refers to the user-input of p;=0.1 and p»,=0.9, the percentiles of survival time at which the
longevity improvement factors R7{p,) and R7{() are defined. Likewise, the right panel in
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this table refers to the user-input of p;=0.25 and ©,=0.75. Within the first panel, there are
two sub-panels representing two different scenarios: {i} R7{(p1)=1.52, R7{;)=1.98 implying
gradual improvement in longevity over time in the E vs C arm. {ii} RT(;)=2, RT{(p»)=1.5
implying gradual decline in longevity over time (from 100% to 50%) in the E vs C arm.
Within the second panel, there are two sub-panels representing two different scenarios: {i}
RT(p)=1.5, RT(p;)=1.667 implying gradual improvement in longevity over time in the E vs
C arm. {ii}R7(p)=1.667, RT(p»)=1.5 implying gradual decline in longevity over time (from
100% to 50%) in the E vs C arm. The left-most column has the user-input 5y values that

are common to both panels (and sub-panels). The rows in this left-most column represent
different scenarios from £5y=0.25 (Weibull hazard decreasing over time in the C arm) to £y=2
(Weibull hazard increasing over time in the C arm). The middle value of By=1 refers to the
exponential distribution with constant hazard. For each sub-panel mentioned above we have
four columns.

The first two of these four columns represent:
i Proposed Method — Calculated value of By given all other user-input values

ii. Proposed Method — Number of events / Sample size adjusted for administrative
censoring

The last two of these four columns represent:

i Lakatos Method — Number of intervals /77 used to define the piece-wise linear
cut-points

ii. Lakatos Method — Number of events / Sample size adjusted for administrative
censoring

From observing the results in the first main panel, we see that in the first sub-panel when
RT7{p1)=1.52 and R7{,)=1.98, the sample sizes obtained by the two methods for the varying
values of B are comparable. For the more extreme values of 5,=0.25 and £p=2, the Lakatos
method requires 12 intervals to get the same sample size as our proposed method. For all
other values of S ranging from 0.5 to 1.5, the proposed method sample size is similar

to that of the Lakatos method with 3 or 4 intervals. In the second sub-panel of the first

main panel when R7{p1)=2 and R7{p;)=1.5, however, the proposed method yields a much
smaller sample size than that obtained by the Lakatos method even with 12 intervals. This
difference in sample size for the two-scenarios (see third row of first panel with £=0.75)
—{i}RT(p)=1.52; RT()=1.98 vs {ii} RT(p)=2; RT(»)=1.5 can be explained by recalling
that although the Lakatos method can be used in the case of non-PH, it is based on using

the logrank test statistic whose performance is optimal when the two survival curves have
the relationship S;()=So(d2HR where Ay is the hazard ratio from a proportional hazards
model. As noted by Lakatos and Lan (1992) the performance would vary based on the extent
to which hazards between the two survival curves were non-proportional. If we discretize the
time axis with total study time of 24 months into small intervals of length dt (dt could be
taken as small as 0.1), then in the first case, we get an average HR of 0.642 whereas in the
second case we get an average HR of 0.723. The difference in these values is the reason why
we get drastically different sample sizes when using the Lakatos method. In fact, even using
the more popular Schoenfeld formula we get total number of events 127 (approximately 64
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in each arm) in the first scenario and total number of events as 234 (117 in each arm) in the
second scenario. This matches the Lakatos answer (see Table 1) for m=6 intervals in the first
scenario and m=3 intervals in the second scenario and hence should not be surprising. This
reinforces the fact that sample size calculations are quite sensitive to the user inputted values
and in the example explained above, a HR difference of 0.723 — 0.624 = 0.081 has almost
doubled the number of events. On the other hand, the proposed method is based on RT(p)
and uses knowledge of the estimated Weibull parameters to take into account the possibility
of non-proportionality of hazards while calculate the number of events and sample size.

In the case of PH assumption being true, the proposed method, Schoenfeld formula, and
Lakatos method provide very similar answers.

A similar trend is observed in the second main panel, where in the first sub-panel with
RT(01)=1.5, RT(»)=1.667, the two methods yield similar sample sizes when m= 3, 4,

or 6. However, in the second sub-panel when considering R7{p,)=1.667, RT(p»)=1.5, the
proposed method yields smaller sample sizes than Lakatos method highlighting its potential
for use in real-world applications.

4.2 Simulation results for empirical vs nominal error and power

Table 2 displays the results pertaining to assessment of operation characteristics (empirical
type | error, empirical power, average relative bias, mean square error, and coverage) from
10,000 simulations for the user-inputs discussed in first paragraph of Section 4.1 with
RT(p)=1.52, RT()=1.98 in the case of 1:1 randomization for the two study arms. Two
other scenarios for allocation ratio (/=0.5, 2) are considered in the Supplementary material
(Table 6 and 7). The first through fourth columns are similar to Table 1. The fifth and sixth
column contain the values of empirical type | error and empirical power respectively. For
all values of r, empirical power is close to the nominal value of 80% and never falls below
78% even for small sample sizes. Likewise, the empirical type I error is close to the nominal
value of 5% when /=0.5 and r=1. When =2, we see slightly elevated empirical type I error
in case of sample sizes smaller than 20. However, this is not a cause of concern as most
two-arm RCTs will have sample sizes >= 20 (see comment in section 3.3 mentioning the
need for approximately 25 events to justify asymptotic normality of the test statistic).

The seventh column displays the values of average relative bias (average of the simulations
for the difference between the observed and actual value of the parameter of interest)
calculated as

10000
1

ARE = 10000 2

{RT(0.5) - RT(0.5)}/RT(0.5) (24)

where RT (0.5) is the estimate from the jth simulation under the alternate hypothesis. We see

that for most scenarios the ARB is quite small and always below 5% (with a maximum of
4.53%).

The second from last column displays the values of mean square error (MSE) — the average
of the squared errors (difference between RT j(0.5) and R770.5)). For all scenarios in Table
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2, the MSE is somewhat high. When the true value of RT(0.5) is 1.786, the MSE is
approximately in the range of 0.19 — 0.20 and when the true value of RT(0.5) is 1.677, the
MSE is approximately in the range of 0.13 — 0.136. One reason for these somewhat high
MSEs is that to estimate RT(0.5), we need to fit two separate Weibull models with each

of them contributing to the variability in the measurement thereby increasing the overall
variability. Finally, the last column displays the percent coverage, that is, 100 times the
proportion of 10,000 simulations whose 90% confidence interval around ﬁj(o.S) included
the true value of R7(0.5)). In all scenarios of Table 2, we observe that the coverage is
adequate with small fluctuations around the expected value of 90% (due to one-sided type |
error of 5%).

4.3 Relationship between Proposed method and the Extended Cox model

The relationship between our proposed method (left panel) and the extended Cox model
(right panel) can be best understood by studying the results displayed in Table 3. The first
four columns in the left panel are the same as in Table 2. The fifth column in this panel
displays the hazard ratio as a function of time and is evaluated at 75,g = (tmed, C + tmed, E)/2:

the average of the median survival time in the C and E arms. This average is calculated
to allow us making comparisons with the extended Cox model on a common scale (in the
metric of hazard instead of time).

The first column in the second panel displays the percent coverage when the HR is evaluated
using (20) for the Extended Cox model along with its corresponding 90% confidence
interval at Z,,,. We observe that for all scenarios the percent coverage is close to 90% and
hence considered adequate. The second column in this panel consists of two lines of results.
The first line displays the percent coverage for the logarithm of the hazard ratio at ¢=

1 and can be calculated as 100 times the proportion of 10,000 simulations for which the
confidence interval given by 7 + 1.645 . SE(7g) contains the true value of the HR at 7= 1.

Likewise, the second line displays the percent coverage for difference in the values of the
shape parameters of the two study arms. This can be calculated as 100 times the proportion
of 10,000 simulations for which the confidence interval given by 7 + 1.645. SE(y;) contains

the true value of B;—f. We observe that in both cases, adequate coverage of around 90% is
obtained. These results lead further credence to the justification that to account for random
loss to follow-up or dropouts, we can simply inflate the sample size by the event rate. The
advantage of this is that the relationship between the two methods will be preserved and it
will be possible to analyze the RCT data in two different but equivalent ways. The proposed
method will help a statistician draw inferences on the ‘R7(p) fold improvement in longevity
in the E vs C arm’, and, the Extended Cox model will allow inference on the ‘HR (E vs

C) as a function of time’. Together these two approaches will provide a comprehensive
summary of the results and even provide guidance on meaningful effect size definition to
other future or concurrent phase IV trials.

The last column contains the values of empirical type | error and empirical power when the
Extended Cox model is used along with some of the user-input values to draw approximate
inferences on RT(p). Though the inference on RT(p) is easily obtainable by using our
proposed method and this step is not necessary, many researchers are accustomed to
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interpretation from a Cox model. We therefore wish to investigate if after fitting an Extended
Cox model, reliable inferences can be drawn about RT(p) without fitting two different
Weibull models to the two study arms. To do so we first obtain 7, and 7 from fitting the

Extended Cox model for each of the 10,000 simulated datasets. These estimates can be
combined with the user-input values of B and the median survival time in C arm to obtain
an approximate estimate of RT(p) using

R 2 WBo+71)
(Po + 71)exp(=7o) (25)

Iii‘a D prox(p) =
~ 70
Bo (Tmed, )

From the values shown in this column we can see that the empirical type | error is somewhat
inflated compared to the nominal value of 5% with highest inflations observed for scenarios
with small sample sizes. Similarly, the empirical power is somewhat below 80% in most
cases with small sample sizes resulting in most loss of power. Thus, these results indicate the
need to analyze the data using the proposed method when drawing inferences on RT(p) and
use the Extended Cox model only when drawing inferences on the HR as a function of time.
Together, both approaches may provide a complete picture when analyzing data from such
RCTs.

4.4 Assessing the robustness of the proposed method

To further assess the performance of our proposed method, we conducted additional
simulations to:

{i} Evaluate differences in sample size when PH assumption is not valid but is incorrectly
assumed to be true, and {ii} Evaluate the robustness of the proposed method when a study is
designed using a piecewise exponential model.

The simulation results of the first assessment scenario are displayed in Table 4. The first
three columns of this table display the design features of the proposed method - control

arm shape parameter, effect size user input, and true HR calculated at the midpoint of the
median time in the two arms. The third column allows us an important reference point

Layg @t which we can compare the calculations to methods that assume a constant HR. The
fourth column displays the number of events and sample size obtained by using the proposed
method when the PH assumption is not valid (as represented by the user entry of effect size
in the third column). The fifth column displays the number of events and sample size if

the Schoenfeld formula (Cox PH model) is used to do the calculations keeping the HR at

as a constant (PH assumption). That is, if we assume that a researcher has a clear idea of
how the treatment survival curve will look like compared to the control curve should the
treatment be beneficial, then if the researcher were to assume the PH assumption to be valid,
he/she would use the entries in column 3 as the effect size for planning a trial using the
Schoenfeld formula. The results displayed in the fifth column clearly suggest that incorrectly
using the Schoenfeld formula would either result in an underpowered (small sample sizes)
or overpowered (unnecessarily large sample sizes) trial. As an example, in the first scenario
when £,=0.25, the HR at £,,,=5.573 is 0.8479 when R7{p1)=1.52 and R7(,)=1.98 resulting
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in a sample size of 751 with 455 events in each arm. Conversely, when R7{p;)=2 and
RT(p)=1.5is used, then the HR at #;,,=5.356 is 0.8984 resulting in a sample size of 1766
with 1079 events in each arm. These calculations demonstrate how the sensitivity of the
sample size calculations when we use the constant HR as a measure of the effect size when
it would be inappropriate to do so. The last two columns in Table 4 show the empirical
power under the alternate hypothesis for the proposed method compared to the Cox model
when the interaction term from equation (22) is incorrectly ignored. While the empirical
power is close to 80% for the proposed method in all scenarios, same cannot be said to

be true for the Cox Model which expectedly yields empirical power that either exceeds the
target power of 80%, or, falls short of the target power depending on the values of R7{py)

and R7T(»).

The simulation results displayed in Table 5 pertain to studying the robustness of the
proposed method. To do so, we considered the situation where a statistician plans to

design a two-arm trial using the piecewise exponential model. After consulting with his/her
collaborators, the statistician decides to divide the time axis into 3 intervals and has
information about the hazard in each arm (constant within an interval but changing across
intervals). The hazard ratio under the alternate hypothesis is assumed to be 0.75, target
power is 80%, and type | error is 5%. The first column in Table 5 represents the different
situations in which the control arm hazard is decreasing over time, increasing over time,
constant over time, bathtub shaped, or arc-shaped. The intervals are fixed at 2 months, 4
month and 24 months (see second column). The third and fourth column give the values of
the hazard in each interval h(t), and the cumulative hazard H(t) in each interval respectively.
The fifth column displays the values of the point estimate of the HR and the empirical power
using 10,000 simulations from the piecewise exponential model with number of events set at
150 in each arm. Based on these values, the piecewise exponential model seems to be a good
choice for designing the trial.

The sixth through tenth columns in Table 5 are useful for assessing how the proposed
method works when we try to design a trial with the same information as mentioned in

the above paragraph. To do so, we can plot H(t) from the fourth column versus log(time)
to estimate the parameters of the Weibull using the well-known relationship specific to

the Weibull: log{H(t)=—plog (6)+plog (t)}. Thus, the control arm shape parameter 5, and
scale parameter 6, can be estimated and these estimates can be used to estimate the control
arm median survival time 7,04 ¢. Using the hazard ratio of 0.75, we can similarly obtain

B1 = Bo, 61 and 7,4 . These in turn can be used to calculate R7{p;) which will be a

constant (owing to the fact that we assumed a constant HR and a Weibull distribution) and
hence can be calculated as 7,04, £/ med, c- With these inputs, the proposed method can be

used to calculate the number of events which turn out to be exactly 150 in all scenarios.
These results indicate that when the HR assumption is true, then even if the individual
median times in the two study arms are inaccurately estimated, the “relative time” ratio is
consistent with the hazard ratio. That is the Weibull property 7pg = —74fFr.8 Where 7pg

is the log-hazard ratio, 7 4 g7 is the time ratio and S is the shape parameter comes into play.
That is, the information contained in R7{p;)=2.6242 and 3, = fy = 0.2982 is consistent with
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the information contained in HR of 0.75. However, this does not imply that the proposed
method should be indiscriminately used when the underlying assumptions supporting it are
not valid. This aspect can be understood by studying the last column of Table 5. Suppose we
assume that the piecewise exponential model is the true model and simulate time-to-event
data using the design features represented in the first four columns of Table 5. Then the

last column of Table 5 displays the average (of 10000 simulations) of the observed values
of R7(0.5) and the corresponding empirical power. It can be seen that in some cases the
empirical power falls short of the target power of 80% and in some other cases it exceeds it.
To understand why this happens, we need to recall that the Weibull distribution can model
hazards that increase over time from O to infinity or decrease over time from infinity to 0. If
these aspects of the hazard shapes are not represented in the data, then the performance of
methods based on the Weibull are likely to flounder. That is, while designing the trial even
if the number of events were correctly calculated as 150, since the Weibull is not a good fit
for the data, it should not be used to analyze the data. A simple Cox model will be a better
choice to design the trial and analyze the data emerging from it.

5 Discussion

In our work we have proposed a new method of sample size calculation allowing for
non-proportional hazards as well as non-proportional time for phase Il and 1l RCTs.

This is achieved by allowing the two study arms to be modeled by two separate Weibull
distributions. That is, the main advantage of our method is that we are willing to consider
the possibility that a newly proposed experimental treatment has the potential to not only
change the location effect of a standard control but to also alter the shape of the hazard.
Conceptually, this allows the flexibility to model many different real-life scenarios. This is
because for a Weibull distribution, the parameter g controls the shape of the hazard function
with g<1, g=1, g>1 implying hazard that is decreasing over time, constant, and increasing
over time respectively. Thus, it is possible that a well-established standard control has a
hazard that is constant over time, but a new treatment (such as surgery) increases the median
survival by increasing @and decreasing g below 1. This scenario is reflected in Figure 3a
where the Weibull hazard of E arm starts with a theoretical infinity at time 0 and decreases
over time. This situation is realistic because it is plausible that a new surgical intervention
has a very high risk immediately after surgery but as the patients stabilize, the effect of
surgery is to reduce the hazard over time thereby benefitting the patients. Likewise, Figure
3b represents a scenario in which a standard control used for treating cancer patients offers
only limited benefits in that with the progression of time, the cancer worsens leading to
hazard that increases over time. A new breakthrough treatment may offer substantial benefit
to the patients in that the hazard, though still high, may now become constant over time.
Other possible scenarios are represented in Figure 3c and Figure 3d wherein the general
shape of the hazard remains the same following a new treatment regimen compared to the
standard control, but the change in slope is large enough for the treatment to be considered
effective. Figures like these provide an opportunity to better understand how the hazard of
the experimental treatment changes over time relative to the standard control and should be
used while analyzing data from RCTs with a time-to-event endpoint. The proposed method
offers an RCT design taking into account the possibility of non-proportional hazards while
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analyzing the final data. Here it is important to note the distinction between crossing of
hazard curves and crossing of survival curves. While our method allows crossing of hazards
as shown in Figure 3, we do not allow any arbitrary crossing of survival curves. Our
proposed method is motivated by effect size definitions of R7{p)>1 and R7{)>1 provided
by researchers who hypothesize improved benefit for E vs C at both p; and . These four
inputs py,, R7T(p1) and R7{(p) impose natural restrictions on where the two survival curves
will cross as discussed in Section 3.6.

Another important advantage of our method is that it is based on a realistic and practical
interpretation of effect size defined in the metric of time. For biomedical researchers
investigating new treatments, the end goal is to demonstrate higher survival compared to
that offered by existing treatments. Published results of RCTs through KM plots mention
the median and IQR of time-to-event endpoints. Thus, when researchers hypothesize the
new treatment to confer a survival benefit, the very first inclination is to state “by how
many time units does the median survival change?”. While increase in median PFS works
through reduction in hazard, from a practical standpoint it is easier to quantify improvement
in longevity in the metric of time. This is especially true in the case of RCTs in oncology
where patients with a not-so-good quality of life may be encouraged to participate in a trial
if researchers can quantify and convey the hypothesized benefit in terms of how much longer
they can survive. That is, telling potential participants that “median PFS is hypothesized

to improve from 4 months to 6 months” is more understandable for patients than saying
“hazard will be reduced by 33%".

An interesting feature of our method is that it is not restricted to user entry for high values
of p. Thus, even in cases where making assumptions for ‘later’ time points is unrealistic,
the method can be implemented. For example, in clinical trials where the median is not
determinable as would be the case in rare diseases or trials with limited follow-up time, the
proposed method can be used to provide convenient user inputs such as (say, for example),
/=0.05, 1»=0.4 and in this case the sample size calculations can be conducted using
Pmic~(0.05+0.4)/2=0.225. In general, a statistician designing the trial can elicit information
about p; and p, from their collaborator by asking the right questions about the hypothesized
benefit of the treatment compared to the control. When using methods that define the
effect size using a single measure such as a constant HR, or improvement in median,

the implicit assumption is that this effect stays the same for the duration of the trial. In
real-life situations, a collaborator may have an idea of how the treatment benefit changes
over time but may not mention this to the statistician unless the statistician asks for it. That
is, our method encourages the statistician to ask an important question to their collaborator
before designing a trial — “Is the improvement in longevity (say median of 6 vs 4 months)
consistent at all survival quantiles” — rather than assuming that “effect size defined at the
median” is sufficient to design the trial. In this context, our method allows the statistician
to take responsibility to ensure that the trial design better captures the hypothesized benefit
of the treatment. Before finalizing the sample size calculations, a statistician can also check
with their collaborator if the value of R7{py) calculated at p,yis a good representation of
the treatment benefit at the midpoint of p; and p,.
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One limitation of our method is that it is dependent on the Weibull assumption. While being
more flexible than the exponential distribution in terms of modeling the hazard shape, it has
the limitation that at time 0, hazard starts from 0 or from coand this may always not be

true. More research is needed in this direction to accommodate other distributions to allow
for even more flexibility in the hazard shapes. On the other hand, the Lakatos method is
more generalizable and is based on state transition probabilities using a Markov assumption
and can incorporate different weights as well as account for non-compliance in a RCT. Still,
when reliable information is available about the Weibull shape parameter of the standard
control arm from prior studies, in some cases, our proposed method yields smaller sample
sizes than the Lakatos method. Additionally, the Schoenfeld formula can be considered as
only a special case of our method and this insight should be taken into consideration by
practicing statisticians while designing a RCT. A second minor limitation of our method is
its reliance on asymptotic normality of the test statistic. However, given that most two-arm
phase Il and phase 111 RCTs are at least moderate sized, this is not a serious limitation.
Another minor limitation is that estimate of Sy may be mis-specified when it is estimated
from a previous study (see Section 3.1). However, as described in Section 3.1, if the previous
study had 50 subjects with up to 40% censoring, then even if this estimate is obtained from
three survival quantiles (say 25, 50t 75! percentile), the estimate will be within 10%

of the true beta. Since for a Weibull distribution (see Table 1) sample size increases as Sy
decreases, a statistician who wishes to err on the side of being conservative to prevent a
somewhat underpowered study can simply multiply this estimate by 0.9 when using our
method to perform the sample size calculations. Overall, we recommend that input for 5
should be obtained from historical sources and if such historical information is not available,
a last choice would be to assume Fp=1 indicating that survival times in the C arm come from
the exponential distribution.

Our proposed method of sample size calculation offers additional insights to statisticians
analyzing time-to-event outcomes in RCTs in that the recommended method of analysis
using two separate Weibull fits is consistent with analyzing the data as an extended Cox
model (with interaction between study arm and logarithm of time). Thus, the final data can
be analyzed using a non-constant time ratio as well as a non-constant hazard ratio. Our
proposed method should be seen as complementing the existing methods of sample size
calculation. When the Weibull assumption is correct it offers a practical easy-to-implement
method for sample size calculation. We hope that statisticians will find it a useful addition to
their arsenal when designing RCTs with time-to-event endpoints. A direct future extension
to this area of research will be the construction of more complex sequential and adaptive
designs with its operation characteristics validated comprehensively with simulations.
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Appendix

A.1 Derivation of test statistic

Let #for /=1,2,3,...dbe i.i.d random variables that follow Weilbull distribution with scale
parameter @and shape parameter B. That is ¢~ Weibull 6,8 with 6,4>0

B
Then #/~Exponential &P) leads to éz;‘- 1P~ Gamma(d, ‘97).

)l/ﬂ

Therefore, 9 = (%Z?= 1tjﬁ ~ Generalized Gamma(d , %ﬂ’ ﬁ)
d

A.2 Basics of the generalized gamma distribution

The generalized gamma (GG) distribution (see Stacy and Mihram (1965)) is a three-
parameter family of distributions with a probability density function:

f() = ﬁ(é)kﬁ_ 1exp{—(t/t?')ﬂ} (26)

where £>0 and &> are the shape parameters, >0 is the scale parameter and I'(k) is the

(o]
gamma function defined as I'(k) = / x* ~ le=*ax.
0

For model fitting purposes a re-parametrization GG(l,0,1) is used to avoid convergence
problems using location parameter 4, scale parameter o and shape parameter A that
generalizes the two-parameter gamma distribution. The density function is given by:

-2
foaln) = %[A—Z{exm—m}”"r exp[-1 2exp-n) | @

[S0]
where 0>0, (£(-00,00), AE(-00,00), I'(x) = [ m* ~ le=™ dm is gamma function of x.
0

The parameters of (24) and (25) are related in the following way:

1, (.-
1 =1n(0) + ﬁln(ﬂ %)

|
0 =—7 28
ﬁf/z (28)
ﬂ = —= =
W
A complete taxonomy of the various hazard functions for the GG family is explained in
Cox et al. (2007). Briefly, the GG family allows the flexibility of modeling different hazard

shapes such as increasing from 0 to oo or from a constant to oo, decreasing from oo to 0,
or from oo to a constant, arc shaped hazards, and bathtub shaped hazards. Special cases
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of the GG family are {i} two parameter gamma: A=o {ii} standard gamma (x#=0;0=1)

for fixed values of A {iii} Weibull: A=1 {iv} exponential: A=0=1 {v} lognormal: 1=0

{vi} inverse Weibull: A=-1 {vii} inverse gamma: A=-¢ {viii} ammag: A=1/o {ix} inverse
ammag: A=—1/oand {x} lognormal distribution with ¢’=1.82¢ approximates the loglogistic
distribution.

A.3 The Relative Time RT(p) framework and reasons motivating the
proposed method

The 3-parameter GG distribution can be used to analyze large observational study datasets
as shown in Cox et al. (2007). The most general case is when survival times in both study
arms are assumed to follow two separate GG(i,o,A) distributions. As discussed in Cox et al.
(2007), this requires very large datasets for conducting the statistical analysis. Many special
cases such as same A but different 1, o for the two study arms run into similar issues.

Our proposed method based on fixing A=1 allows the survival times in the two study arms
to follow two different Weibull distributions. It allows us to design a two-arm clinical trial
achieving the following objectives:

1. Both non-PH and non-PT assumptions are simultaneously true.

2. Trial should not yield extremely large sample sizes making it unrealistic to adopt
in practice.

3. Knowledge of extra parameters required for sample size calculation for the

Phase 111 trial should be achievable through practical means such as looking into
previously conducted phase Il trials. There should be some mechanism through
which these extra parameters (5 and B;) can be estimated with some acceptable
level of accuracy. See Phadnis et al. (2020) that discuss this issue.

4, The special cases on the method based on RT(p) such as {i} PH but not PT {ii}
PT but not PH {iii} Both PH and PT — should yield sample sizes that are similar
to those yielded by already known methods such as Schoenfeld formula for Cox
Model and Logrank methods that assume exponential distribution, They should
also be comparable to the piecewise linear Lakatos method and the piecewise
exponential model.

Following Venn diagram illustrates where the proposed method fits in the RT(p) framework.
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Note: The area of rectangles in the diagram do not mean anything, it is just a representation
of partitions shown in the Venn diagram.

A+C+D+E+F+G+H =The most general Relative Time RT(p) scenario.
B + C + E = Proportional Hazards models

D + C + E = Accelerated Failure Time (AFT) models also called Proportional Time models
by Cox et al. (2007) from the Generalized Gamma distribution (with both study arms having
the same shape parameters)

F = Accelerated Failure Time (AFT) models also called Proportional Time models from
distributions other than Generalized Gamma.

C + E = Weibull model with common shape parameter for both study arms. This property of
satisfying both PH and AFT assumption is specific to the Weibull.

E = Exponential model (special case of Weibull with shape parameter beta fixed at 1)
B = PH models in which baseline hazard does not come from the Weibull distribution.

D = Accelerated Failure Time (AFT) models also called Proportional Time models by Cox
et al. (2007) from the Generalized Gamma distribution with both study arms having the
same shape parameters) but not including the Weibull.

G + H =non-PH, non-PT models from the Generalized Gamma distribution when shape
parameters are different for the two study arms.
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G = non-PH, non-PT models from the Weibull when shape parameters are different for the
two study arms. Thus, G is a subset of G + H.

In this framework, our proposed method for sample size calculation is forthe C+E + G
section of the diagram. Thus, it covers the following situations:

i G = Non-PH, non-AFT based on Relative Time with two separate Weibull
distributions for the two study arms.

ii. C + E = When the shape parameters of the two Weibull distributions are same,
we get a model that satisfies both PH and PT property.

iii.  E = Special case of {ii} above with shape parameter fixed at 1 i.e. the
exponential distribution.

In writing this manuscript, we hope that statisticians designing a trial will have an extra
option to handle the B (not-B) scenario when they are comfortable with assumptions that fall
under the partition represented by G.
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Figure 1.
Scenario #1 with effect size defined as RT(0.1) = 1.5 and RT(0.9) = 2.
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Scenario #1 with effect size defined as RT(0.1) = 2 and RT(0.9) = 1.5.
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Figure 3.
Hazard vs time for Control arm (solid) and Treatment arm (dashed) — four different cases.
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