Table 5.
Scenario | Piecewise Exponential Model | Proposed Method (Parameter estimates based on plotting H(t) vs log(t) for Control arm) | Proposed Method (10000 Simulations) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Interval | Hazard in each interval | Cumulative hazard at interval midpoint | and Empirical power when using 150 events in each arm (10000 simulations) | Shape (due to PH) | Control Arm scale | Control arm median | Treatment Arm scale | Treatment arm median | Number of Events* | and Empirical power (when using 150 events in each arm – data from PE model) | ||
Decreasing hazard | 0 – 2 | 0.70 | 0.70 | 0.7549; 77.23% | 0.2982 | 1.9328 | 0.5655 | 5.0720 | 1.4839 | 2.6242 | 150 | 2.1416; 82.56% |
2 – 4 | 0.10 | 1.50 | ||||||||||
4 – 24 | 0.001 | 1.61 | ||||||||||
Decreasing hazard | 0 – 2 | 0.90 | 0.90 | 0.7535; 81.38% | 0.4913 | 0.9839 | 0.4666 | 1.7670 | 0.8380 | 1.7959 | 150 | 1.7049; 87.17% |
2 – 4 | 0.30 | 2.10 | ||||||||||
4 – 24 | 0.10 | 3.40 | ||||||||||
Decreasing hazard | 0 – 2 | 0.30 | 0.30 | 0.7536; 79.89% | 0.7486 | 4.6197 | 2.8313 | 6.7845 | 4.1580 | 1.4686 | 150 | 1.4952; 81.84% |
2 – 4 | 0.20 | 0.80 | ||||||||||
4 – 24 | 0.12 | 2.20 | ||||||||||
Constant hazard | 0 – 2 | 0.20 | 0.20 | 0.7535; 80.10% | 1.000 | 5.000 | 3.4656 | 6.6665 | 4.6209 | 1.3333 | 150 | 1.3441; 80.55% |
2 – 4 | 0.20 | 0.60 | ||||||||||
4 – 24 | 0.20 | 2.80 | ||||||||||
Increasing hazard | 0 – 2 | 0.50 | 0.50 | 0.7548; 79.68% | 1.2487 | 1.8528 | 1.3816 | 2.3329 | 1.7395 | 1.2591 | 150 | 1.2625; 74.58% |
2 – 4 | 0.60 | 1.60 | ||||||||||
4 – 24 | 1.10 | 13.2 | ||||||||||
Increasing hazard | 0 – 2 | 0.20 | 0.20 | 0.7548; 79.68% | 1.5133 | 2.8068 | 2.2031 | 3.3945 | 2.6644 | 1.2094 | 150 | 1.1882; 77.98% |
2 – 4 | 0.80 | 1.20 | ||||||||||
4 – 24 | 0.90 | 11.0 | ||||||||||
Increasing hazard | 0 – 2 | 0.10 | 0.10 | 0.7548; 79.68% | 1.7500 | 3.9817 | 3.2293 | 4.6929 | 3.8062 | 1.1787 | 150 | 1.1454; 75.78% |
2 – 4 | 0.30 | 0.50 | ||||||||||
4 – 24 | 0.90 | 9.80 | ||||||||||
Hazard decreases constant | 0 – 2 | 0.80 | 0.80 | 0.7538; 80.05% | 0.5407 | 1.3285 | 0.6745 | 2.2618 | 1.1483 | 1.7024 | 150 | 1.6546; 85.10% |
2 – 4 | 0.15 | 1.75 | ||||||||||
4 – 24 | 0.15 | 3.40 | ||||||||||
Bathtub shaped hazard | 0 – 2 | 0.80 | 0.80 | 0.7528; 80.15% | 0.7536 | 1.3943 | 0.8573 | 2.0425 | 1.2559 | 1.4648 | 150 | 1.4827; 82.86% |
2 – 4 | 0.10 | 1.70 | ||||||||||
4 – 24 | 0.40 | 5.80 | ||||||||||
Arc shaped hazard | 0 – 2 | 0.10 | 0.10 | 0.7540; 79.62% | 1.2730 | 5.4465 | 4.0839 | 6.8276 | 5.1195 | 1.2536 | 150 | 1.3135; 83.54% |
2 – 4 | 0.40 | 0.60 | ||||||||||
4 – 24 | 0.20 | 3.00 | ||||||||||
Arc shaped hazard | 0 – 2 | 0.10 | 0.10 | 0.7528; 80.22% | 1.4379 | 4.1210 | 3.1938 | 5.0335 | 3.9009 | 1.2215 | 150 | 1.2871; 86.51% |
2 – 4 | 0.80 | 1.00 | ||||||||||
4 – 24 | 0.30 | 4.80 |
Sample size for proposed method is exactly same as that obtained by Schoenfeld formula with HR = 0.75 as in each scenario the Weibull property of . β is satisfied where is the log-hazard ratio, is the time ratio and β is the shape parameter corresponding to a Weibull model. Target power for all scenarios in the table is 80%. Type I error is 5% for one-sided test.