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Abstract

Sample size calculations for two-arm clinical trials with a time-to-event endpoint have 

traditionally used the assumption of proportional hazards (PH) or the assumption of exponentially 

distributed survival times. Available software provides methods for sample size calculation using 

a nonparametric logrank test, Schoenfeld’s formula for Cox PH model, or parametric calculations 

specific to the exponential distribution. In cases where the PH assumption is not valid, the 

first-choice method is to compute sample size assuming a piecewise linear survival curve (Lakatos 

approach) for both the control and treatment arms with judiciously chosen cut-points. Recent 

advances in literature have used the assumption of Weibull distributed times for single-arm trials, 

and, newer methods have emerged that allow sample size calculations for two-arm trials using 

the assumption of proportional times (PT) while considering non-proportional hazards. These 

methods, however, always assume an instantaneous effect of treatment relative to control requiring 

that the effect size be defined by a single number whose magnitude is preserved throughout the 

trial duration. Here, we consider the scenarios where the hypothesized benefit of treatment relative 

to control may not be constant giving rise to the notion of Relative Time (RT). By assuming that 

survival times for control and treatment arm come from two different Weibull distributions with 

different location and shape parameters, we develop the methodology for sample size calculation 

for specific cases of both non-PH and non-PT. Simulations are conducted to assess the operation 

characteristics of the proposed method and a practical example is discussed.
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1 Introduction

Two-arm randomized control trials (RCTs) are considered the gold standard in phase II 

and phase III clinical trials as they allow biomedical researchers to measure and assess the 

benefit of a new experimental treatment relative to a standard control. When the primary 

endpoint in such RCTs constitutes time-to-event data, existing methods for sample size 

calculation are traditionally done assuming either proportional hazards (PH) or by assuming 

that the survival time follows an exponential distribution. Standard statistical software can 

be used to perform the sample size calculations using the non-parametric logrank test 

of Freedman (1982) or Lachin and Foulkes (1986). Other popular options include the 

Schoenfeld (1981, 1983) sample size formula for semi-parametric PH model of Cox (1972), 

or the Bernstein and Lagakos (1978) sample size formula using the F-test for exponentially 

distributed survival times. Typically, a statistician consults his/her research collaborators 

about the design inputs such as one-sided or two-sided hypotheses, type I error, power, 

accrual time, follow-up time, effect size, and the proportion of dropouts expected during 

the trial. Once this is done, sample size calculation often proceeds by first calculating the 

number of events required to be observed in the trial, followed by calculations that account 

for potential administrative censoring and random loss to follow-up or drop-outs in order to 

get the number of subjects that need to be enrolled in the study.

When the underlying assumptions do not hold, the above-mentioned traditional methods 

may not be preferred and there is a need to develop a method that is derived under more 

realistic assumptions, provides high power while controlling for the type I error, and one 

which provides related estimates that are easy to understand. Often the indication of the 

inappropriateness of the underlying assumptions is available through published results of 

previously conducted similar studies and through subject matter discussions with biomedical 

collaborators. For example, when designing a two-arm phase III RCT, such indications 

about the non-constancy of the hazard ratio (HR) may be available through results of a 

phase II study by means of observed-vs-expected plot and the log-log survival plot thus 

making it less appropriate to still assume PH for the current phase III study. Likewise, the 

Kaplan Meier (KM) plot together with a log-survival (LS) plot may bring into question the 

assumption of exponentially distributed survival times. Thus, other methods are needed to 

perform the sample size calculations in these situations.

Recent advances in literature in the last ten years have proposed alternate methods of sample 

size calculation for certain special scenarios when the above-mentioned assumptions are 

not valid. For example, finding the PH assumption to be quite restrictive, Royston and 

Parmar (2013) have proposed sample size calculation on the basis of restricted mean survival 

time (RMST) whereas Zhao et al. (2016) has proposed a calculation on the basis of event 

rates. In cases where the lack of PH assumption is due to there being a ‘cured’ fraction 

in both the study arms, Xiong and Wu (2017) have developed sample size calculations for 

the ‘cure-rate’ model by improving on the calculations proposed by Wang et al. (2012). 

Likewise, Gigliarano et al. (2017) have discussed comparison of two survival curves for the 

log-scale-location family of survival time models, and, Phadnis et al. (2017) have developed 

sample size calculations when survival times follow a three-parameter generalized gamma 

distribution using the concept of Proportional Time (PT). Recent developments in the last 
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two years include contributions by Magirr and Burman (2019) who have shown that their 

modestly weighted logrank tests provides high power under a delayed-onset treatment effect 

scenario, and, Jimenez et al. (2019) who have studied the properties of the weighted log­

rank test in designing studies with delayed effects. As all these methods are yet to find 

wide-spread acceptance (perhaps, due to the lack of free and commercial software), another 

approach to calculate sample sizes is by using simulations by assuming piecewise constant 

hazards in each of the two arms. This approach requires the statistician to judiciously choose 

time intervals such that in each interval of time the hazard in each of the two study arms 

is a constant though this hazard may change from one interval to another. Then assuming 

a constant hazard ratio, one can find the sample size that yields an acceptable value of 

power corresponding to pre-determined effects size by using simulations. Thus, though 

different hazard shapes emerging from distributions other than the exponential distribution 

can be approximated, the effect size is still defined by means of a constant HR thereby 

restricting its use when such a restriction is not appropriate (we discuss this more in Results 

section). In recent literature, Mok et al. (2019) have used the piecewise HRs to account 

for the possibility of non-PH in an oncology trial. Also, Gregson et al. (2019) provide a 

good overview of different methods of accounting for non-PH for time-to-event outcomes in 

clinical trials in cardiology.

The default (or ‘go-to’) method for sample size calculation in the non-PH case, is thus 

the method proposed by Lakatos (1988) that uses Markov state transition probabilities 

to perform the sample size calculations. This requires the user to have a good idea of 

how the survival curves in the two arms look under the alternate hypothesis. Then the 

statistician constructs time intervals such that the true shape of the two survival curves is 

well approximated by piece-wise linear functions. This method offers flexibility in terms of 

incorporating loss to follow-up, non-compliance, and administrative censoring while being 

able to calculate sample sizes for the two arms by considering any general shape of the 

two survival curves. The limitations are that some trial and error is required to determine 

the number of piece-wise intervals in addition to making many critical assumptions about 

the transition probabilities. It is important to note that this method allows effect sizes to 

vary over the course of the trial (small effect at the beginning and large effect at the end, 

or vice-versa). Due to its generalizability, this method is available in popular software like 

SAS, R, nQuery, and PASS. The advantages and disadvantages of the methods using the 

logrank statistic for sample size calculation under the exponential distribution, PH and 

non-PH scenarios has been studied by Lakatos and Lan (1992).

In this paper, we discuss a new parametric approach to calculate sample sizes for a two­

arm RCT allowing for non-PH as well as for non-PT (this concept is explained in the 

Methods section) using Weibull distributions with different parameters for the two arms. 

That is, we propose a method of sample size calculation that can be used for both of the 

following scenarios: {i} new treatment shows a small improvement in longevity compared to 

a standard control during the early period of the trial and the magnitude of this improvement 

increases as the trial progresses, and, {ii} new treatment shows a large improvement in 

longevity compared to a standard control during the early period of the trial and the 

magnitude of this improvement decreases as the trial progresses. We do not allow arbitrary 
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crossing of two survival curves in our proposed method, but allow it at reasonably small or 

large values of the survival percentiles.

Our method is motivated by a combination of the previous works done by us and by 

other authors and we have structured in the following way. Section 2 discusses two 

motivating examples highlighting the need for adopting our proposed method for sample 

size calculations. The main methodology is explained in Section 3 wherein the test 

statistic development is followed by calculation of sample size accounting for administrative 

censoring, and, this is further followed by justification for inflation to the sample size due 

to dropouts. We also discuss an alternate model formulation and offer two ways to analyze 

the data after the trial is concluded. Analytical and simulation-based results are discussed 

in Section 4 to provide insights into the operation characteristics of the proposed method. 

In Section 5, we summarize and discuss the advantages and limitations of our method 

and suggest recommendations for future research in this area. We have used SAS software 

(2017) for creating macros that implement our proposed method. Some details related to 

mathematical derivations and ancillary topics are mentioned in the Appendix.

2 Motivating Examples

We discuss two examples representing the two main scenarios that highlight the application 

of our proposed method. Additional variations of these two main scenarios are discussed in 

the Results section to allow the reader to assess how the sample size calculations vary as a 

function of the varying design inputs.

The first example concerns the design of a two-arm phase III RCT for treating patients 

suffering from chemotherapy refractory advanced metastatic biliary cholangiocarcinoma, 

a “rare” but aggressive neoplasm. Such patients undergo an initial treatment followed by 

a second-line treatment. Researchers are interested in comparing a new experimental (E) 

second-line treatment to a standard control (C) second-line treatment with progression-free 

survival (PFS) as the time-to-event endpoint (hereafter the letters E and C are used for 

recurring references to experimental treatment and standard control respectively). The PFS 

for the C arm has been studied in a prior single-arm phase II study with results being 

reported using a KM curve in addition to reporting the median of 4 months and interquartile 

range (IQR) of 2–7 months. The researchers hypothesize that in the two-arm trial under 

consideration the E arm will show a clinically meaningful improvement in the median PFS. 

However, they are also of the opinion that this improvement in longevity measured in the 

metric of time will be gradual. That is, the improvement for 10th percentile of PFS will 

be by a factor of 1.5 and as the effect of treatment improves with passage of time, the 

improvement for 90th percentile of PFS will be by a factor of 2. That is, the effect size of 

interest is improvement in the median PFS but that this improvement is not instantaneous 

upon delivery of treatment, rather, it increases gradually over time. In other words, the new 

treatment confers an improvement in longevity for a range of survival quantiles (though the 

median is of specific interest to the researchers). Accrual and follow-up times are both 12 

months, type I error is taken at 5% for a one-sided test (which is acceptable for rare cancers) 

with a target power of 80%. Thus, contrary to the assumption of PH or of exponentially 

distributed times, the effect size is not defined through a single constant number such 
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as a hazard ratio or constant ratio of medians (note using the exponential distribution 

assumptions, the ratio of medians is the same as ratio of means or the ratio of any two 

quantiles of time). This example thus represents frequently real-life scenarios in cancer trials 

where researchers expect long-term survivors to benefit maximum from a new treatment 

but expect only small realistic improvements for the short-term survivors. This scenario is 

represented in Figure 1 (some notations are explained later in the Methods section). Due to 

varying magnitudes of the expected improvement during the trial, the research hypothesis 

intends to find a clinically meaningful improvement in median PFS.

The second example (See Figure 2) is representative of a real-life scenario pertaining to 

surgery as an experimental treatment whose performance is compared to a non-surgical 

standard-of-care control. Researchers hypothesize that patients randomized to receiving 

surgery, will, following surgery, experience an immediate benefit in terms of improved 

longevity which is considerably large in magnitude, but that this improvement will wane as 

time progresses. That is, the improvement for 10th percentile of Overall Survival (OS) will 

be by a factor of 2 and as the effect of treatment improves over time, the improvement for 

90th percentile of OS will be by a factor of 1.5. Again, the effect size used to do the sample 

size calculations will be based on a clinically meaningful improvement of median OS, with 

all other design parameters the same as in the first example.

In both the above-mentioned examples, researchers would like to perform a sensitivity 

analyses by varying some of the design parameters. For example, if the calculated sample 

size is very large, researchers would like to consider larger values of accrual and follow-up 

time and re-do the sample size calculations. Likewise, they also want to assess how sample 

size calculations change when the improvement factors of 1.5 and 2 are defined at the 25th 

and 75th percentile of survival time in place of the 10th and 90th percentiles of survival 

time. In the next section, we develop the methodology for performing the calculations by 

imposing some restrictions on the crossing of the survival curves of the two arms.

3 Methods

As both scenarios discussed in Section 2 are concerned with improvement in longevity as 

a measure of assessing the E vs C benefit, we develop a modeling framework in which 

the main calculations are performed in the metric of time. This is also inspired by the 

fact that in our collaborations with biomedical researchers, we found that they were more 

comfortable in defining E vs C benefit in terms of median survival time rather than a 

hazard ratio. Here it should also be noted that when the survival times in the two arms 

follow an exponential distribution then an effect size definition in terms of ratio of medians 

can, by taking the reciprocal, be expressed as a hazard ratio. But when the assumption of 

exponential distribution is suspect, a closed form conversion formula may not always be 

available. For example, an oncologist may hypothesize that new treatment increases the 

median survival time in control group of 6 months to 9 months. This implies the effect size 

defined as ratio of medians is 1.5 but without the assumption of exponential distribution, one 

cannot say the study should be powered to detect a HR of 6/9 = 0.667.
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3.1 Modeling framework and concept of Relative Time

Recent papers for sample size calculation for single arm trials such as Wu (2015) and 

Phadnis (2019) have used the assumption of Weibull distributed time for the standard control 

arm. The Weibull distribution is a two-parameter distribution whose probability density 

function is:

f t = β
θβ tβ − 1exp − t/θ β θ, β > 0, t > 0 (1)

Here, θ is a scale parameter and β is a shape parameter that determines the shape of the 

hazard function (β>1 gives hazard that increases over time, β<1 gives hazard that decreases 

over time, and β=1 represents the special case of exponential distribution with constant 

hazard). Both Wu (2015) and Phadnis (2019) have used a point estimate of β in their 

sample size calculation and have recommended that users obtain an estimate of β from prior 

historical studies. Through simulation studies, Phadnis et al. (2020) have investigated how 

accurate the estimate of β is when it is estimated from the x-y coordinates (x = time, y 

= survival probability) of a KM plot published using prior study data. Their simulations 

suggest that for prior studies with moderate right-censoring of up to 40%, a sample size 

of 50 keeps the average relative bias (ARB) consistently below 10% even when only 3 

x-y coordinate pairs are used to estimate β and the accuracy increases (ARB decreases) as 

information from more x-y coordinates is used. Additionally, the scaled root mean square 

error (SRMSE) and coefficient of variation (CV) are maintained below 20% and 12% 

respectively. Encouraged by these results, in our current proposal also, we assume that β for 

the standard control arm is either known or can be estimated with reasonably accuracy from 

prior study data or published KM plots. We call this β0 with the subscript 0 indicating the 

control arm.

Next, we briefly discuss the concept of Relative Time although an excellent description of 

the same can be found in Cox et al. (2007). Relative time can be defined as the ratio of times 

at which exactly 100*p % of the individuals in one study arm experience an event of interest. 

Due to the dependence on p, it is denoted as RT(p). Thus, the interpretation of RT(p) is that 

the time required for 100*p % of the individuals in one study arm to experience an event is 

RT(p)-fold times the time required for 100*p % of the individuals in other study arm. That 

is,

RT p = t1 p
t0 p (2)

Here, ti p = Si
−1 1 − p  is the inverse survival function for study arm i (i = 0, 1). Let θi 

and βi (for i = 0, 1) represent the scale and shape parameters of two different Weibull 

distributions for C and E. From (2) we also have 1−p=Si{ti(p)} and from (1) we know that 

Si{ti(p)}=exp[−{ti(p)/θi}βi] leading to
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ti p = θi log 1
1 − p

1/βi
(3)

Thus RT(p) can be expressed as

RT p = t1 p
t0 p = θ1

θ0
log 1

1 − p

1
β1

− 1
β0 (4)

On the logarithm scale, equation (4) becomes

log RT p = log θ1 − log θ0 + 1
β1

− 1
β0

⋅ log log 1
1 − p (5)

From equations (4) and (5) we see that when β1=β0, the dependency on p disappears and in 

that case RT(p) is a constant and can be called ‘Proportional Time (PT)’ which reduces, in 

our case to a standard accelerated failure time (AFT) model using the assumption of Weibull 

distributed survival times. In case of the Weibull, this also simultaneously results in the PH 

assumption being true, but this is not true for other distributions. See Cox et al. (2007) for 

more details on this topic where the Weibull is a special case of the generalized gamma 

distribution and how the PT assumption reduces to a standard AFT model.

3.2 Setting up the hypotheses

As an example in a practical RCT setting, we consider the scenario that researchers consult 

a statistician to design a trial such that an improvement in median survival time in C (say, 4 

months) to E is detectable with 80% power using a one-sided (or two-sided) hypotheses after 

incorporating the information that at p1=0.10, RT(p1)=1.5 and p2=0.90, RT(p2)=2. Since the 

median survival time in C is known, we have θ0=t0(0.5)/{ln (2)}1/β0. Taking logarithm on 

both sides of (4) and writing it as two separate equations, first with p1=0.10, RT(p1)=1.5, 

and, second with p2=0.90, RT(p2)=2, we have two equations with two unknowns and we can 

calculate θ1 and β1 thereby determining the survival curves for C and E. Given these values, 

we can calculate the desired effect size at pmid=(p1+p2)/2 as

RT pmid = t1 pmid
t0 pmid

= θ1
θ0

log 1
1 − pmid

1
β1

− 1
β0 (6)

We can now write down our hypotheses in the following way:

H0: RT pmid ≤ 1
H1: RT pmid > 1 (7)

Noting that for p1=0.10 and p2=0.90, we have pmid=0.5 with t0(0.5) and t1(0.5) representing 

the median survival time in the C and E respectively, our hypotheses will be
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H0: RT 0.5 ≤ 1
H1: RT 0.5 > 1 (8)

That is, if the researchers desire to draw inference on the improvement in median survival 

time for E vs C, the statistician can ask them to provide information of p1 and p2 such that 

pmid=(p1+p2)/2 is ensured. Alternatively, in our SAS code, we have also allowed the user 

to choose a puser≠pmid and define the hypotheses at this puser value. It should be noted that 

although the examples considered by us use a one-sided type I error of 5% (owing to the 

specific disease under consideration), a type I error of 2.5% (or any other reasonable value) 

can also be dealt by our proposed method.

An important feature of our proposed method are the user-defined inputs at p1, p2, 

RT(p1) and RT(p1). These inputs determine the value of RT(pmid) through equation (6). 

That is, information about pj and RT(pj) for j=2 are enough to perform the sample size 

calculations due to the fact that (5) can be seen as a straight-line equation of the type 

y = b0 + b1x in which b0 = log θ1 − log θ0  plays the role of an intercept and b1 = 1
β1

− 1
β0

plays the role of the slope with this straight line passing through the [x, y] coordinate 

pairs log log 1
1 − pj

, log RT pj . If instead, user-inputs are defined with j>2, then sample 

size calculations can still be performed at pmid = 1
j ∑j pj but the straight-line is no longer 

guaranteed to pass through the [x, y] coordinate pairs log log 1
1 − pj

, log RT pj . Instead, 

it will be the “line of best fit” passing through the mean log log 1
1 − pmid

, log RT pmid . 

For example, the user inputs β0=0.5, median survival in C arm = 4 months, p1=0.1, p2=0.9, 

RT(p1)=1.5, and RT(p2)=2 will yield RT(pmid)=RT(0.5)=1.788 (see also Section 3.6). 

Instead if the user inputs are p1=0.1, p2=0.25, p3=0.75, p4=0.9, RT(p1)=1.5, RT(p2)=1.667, 

RT(p3)=1.833, and RT(p4)=2 then the value of pmid is still 0.5, but RT(pmid)=RT(0.5) will 

be 1.773 instead of 1.788 resulting in a slightly increased sample size. Thus, although 

in principle pj and RT(pj) with j>2 can be used to perform the calculations, researchers 

may find it practically friendly to inform the statistician about the hypothesized RT(p)-fold 

improvement at only two percentiles of survival data.

3.3 Development of a new test statistic

Let θi for i = 0, 1 be the maximum likelihood estimate of θi in the C and E arms 

respectively. Then we know that for the Weibull distribution with all observations as events 

(no censoring) with di events in the ith arm

θi =
∑j = 1

di tij
βi

di

1/βi
(9)
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Since each tij~weibull(θi,βi), it can be shown that (see Appendix A.1) θi GG di , θi/di
1/βi, βi

where the letters GG stand for a 3-parameter generalized gamma distribution.

From this we get

θi log 1
1 − pmid

1
βi GG di , θi

log 1
1 − pmid
di

1
βi

, βi (10)

Using a reparameterization by taking λi = 1/ di, σi = 1/ βi di  and 

μi = log θi log 1
1 − pmid

1
βi  we can say that θi log 1/ 1 − pmid

1/βi GG λi , μi, σi . The 

advantage of this reparameterization is that we can see that as the number of events di 

increases, λi decreases towards 0. Even for di=25, we get λi=0.2. A well-known property of 

the GG distribution is that as λi→0, the distribution converges to a lognormal distribution. 

That is, denoting Qi = θi log 1/ 1 − pmid
1/βi , we get Qi  ˙  Lognormal μi, σi . See Stacy and 

Mihram (1965) and Cox et al. (2007) for more properties of the GG distribution along with 

a brief discussion in the Appendix A.2 mentioning how some popular distributions such 

as Weibull, lognormal, gamma, ammag, inverse Weibull, inverse gamma, and exponential 

are special cases. Appendix A.3 further elaborates the Relative Time framework using a 

Venn diagram and briefly explains where the proposed method fits in this framework. Some 

additional discussion is provided describing the motivation to choose the proposed method 

(two different Weibull distributions) based on practical considerations.

Klein and Moeschberger (2003) discuss that the three-parameter GG distribution is 

infrequently used to model time-to-event data for reporting analysis results. Instead, after 

fitting a GG distribution to a dataset, Klein and Moeschberger (2003) mention that based 

on estimate of λ, statisticians often choose a two (or single) parameter distribution. In 

practice, an estimate of 0.2 or lower for λ will be a comfortable justification for using 

a lognormal distribution. In the context of our topic, di=25 should be considered large 

enough for us to claim Qi ˙ LN μi, σi . Then using the relationship between a lognormal and 

Gaussian distributions, we can also say that ln Qi ˙ N μi, σi . In this notation, note that the σi
is standard deviation and not variance.

That is, we now develop a new test statistic on asymptotic normality in the following way.

Q′ = log Q1 − log Q0 ˙ N μd, σd (11)

where μd = μ1 − μ0 = log
θ1
θ0

log 1
1 − pmid

1
β1

− 1
β0  and σd = σ1

2 + σ0
2 = 1

d1β1
2 + 1

d0β0
2

If we define an allocation ratio as r = d1/d0, then we have
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σd = 1
d0

1
rβ1

2 + 1
β0

2 = 1
rβ1

2 + 1
β0

2 / d0 (12)

Thus, our newly proposed test statistic is defined as

Z = Q′ − μd
σd

(13)

Thus, under the null H0 we have Z~N(0,1), and under the alternate H1 we have Z~N(μd/σd, 

1). Then, for a one-sided test with a given allocation ratio r, the number of events in the two 

study arms can be calculated as

d0 = Zω + Z1 − α
log RT pmid

2 1
rβ1

2 + 1
β0

2

d1 = rd0

(14)

where α is the type I error for the one-sided test and ω is the target power of the test. For a 

two-sided test, we can use α/2 in place of α.

Thus, knowledge of β0 through the historical study and the calculation of β1 through the 

effect size pre-specification allows us to perform the sample size calculations.

The interesting feature of the formula in (14) is that when β1=β0=β, that is, for the special 

case of proportional time (PT), it reduces to

d0 = Zω + Z1 − α

log θ1
θ0

2
1 + r
rβ2 (15)

Then letting q=d0/(d0+d1) and 1−q=d1/(d0+d1) as the proportional of events in the C and E 

arms respectively, we can re-express the formula in (13) as

d0 = Zω + Z1 − α

β log θ1
θ0

2
1

q 1 − q (16)

which further simplifies to

d0 = Zω + Z1 − α
2

q 1 − q log2 ΔHR
(17)

which is the exact same sample size formula obtained by Schoenfeld (1981) for the Cox 

PH model. That is, we can interpret our new sample size formula in (14) as an extra 
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adjustment to Schoenfeld formula when accounting for the two different shape parameters of 

two different Weibull distributions. Alternatively, the Schoenfeld formula can be thought of 

as a special case of our newly developed sample size formula.

3.4 Calculation of sample size accounting for administrative censoring

Assuming a uniform accrual, the censoring distribution function G(t) is given by

G t =

1
a + f − t

a
0

if t ≤ f
if f ≤ t ≤ a + f

otherwise
(18)

where a and f are the accrual and follow-up time respectively. Then the probability that a 

subject experiences an event during the trial in arm i (i = 0, 1) is

vi = ∫
0

∞

G t . fi t dt (19)

where fi(t) is f(t) with θ=θi and β=βi. Dividing the number of events obtained through the 

sample size formula in (14) by v=(v0+v1)/2 gives the sample size adjusted for administrative 

censoring. Alternatively, vi can be calculated using Simpson’s rule by

vi = 1 − 1
6 Si f + 4Si f + 0.5a + Si f + a (20)

where Si(t) is the survival function of the Weibull with θ=θi and β=βi.

3.5 Reformulation as an Extended Cox model and accounting for dropouts

Thus far, we have accounted for administrative censoring in the sample size calculation. 

Before proceeding to the discussion about adjusting for random loss to follow-up, we briefly 

discuss the topic of reformulation using an Extended PH model. It should be noted that 

the method of analysis consistent with the sample size calculation should be pre-specified 

in the study protocol (although one may use another simpler sample-size method to get 

an approximation, or alternatively, even change the chosen method of analysis later in 

the Statistical Analysis Plan). As the proposed method involves two different Weibull 

distributions, the most direct way to analyze the data after study completion is to fit the 

data from each study arm using two separate Weibull fits. See Section 3.7 for more details 

on this process.

As many researchers are accustomed to a hazard ratio interpretation when summarizing RCT 

data, they would like to know how the HR changes over time given that the PH assumption 

is not true. In this context, we can see that the ratio of hazards for the two study arms at time 

t is
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ℎ1 t
ℎ0 t = β1

β0

θ0
β0

θ1
β1

tβ1 − β0 (21)

The above equation can be reformulated as

ℎ1 t = ℎ0 t . exp γ0X + γ1X ⋅ log t (22)

where X is the indicator variable with X=0 indicating C arm and X=1 indicating the 

E arm, h0(t) is the hazard of the C arm at time t, γ0 = log β1/β0 θ0
β0/θ1

β1  is the time­

independent change is hazard for E vs C, and can be interpreted as the hazard at t = 

1. Similarly, γ1=β1−β0 is the regression coefficient for the interaction between the study 

arm and logarithm of time. Due to the additional interaction term, Equation (22) can thus 

be considered as an Extended Cox model. That is, two different Weibull distributions 

corresponding to two study arms can be fit using a single semi-parametric extended Cox 

model. The converse, however, is not necessarily true.

The advantage of this reformulation is that the parameters of a semi-parametric model are 

obtained through maximization of the partial likelihood. Since the partial likelihood is only 

evaluated at the event times and not at the time of right censoring, we can argue that to 

account for loss due to drop-outs (right-censored observations), we can inflate the sample 

size calculated after using (14) and (19) by simply dividing by 1 minus the drop-out rate. 

Thus, for a drop-out rate ρ, the final sample size in the two study arms can be calculated as

n0 = d0
1 − ρ v

n1 = rn0
(23)

3.6 Disallowing arbitrary crossing of survival curves from the two arms

The main research question in RCTs with time-to-event endpoint often pertains finding 

statistical evidence to show that a new experimental treatment outperforms a standard 

control. To be consistent with this overall goal, we do not allow any arbitrary crossing of 

two survival curves from the C and E arms. For example, it is possible that the 10th and 90th 

percentile of PFS is higher in E compared to C, but for a different early (or late) percentile 

t(p), say 5h (or 95th) percentile, S{(tp)} is higher for C compared to E. Suppose this early 

inversion at 5th percentile (due to crossing of the two survival curves) is not consistent with 

the real-life application under consideration for biological/clinical reasons, then in that case 

we have added an error check in our SAS code informing the statistician that the current set 

of inputs entered are inappropriate and need to be reconsidered. For example, consider the 

following user inputs for our proposed method in the case of the first cholangiocarcinoma 

example:

User Inputs:
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One-sided test, α=0.05, ω=0.8, β0=0.5, median survival in C arm = 4 months, p1=0.1, 

p2=0.9, RT(p1)=1.5, RT(p2)=2, r=1, a=12, f=12, ρ=0.2, qmin=0.001, qmax=0.999

Here, qmin represents the smallest value for p at which the crossing of two curves 

is permitted as considered plausible based on biological/clinical considerations. Thus 

0<qmin<p1 is the range for qmin and plays a role in the sample size calculation when 

RT(p1)<RT(p2). Analogously, qmax represents the largest value for p at which the crossing of 

two curves is permitted. Thus p2<qmax<1 is the range for qmax and plays a role in the sample 

size calculation when RT(p1)<RT(p2).

The above input parameters are obtained from the information provided by the research 

collaborators, but that RT(p1)=1.5<RT(p2)=2 results in crossing of the two survival curves 

at p=0.00135. At p=0.001 this combination results in RT(0.001)=0.972 which is less than 

1 implying that at very early in the observation window, survival in arm C is better than 

that in arm E. If this inversion of survival benefit is biologically/clinically impossible (as in 

the case of this cholangiocarcinoma trial, the SAS output generates an error message and 

recommends the user to take one of the following actions:

i. Decrease the user-input value of p1 OR

ii. Increase the user-input value of RT(p1) OR

iii. Increase the user-input value of p2 OR

iv. Decrease the user-input value of RT(p2) OR

v. Choose a larger value for qmin (that is, relax the percentile at which the two 

curves can cross)

Alternatively, keeping p1 and p2 same as earlier, we make a recommendation to the user for 

inputting values for RT(p1) and RT(p2) such that RT(0.001)≥1 is always maintained. For the 

choice of initial user inputs discussed in this example, we recommend using RT(p1)=1.52 

and RT(p2)=1.98. This results in a sample size of 270 in each arm such that we have 

80% power to detect RT(0.5) of 1.788 as greater than 1 with a type I error of 5% using a 

one-sided test. These values of RT(p1)=1.52 and RT(p2)=1.98 are used by us in the Results 

section related to this example. In other real-life applications where qmin or qmax are not as 

extreme, a statistician can simply execute our code without expecting an error message. For 

example, the combination of p1=0.1, p2=0.9, RT(p1)=1.5, RT(p1)=2 and qmin=0.01 will not 

produce an error message. Sample size in this case will still be 270 in each arm.

As a second example (for some other trial), if a researcher selects p1=0.1, p2=0.9, 

RT(p1)=1.25RT(p2)=3 (with all other user inputs same as in the above example), then the 

two survival curves will cross at p=0.0469 indicating probable early toxicity. Thus, in this 

case, setting qmin=0.05 will yield a sample size of 180 in each arm without displaying an 

error message. But if we choose qmin=0.03, then an error message with a recommendation 

(similar to the first example) will be displayed. If none of the recommendations are 

acceptable, the user will be prompted to consider RT(p1)=1.37, RT(p2)=2.92 while retaining 

p1=0.1, p2=0.9, qmin=0.03. This yields a sample size of 168 in each arm.
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3.7 Data Analysis after completion of trial

For data analysis to be consistent with the proposed method of sample size calculation, 

PROC LIFEREG in SAS can be used to fit data separately from both study arms by holding 

the shape parameters β0 and β1 constant. PROC LIFEREG will give estimates of θ0 and 

θ1 along with their corresponding standard errors. Then equation (5) can be used to obtain 

RT pmid  as a point estimate of RT(pmid). The delta method can be used to utilize the 

standard errors of θ0 and θ1 to obtain the standard error of RT pmid  and results can be 

reported with a 100(1−α)% confidence interval.

For analyzing data with the semi-parametric extended Cox model, PROC PHREG in SAS 

can be used to obtain γ0 and γ1 along with the corresponding standard errors. At any time t* 

of interest, the HR can be calculated as HR t* = exp γ0 + γ1 . ln t*  with the corresponding 

100(1−α)% confidence interval given by exp γ0 + γ1log t ± 1.645 ⋅ SE γ0 + γ1log t . See 

Section 4.3 for simulation results justifying data analysis using this Extended Cox model.

3.8 Sample size adjustments for extra covariates in the model

The sample size formula given in (23) assumes that the randomization process in an RCT 

balances out the effect of any additional covariates that could be associated with the time-to­

event endpoint. In case such extra covariates exist, extra adjustments to the sample size 

can be made using a variance inflation factor (VIF) adjustment proposed by Hsieh and 

Lavori (2000) in the context of a Cox model. Briefly, if the main covariate of interest 

(the study arm: standard control or new treatment) is denoted by X1 with X2,X3,…,Xk 

being the extra covariates and γ2,γ3,…,γk their corresponding regression coefficients in 

the Extended Cox model h1(t)=h0(t). exp{γ0X1+γ1X1.log (t)+γ2X2+γ3X3+…+γkXk, then 

if ρcov2  is the proportion of variance explained by the regression of X1 on X2,X3,…,Xk then 

the conditional variance of X1|X2,X3,…,Xk is smaller than the marginal variance of X1 by a 

factor of 1 − ρcov
2 −1

. Thus, to preserve power, we can use this VIF to calculate the adjusted 

sample size using the formula Nadjusted = Ntotal/ 1 − ρcov
2 . Thus, in the presence of extra 

covariates, the Extended Cox model can be used to analyze data from such a clinical trial.

4 Results

We now discuss the results emanating from the analytical calculations discussed in the 

previous section as well as from evaluating the performance of the proposed method using 

simulations.

4.1 Sample size comparison: Proposed method vs Lakatos method

Table 1 displays the sample size calculation comparing the proposed method to the 

popularly used Lakatos (piecewise linear survival) method for different settings. For all 

scenarios presented in this table, we have a one-sided test with α=0.05, target power ω=0.8, 

median survival in C arm = 4 months, r=1, a=12, f=12, ρ=0. The left panel in this table 

refers to the user-input of p1=0.1 and p2=0.9, the percentiles of survival time at which the 

longevity improvement factors RT(p1) and RT(p2) are defined. Likewise, the right panel in 
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this table refers to the user-input of p1=0.25 and p2=0.75. Within the first panel, there are 

two sub-panels representing two different scenarios: {i} RT(p1)=1.52, RT(p1)=1.98 implying 

gradual improvement in longevity over time in the E vs C arm. {ii} RT(p1)=2, RT(p2)=1.5 

implying gradual decline in longevity over time (from 100% to 50%) in the E vs C arm. 

Within the second panel, there are two sub-panels representing two different scenarios: {i} 

RT(p1)=1.5, RT(p1)=1.667 implying gradual improvement in longevity over time in the E vs 

C arm. {ii}RT(p1)=1.667, RT(p2)=1.5 implying gradual decline in longevity over time (from 

100% to 50%) in the E vs C arm. The left-most column has the user-input β0 values that 

are common to both panels (and sub-panels). The rows in this left-most column represent 

different scenarios from β0=0.25 (Weibull hazard decreasing over time in the C arm) to β0=2 

(Weibull hazard increasing over time in the C arm). The middle value of β0=1 refers to the 

exponential distribution with constant hazard. For each sub-panel mentioned above we have 

four columns.

The first two of these four columns represent:

i. Proposed Method – Calculated value of β1 given all other user-input values

ii. Proposed Method – Number of events / Sample size adjusted for administrative 

censoring

The last two of these four columns represent:

i. Lakatos Method – Number of intervals m used to define the piece-wise linear 

cut-points

ii. Lakatos Method – Number of events / Sample size adjusted for administrative 

censoring

From observing the results in the first main panel, we see that in the first sub-panel when 

RT(p1)=1.52 and RT(p2)=1.98, the sample sizes obtained by the two methods for the varying 

values of β0 are comparable. For the more extreme values of β0=0.25 and β0=2, the Lakatos 

method requires 12 intervals to get the same sample size as our proposed method. For all 

other values of β0 ranging from 0.5 to 1.5, the proposed method sample size is similar 

to that of the Lakatos method with 3 or 4 intervals. In the second sub-panel of the first 

main panel when RT(p1)=2 and RT(p1)=1.5, however, the proposed method yields a much 

smaller sample size than that obtained by the Lakatos method even with 12 intervals. This 

difference in sample size for the two-scenarios (see third row of first panel with β0=0.75) 

– {i}RT(p1)=1.52; RT(p1)=1.98 vs {ii} RT(p1)=2; RT(p2)=1.5 can be explained by recalling 

that although the Lakatos method can be used in the case of non-PH, it is based on using 

the logrank test statistic whose performance is optimal when the two survival curves have 

the relationship S1(t)=S0(t)ΔHR where ΔHR is the hazard ratio from a proportional hazards 

model. As noted by Lakatos and Lan (1992) the performance would vary based on the extent 

to which hazards between the two survival curves were non-proportional. If we discretize the 

time axis with total study time of 24 months into small intervals of length dt (dt could be 

taken as small as 0.1), then in the first case, we get an average HR of 0.642 whereas in the 

second case we get an average HR of 0.723. The difference in these values is the reason why 

we get drastically different sample sizes when using the Lakatos method. In fact, even using 

the more popular Schoenfeld formula we get total number of events 127 (approximately 64 
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in each arm) in the first scenario and total number of events as 234 (117 in each arm) in the 

second scenario. This matches the Lakatos answer (see Table 1) for m=6 intervals in the first 

scenario and m=3 intervals in the second scenario and hence should not be surprising. This 

reinforces the fact that sample size calculations are quite sensitive to the user inputted values 

and in the example explained above, a HR difference of 0.723 – 0.624 = 0.081 has almost 

doubled the number of events. On the other hand, the proposed method is based on RT(p) 

and uses knowledge of the estimated Weibull parameters to take into account the possibility 

of non-proportionality of hazards while calculate the number of events and sample size. 

In the case of PH assumption being true, the proposed method, Schoenfeld formula, and 

Lakatos method provide very similar answers.

A similar trend is observed in the second main panel, where in the first sub-panel with 

RT(p1)=1.5, RT(p2)=1.667, the two methods yield similar sample sizes when m = 3, 4, 

or 6. However, in the second sub-panel when considering RT(p1)=1.667, RT(p2)=1.5, the 

proposed method yields smaller sample sizes than Lakatos method highlighting its potential 

for use in real-world applications.

4.2 Simulation results for empirical vs nominal error and power

Table 2 displays the results pertaining to assessment of operation characteristics (empirical 

type I error, empirical power, average relative bias, mean square error, and coverage) from 

10,000 simulations for the user-inputs discussed in first paragraph of Section 4.1 with 

RT(p1)=1.52, RT(p1)=1.98 in the case of 1:1 randomization for the two study arms. Two 

other scenarios for allocation ratio (r=0.5, 2) are considered in the Supplementary material 

(Table 6 and 7). The first through fourth columns are similar to Table 1. The fifth and sixth 

column contain the values of empirical type I error and empirical power respectively. For 

all values of r, empirical power is close to the nominal value of 80% and never falls below 

78% even for small sample sizes. Likewise, the empirical type I error is close to the nominal 

value of 5% when r=0.5 and r=1. When r=2, we see slightly elevated empirical type I error 

in case of sample sizes smaller than 20. However, this is not a cause of concern as most 

two-arm RCTs will have sample sizes >= 20 (see comment in section 3.3 mentioning the 

need for approximately 25 events to justify asymptotic normality of the test statistic).

The seventh column displays the values of average relative bias (average of the simulations 

for the difference between the observed and actual value of the parameter of interest) 

calculated as

ARB = 1
10000 ∑

j = 1

10000
RT j 0.5 − RT 0.5 /RT 0.5 (24)

where RT j 0.5  is the estimate from the jth simulation under the alternate hypothesis. We see 

that for most scenarios the ARB is quite small and always below 5% (with a maximum of 

4.53%).

The second from last column displays the values of mean square error (MSE) – the average 

of the squared errors (difference between RT j 0.5  and RT(0.5)). For all scenarios in Table 
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2, the MSE is somewhat high. When the true value of RT(0.5) is 1.786, the MSE is 

approximately in the range of 0.19 – 0.20 and when the true value of RT(0.5) is 1.677, the 

MSE is approximately in the range of 0.13 – 0.136. One reason for these somewhat high 

MSEs is that to estimate RT(0.5), we need to fit two separate Weibull models with each 

of them contributing to the variability in the measurement thereby increasing the overall 

variability. Finally, the last column displays the percent coverage, that is, 100 times the 

proportion of 10,000 simulations whose 90% confidence interval around RT j 0.5  included 

the true value of RT(0.5)). In all scenarios of Table 2, we observe that the coverage is 

adequate with small fluctuations around the expected value of 90% (due to one-sided type I 

error of 5%).

4.3 Relationship between Proposed method and the Extended Cox model

The relationship between our proposed method (left panel) and the extended Cox model 

(right panel) can be best understood by studying the results displayed in Table 3. The first 

four columns in the left panel are the same as in Table 2. The fifth column in this panel 

displays the hazard ratio as a function of time and is evaluated at tavg = tmed, C + tmed, E /2, 

the average of the median survival time in the C and E arms. This average is calculated 

to allow us making comparisons with the extended Cox model on a common scale (in the 

metric of hazard instead of time).

The first column in the second panel displays the percent coverage when the HR is evaluated 

using (20) for the Extended Cox model along with its corresponding 90% confidence 

interval at tavg. We observe that for all scenarios the percent coverage is close to 90% and 

hence considered adequate. The second column in this panel consists of two lines of results. 

The first line displays the percent coverage for the logarithm of the hazard ratio at t = 

1 and can be calculated as 100 times the proportion of 10,000 simulations for which the 

confidence interval given by γ0 ± 1.645 . SE γ0  contains the true value of the HR at t = 1. 

Likewise, the second line displays the percent coverage for difference in the values of the 

shape parameters of the two study arms. This can be calculated as 100 times the proportion 

of 10,000 simulations for which the confidence interval given by γ1 ± 1.645 . SE γ1  contains 

the true value of β1−β0. We observe that in both cases, adequate coverage of around 90% is 

obtained. These results lead further credence to the justification that to account for random 

loss to follow-up or dropouts, we can simply inflate the sample size by the event rate. The 

advantage of this is that the relationship between the two methods will be preserved and it 

will be possible to analyze the RCT data in two different but equivalent ways. The proposed 

method will help a statistician draw inferences on the ‘RT(p) fold improvement in longevity 
in the E vs C arm’, and, the Extended Cox model will allow inference on the ‘HR (E vs 
C) as a function of time’. Together these two approaches will provide a comprehensive 

summary of the results and even provide guidance on meaningful effect size definition to 

other future or concurrent phase IV trials.

The last column contains the values of empirical type I error and empirical power when the 

Extended Cox model is used along with some of the user-input values to draw approximate 

inferences on RT(p). Though the inference on RT(p) is easily obtainable by using our 

proposed method and this step is not necessary, many researchers are accustomed to 
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interpretation from a Cox model. We therefore wish to investigate if after fitting an Extended 

Cox model, reliable inferences can be drawn about RT(p) without fitting two different 

Weibull models to the two study arms. To do so we first obtain γ0 and γ1 from fitting the 

Extended Cox model for each of the 10,000 simulated datasets. These estimates can be 

combined with the user-input values of β0 and the median survival time in C arm to obtain 

an approximate estimate of RT(p) using

RTapprox p = β0 + γ1 exp −γ0

β0 tmed, C
γ0

1/ β0 + γ1
(25)

From the values shown in this column we can see that the empirical type I error is somewhat 

inflated compared to the nominal value of 5% with highest inflations observed for scenarios 

with small sample sizes. Similarly, the empirical power is somewhat below 80% in most 

cases with small sample sizes resulting in most loss of power. Thus, these results indicate the 

need to analyze the data using the proposed method when drawing inferences on RT(p) and 

use the Extended Cox model only when drawing inferences on the HR as a function of time. 

Together, both approaches may provide a complete picture when analyzing data from such 

RCTs.

4.4 Assessing the robustness of the proposed method

To further assess the performance of our proposed method, we conducted additional 

simulations to:

{i} Evaluate differences in sample size when PH assumption is not valid but is incorrectly 

assumed to be true, and {ii} Evaluate the robustness of the proposed method when a study is 

designed using a piecewise exponential model.

The simulation results of the first assessment scenario are displayed in Table 4. The first 

three columns of this table display the design features of the proposed method - control 

arm shape parameter, effect size user input, and true HR calculated at the midpoint of the 

median time in the two arms. The third column allows us an important reference point 

tavg at which we can compare the calculations to methods that assume a constant HR. The 

fourth column displays the number of events and sample size obtained by using the proposed 

method when the PH assumption is not valid (as represented by the user entry of effect size 

in the third column). The fifth column displays the number of events and sample size if 

the Schoenfeld formula (Cox PH model) is used to do the calculations keeping the HR at 

as a constant (PH assumption). That is, if we assume that a researcher has a clear idea of 

how the treatment survival curve will look like compared to the control curve should the 

treatment be beneficial, then if the researcher were to assume the PH assumption to be valid, 

he/she would use the entries in column 3 as the effect size for planning a trial using the 

Schoenfeld formula. The results displayed in the fifth column clearly suggest that incorrectly 

using the Schoenfeld formula would either result in an underpowered (small sample sizes) 

or overpowered (unnecessarily large sample sizes) trial. As an example, in the first scenario 

when β0=0.25, the HR at tavg=5.573 is 0.8479 when RT(p1)=1.52 and RT(p2)=1.98 resulting 

Phadnis and Mayo Page 18

Biom J. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in a sample size of 751 with 455 events in each arm. Conversely, when RT(p1)=2 and 

RT(p2)=1.5 is used, then the HR at tavg=5.356 is 0.8984 resulting in a sample size of 1766 

with 1079 events in each arm. These calculations demonstrate how the sensitivity of the 

sample size calculations when we use the constant HR as a measure of the effect size when 

it would be inappropriate to do so. The last two columns in Table 4 show the empirical 

power under the alternate hypothesis for the proposed method compared to the Cox model 

when the interaction term from equation (22) is incorrectly ignored. While the empirical 

power is close to 80% for the proposed method in all scenarios, same cannot be said to 

be true for the Cox Model which expectedly yields empirical power that either exceeds the 

target power of 80%, or, falls short of the target power depending on the values of RT(p1) 

and RT(p2).

The simulation results displayed in Table 5 pertain to studying the robustness of the 

proposed method. To do so, we considered the situation where a statistician plans to 

design a two-arm trial using the piecewise exponential model. After consulting with his/her 

collaborators, the statistician decides to divide the time axis into 3 intervals and has 

information about the hazard in each arm (constant within an interval but changing across 

intervals). The hazard ratio under the alternate hypothesis is assumed to be 0.75, target 

power is 80%, and type I error is 5%. The first column in Table 5 represents the different 

situations in which the control arm hazard is decreasing over time, increasing over time, 

constant over time, bathtub shaped, or arc-shaped. The intervals are fixed at 2 months, 4 

month and 24 months (see second column). The third and fourth column give the values of 

the hazard in each interval h(t), and the cumulative hazard H(t) in each interval respectively. 

The fifth column displays the values of the point estimate of the HR and the empirical power 

using 10,000 simulations from the piecewise exponential model with number of events set at 

150 in each arm. Based on these values, the piecewise exponential model seems to be a good 

choice for designing the trial.

The sixth through tenth columns in Table 5 are useful for assessing how the proposed 

method works when we try to design a trial with the same information as mentioned in 

the above paragraph. To do so, we can plot H(t) from the fourth column versus log(time) 

to estimate the parameters of the Weibull using the well-known relationship specific to 

the Weibull: log{H(t)=−βlog (θ)+βlog (t)}. Thus, the control arm shape parameter β0 and 

scale parameter θ0 can be estimated and these estimates can be used to estimate the control 

arm median survival time tmed, C. Using the hazard ratio of 0.75, we can similarly obtain 

β1 = β0, θ1 and tmed, E. These in turn can be used to calculate RT(p1) which will be a 

constant (owing to the fact that we assumed a constant HR and a Weibull distribution) and 

hence can be calculated as tmed, E/ tmed, C. With these inputs, the proposed method can be 

used to calculate the number of events which turn out to be exactly 150 in all scenarios. 

These results indicate that when the HR assumption is true, then even if the individual 

median times in the two study arms are inaccurately estimated, the “relative time” ratio is 

consistent with the hazard ratio. That is the Weibull property γPH = − γAFT . β  where γPH
is the log-hazard ratio, γAFT  is the time ratio and β is the shape parameter comes into play. 

That is, the information contained in RT(p1)=2.6242 and β1 = β0 = 0.2982 is consistent with 
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the information contained in HR of 0.75. However, this does not imply that the proposed 

method should be indiscriminately used when the underlying assumptions supporting it are 

not valid. This aspect can be understood by studying the last column of Table 5. Suppose we 

assume that the piecewise exponential model is the true model and simulate time-to-event 

data using the design features represented in the first four columns of Table 5. Then the 

last column of Table 5 displays the average (of 10000 simulations) of the observed values 

of RT(0.5) and the corresponding empirical power. It can be seen that in some cases the 

empirical power falls short of the target power of 80% and in some other cases it exceeds it. 

To understand why this happens, we need to recall that the Weibull distribution can model 

hazards that increase over time from 0 to infinity or decrease over time from infinity to 0. If 

these aspects of the hazard shapes are not represented in the data, then the performance of 

methods based on the Weibull are likely to flounder. That is, while designing the trial even 

if the number of events were correctly calculated as 150, since the Weibull is not a good fit 

for the data, it should not be used to analyze the data. A simple Cox model will be a better 

choice to design the trial and analyze the data emerging from it.

5 Discussion

In our work we have proposed a new method of sample size calculation allowing for 

non-proportional hazards as well as non-proportional time for phase II and III RCTs. 

This is achieved by allowing the two study arms to be modeled by two separate Weibull 

distributions. That is, the main advantage of our method is that we are willing to consider 

the possibility that a newly proposed experimental treatment has the potential to not only 

change the location effect of a standard control but to also alter the shape of the hazard. 

Conceptually, this allows the flexibility to model many different real-life scenarios. This is 

because for a Weibull distribution, the parameter β controls the shape of the hazard function 

with β<1, β=1, β>1 implying hazard that is decreasing over time, constant, and increasing 

over time respectively. Thus, it is possible that a well-established standard control has a 

hazard that is constant over time, but a new treatment (such as surgery) increases the median 

survival by increasing θ and decreasing β below 1. This scenario is reflected in Figure 3a 

where the Weibull hazard of E arm starts with a theoretical infinity at time 0 and decreases 

over time. This situation is realistic because it is plausible that a new surgical intervention 

has a very high risk immediately after surgery but as the patients stabilize, the effect of 

surgery is to reduce the hazard over time thereby benefitting the patients. Likewise, Figure 

3b represents a scenario in which a standard control used for treating cancer patients offers 

only limited benefits in that with the progression of time, the cancer worsens leading to 

hazard that increases over time. A new breakthrough treatment may offer substantial benefit 

to the patients in that the hazard, though still high, may now become constant over time. 

Other possible scenarios are represented in Figure 3c and Figure 3d wherein the general 

shape of the hazard remains the same following a new treatment regimen compared to the 

standard control, but the change in slope is large enough for the treatment to be considered 

effective. Figures like these provide an opportunity to better understand how the hazard of 

the experimental treatment changes over time relative to the standard control and should be 

used while analyzing data from RCTs with a time-to-event endpoint. The proposed method 

offers an RCT design taking into account the possibility of non-proportional hazards while 
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analyzing the final data. Here it is important to note the distinction between crossing of 
hazard curves and crossing of survival curves. While our method allows crossing of hazards 

as shown in Figure 3, we do not allow any arbitrary crossing of survival curves. Our 

proposed method is motivated by effect size definitions of RT(p1)>1 and RT(p2)>1 provided 

by researchers who hypothesize improved benefit for E vs C at both p1 and p2. These four 

inputs p1,p2,RT(p1) and RT(p2) impose natural restrictions on where the two survival curves 

will cross as discussed in Section 3.6.

Another important advantage of our method is that it is based on a realistic and practical 

interpretation of effect size defined in the metric of time. For biomedical researchers 

investigating new treatments, the end goal is to demonstrate higher survival compared to 

that offered by existing treatments. Published results of RCTs through KM plots mention 

the median and IQR of time-to-event endpoints. Thus, when researchers hypothesize the 

new treatment to confer a survival benefit, the very first inclination is to state “by how 

many time units does the median survival change?”. While increase in median PFS works 

through reduction in hazard, from a practical standpoint it is easier to quantify improvement 

in longevity in the metric of time. This is especially true in the case of RCTs in oncology 

where patients with a not-so-good quality of life may be encouraged to participate in a trial 

if researchers can quantify and convey the hypothesized benefit in terms of how much longer 

they can survive. That is, telling potential participants that “median PFS is hypothesized 

to improve from 4 months to 6 months” is more understandable for patients than saying 

“hazard will be reduced by 33%”.

An interesting feature of our method is that it is not restricted to user entry for high values 

of p2. Thus, even in cases where making assumptions for ‘later’ time points is unrealistic, 

the method can be implemented. For example, in clinical trials where the median is not 

determinable as would be the case in rare diseases or trials with limited follow-up time, the 

proposed method can be used to provide convenient user inputs such as (say, for example), 

p1=0.05, p2=0.4 and in this case the sample size calculations can be conducted using 

pmid=(0.05+0.4)/2=0.225. In general, a statistician designing the trial can elicit information 

about p1 and p2 from their collaborator by asking the right questions about the hypothesized 

benefit of the treatment compared to the control. When using methods that define the 

effect size using a single measure such as a constant HR, or improvement in median, 

the implicit assumption is that this effect stays the same for the duration of the trial. In 

real-life situations, a collaborator may have an idea of how the treatment benefit changes 

over time but may not mention this to the statistician unless the statistician asks for it. That 

is, our method encourages the statistician to ask an important question to their collaborator 

before designing a trial – “Is the improvement in longevity (say median of 6 vs 4 months) 

consistent at all survival quantiles” – rather than assuming that “effect size defined at the 

median” is sufficient to design the trial. In this context, our method allows the statistician 

to take responsibility to ensure that the trial design better captures the hypothesized benefit 

of the treatment. Before finalizing the sample size calculations, a statistician can also check 

with their collaborator if the value of RT(pmid) calculated at pmid is a good representation of 

the treatment benefit at the midpoint of p1 and p2.
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One limitation of our method is that it is dependent on the Weibull assumption. While being 

more flexible than the exponential distribution in terms of modeling the hazard shape, it has 

the limitation that at time 0, hazard starts from 0 or from ∞ and this may always not be 

true. More research is needed in this direction to accommodate other distributions to allow 

for even more flexibility in the hazard shapes. On the other hand, the Lakatos method is 

more generalizable and is based on state transition probabilities using a Markov assumption 

and can incorporate different weights as well as account for non-compliance in a RCT. Still, 

when reliable information is available about the Weibull shape parameter of the standard 

control arm from prior studies, in some cases, our proposed method yields smaller sample 

sizes than the Lakatos method. Additionally, the Schoenfeld formula can be considered as 

only a special case of our method and this insight should be taken into consideration by 

practicing statisticians while designing a RCT. A second minor limitation of our method is 

its reliance on asymptotic normality of the test statistic. However, given that most two-arm 

phase II and phase III RCTs are at least moderate sized, this is not a serious limitation. 

Another minor limitation is that estimate of β0 may be mis-specified when it is estimated 

from a previous study (see Section 3.1). However, as described in Section 3.1, if the previous 

study had 50 subjects with up to 40% censoring, then even if this estimate is obtained from 

three survival quantiles (say 25th, 50th, 75th percentile), the estimate will be within 10% 

of the true beta. Since for a Weibull distribution (see Table 1) sample size increases as β0 

decreases, a statistician who wishes to err on the side of being conservative to prevent a 

somewhat underpowered study can simply multiply this estimate by 0.9 when using our 

method to perform the sample size calculations. Overall, we recommend that input for β0 

should be obtained from historical sources and if such historical information is not available, 

a last choice would be to assume β0=1 indicating that survival times in the C arm come from 

the exponential distribution.

Our proposed method of sample size calculation offers additional insights to statisticians 

analyzing time-to-event outcomes in RCTs in that the recommended method of analysis 

using two separate Weibull fits is consistent with analyzing the data as an extended Cox 

model (with interaction between study arm and logarithm of time). Thus, the final data can 

be analyzed using a non-constant time ratio as well as a non-constant hazard ratio. Our 

proposed method should be seen as complementing the existing methods of sample size 

calculation. When the Weibull assumption is correct it offers a practical easy-to-implement 

method for sample size calculation. We hope that statisticians will find it a useful addition to 

their arsenal when designing RCTs with time-to-event endpoints. A direct future extension 

to this area of research will be the construction of more complex sequential and adaptive 

designs with its operation characteristics validated comprehensively with simulations.
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Acknowledgements

This study was supported by a NIH Clinical and Translational Science Award grant (UL1 TR002366) awarded to 
the University of Kansas Medical Center.

Phadnis and Mayo Page 22

Biom J. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix

A.1 Derivation of test statistic

Let tj for j=1,2,3,…d be i.i.d random variables that follow Weilbull distribution with scale 

parameter θ and shape parameter β. That is tj~ Weibullθ,β with θ,β>0

Then tjβ~Exponentialθ(β) leads to 1
d ∑j = 1

d tjβ Gamma d, θβ
d .

Therefore, θ = 1
d ∑j = 1

d tjβ 1/β
Generalized Gamma d , θ

d1/β , β

A.2 Basics of the generalized gamma distribution

The generalized gamma (GG) distribution (see Stacy and Mihram (1965)) is a three­

parameter family of distributions with a probability density function:

f t = β
Γ k . θ

t
θ

kβ − 1
exp − t/θ β (26)

where β>0 and k> are the shape parameters, θ>0 is the scale parameter and Γ(k) is the 

gamma function defined as Γ k = ∫
0

∞
xk − 1e−xdx.

For model fitting purposes a re-parametrization GG(μ,σ,λ) is used to avoid convergence 

problems using location parameter μ, scale parameter σ and shape parameter λ that 

generalizes the two-parameter gamma distribution. The density function is given by:

fGG t = λ
σtΓ λ−2 λ−2 exp −μ t λ/σ λ−2

exp −λ−2 exp −μ t λ/σ
(27)

where σ>0, μ∈(−∞,∞), λ∈(−∞,∞), Γ x = ∫
0

∞
mx − 1e−m dm is gamma function of x.

The parameters of (24) and (25) are related in the following way:

μ = ln θ + 1
β ln λ−2

σ = 1
β k

λ = 1
k = βσ

(28)

A complete taxonomy of the various hazard functions for the GG family is explained in 

Cox et al. (2007). Briefly, the GG family allows the flexibility of modeling different hazard 

shapes such as increasing from 0 to ∞ or from a constant to ∞, decreasing from ∞ to 0, 

or from ∞ to a constant, arc shaped hazards, and bathtub shaped hazards. Special cases 
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of the GG family are {i} two parameter gamma: λ=σ {ii} standard gamma (μ=0;σ=1) 

for fixed values of λ {iii} Weibull: λ=1 {iv} exponential: λ=σ=1 {v} lognormal: λ=0 

{vi} inverse Weibull: λ=−1 {vii} inverse gamma: λ=−σ {viii} ammag: λ=1/σ {ix} inverse 

ammag: λ=−1/σ and {x} lognormal distribution with σ’=1.82σ approximates the loglogistic 

distribution.

A.3 The Relative Time RT(p) framework and reasons motivating the 

proposed method

The 3-parameter GG distribution can be used to analyze large observational study datasets 

as shown in Cox et al. (2007). The most general case is when survival times in both study 

arms are assumed to follow two separate GG(μ,σ,λ) distributions. As discussed in Cox et al. 

(2007), this requires very large datasets for conducting the statistical analysis. Many special 

cases such as same λ but different μ,σ for the two study arms run into similar issues.

Our proposed method based on fixing λ=1 allows the survival times in the two study arms 

to follow two different Weibull distributions. It allows us to design a two-arm clinical trial 

achieving the following objectives:

1. Both non-PH and non-PT assumptions are simultaneously true.

2. Trial should not yield extremely large sample sizes making it unrealistic to adopt 

in practice.

3. Knowledge of extra parameters required for sample size calculation for the 

Phase III trial should be achievable through practical means such as looking into 

previously conducted phase II trials. There should be some mechanism through 

which these extra parameters (β0 and β1) can be estimated with some acceptable 

level of accuracy. See Phadnis et al. (2020) that discuss this issue.

4. The special cases on the method based on RT(p) such as {i} PH but not PT {ii} 

PT but not PH {iii} Both PH and PT – should yield sample sizes that are similar 

to those yielded by already known methods such as Schoenfeld formula for Cox 

Model and Logrank methods that assume exponential distribution, They should 

also be comparable to the piecewise linear Lakatos method and the piecewise 

exponential model.

Following Venn diagram illustrates where the proposed method fits in the RT(p) framework.
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Note: The area of rectangles in the diagram do not mean anything, it is just a representation 

of partitions shown in the Venn diagram.

A + C + D + E + F + G + H = The most general Relative Time RT(p) scenario.

B + C + E = Proportional Hazards models

D + C + E = Accelerated Failure Time (AFT) models also called Proportional Time models 

by Cox et al. (2007) from the Generalized Gamma distribution (with both study arms having 

the same shape parameters)

F = Accelerated Failure Time (AFT) models also called Proportional Time models from 

distributions other than Generalized Gamma.

C + E = Weibull model with common shape parameter for both study arms. This property of 

satisfying both PH and AFT assumption is specific to the Weibull.

E = Exponential model (special case of Weibull with shape parameter beta fixed at 1)

B = PH models in which baseline hazard does not come from the Weibull distribution.

D = Accelerated Failure Time (AFT) models also called Proportional Time models by Cox 

et al. (2007) from the Generalized Gamma distribution with both study arms having the 

same shape parameters) but not including the Weibull.

G + H = non-PH, non-PT models from the Generalized Gamma distribution when shape 

parameters are different for the two study arms.
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G = non-PH, non-PT models from the Weibull when shape parameters are different for the 

two study arms. Thus, G is a subset of G + H.

In this framework, our proposed method for sample size calculation is for the C + E + G 

section of the diagram. Thus, it covers the following situations:

i. G = Non-PH, non-AFT based on Relative Time with two separate Weibull 

distributions for the two study arms.

ii. C + E = When the shape parameters of the two Weibull distributions are same, 

we get a model that satisfies both PH and PT property.

iii. E = Special case of {ii} above with shape parameter fixed at 1 i.e. the 

exponential distribution.

In writing this manuscript, we hope that statisticians designing a trial will have an extra 

option to handle the B (not-B) scenario when they are comfortable with assumptions that fall 

under the partition represented by G.
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Figure 1. 
Scenario #1 with effect size defined as RT(0.1) = 1.5 and RT(0.9) = 2.
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Figure 2. 
Scenario #1 with effect size defined as RT(0.1) = 2 and RT(0.9) = 1.5.
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Figure 3. 
Hazard vs time for Control arm (solid) and Treatment arm (dashed) – four different cases.
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