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Abstract

As the focus of implantable biomaterials has shifted from bioinert implants to bioactive designs, 

recent research has highlighted the complex interactions between cell physiologic systems and 

material properties, particularly physical cues. From the cells known to interact with implanted 

biomaterials, the response of the immune system has been a critical target of study recently. Here, 

we review studies characterizing the response of innate immune cells to various material cues, 

particularly of those at the surface of implanted materials.

The innate immune system consists of cell types with various roles in inflammation. Neutrophils 

and macrophages serve both phagocytic and signaling roles, especially early in the inflammatory 

phase of biomaterial implantation. These cell types ultimately dictate the outcome of implants 

as chronic inflammation, fibrosis, or integration. Other cell types like dendritic cells, mast cells, 

natural killer cells, and innate lymphoid cells, may also serve an immunomodulatory role in the 

biomaterial context. This review highlights recent advances in our understanding of the role of 

innate immunity in the response to implantable biomaterials as well as key mechanobiological 

findings in innate immune cells underpinning these advances.
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1. Introduction

Early in the use of biomaterials, biological inertness was thought to be ideal for implants, 

and bioinert materials were sought for applications ranging from artificial organs to dental 

implants to contact lenses. While bioinert materials did not elicit an adverse response 

after implantation, there was also limited to no regeneration of parenchymal tissue after 

implantation. In certain tissues, particularly load-bearing tissues like bone, a lack of 

regeneration limited implant success. In bony tissues, true success was first found with the 

development of titanium (Ti) implants [1]. In the 1950’s, Ti was found to fuse completely 

with surrounding bone, and osteoconductivity was thereafter established as a key component 

of a “good” bone-dwelling implant [2]. Later, roughening the surface of Ti implants in 

dental applications was found to enhance bone growth around the implant, indicating that 

bone growth could be directed by physical implant cues [3]. Thus, the aim of biomaterials 

research shifted from bioinert to bioactive implants, focusing on two important questions: 

which material properties give rise to bioactivity, and which biological systems mediated the 

favorable response to these materials?

Like wound healing, the response to implanted materials occurs in four phases: hemostatic, 

inflammatory, proliferative, and finally the remodeling phase [4,5]. The shift from the 

inflammatory phase to the proliferative phase has been heavily explored in various tissue 

models, and failed transition at this point most often leads to failed healing, characterized 

by fibrous encapsulation instead of tissue regeneration. During this transition, immune 

cells such as macrophages and neutrophils orchestrate effective healing by altering their 

phenotype and recruiting cells that will follow in the proliferative phase. [4,6]. This critical 

transition in wound healing following biomaterial implantation has been probed, and tunable 

biomaterial properties have been identified that promote transition to later phases of the 

healing process.

In this review, we will highlight the role of physicochemical biomaterial properties on 

the early innate immune response in the absence of exogenous drugs, small molecules, or 

biologicals. We will focus on non-degradable biomaterials FDA-approved for implantation 

since the particles produced by material wear or degradation cause inflammatory events 

independent of chemical or physical cues and this is not usually an early event following 

biomaterial implantation. We will summarize the role of key innate immune cell types in the 

response to implanted biomaterials (summarized in Table 1) and examine recent advances in 

understanding of the role of material properties in modulating the immune response.

2. Implantation and tissue injury

Biomaterial implantation results in tissue injury during the surgical procedure to placeit. 

Following this initial insult, wound healing begins with the onset of hemostasis. Coagulation 

proteins, platelets, complement, and other soluble serum and blood proteins adsorb onto 

the surface of implanted biomaterials within seconds after implantation (Figure 1). Due 

to the diverse range of physical and chemical properties of implanted biomaterials, the 

initial interactions between biological tissues and biomaterials are not fully understood. The 

molecules and proteins immediately adsorbed onto the surface of biomaterials vary in type, 
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quantity, and conformation because of the physical and chemical material properties [7–9]. 

These adsorbed components provide recognition sites for platelets and cells to interact with 

the biomaterial, since cells have a limited capacity to adhere directly to a non-proteinaceous 

material [10].

Following homeostasis, the inflammatory phase, predominated first by neutrophils and 

then by macrophages, begins. Danger signals activate neutrophils and macrophages at 

the implantation site [11–13]. These signals are classified into two categories: pathogen­

associated molecular patterns (PAMPs) originating from microbial molecules or damage­

associated molecular patterns (DAMPs) created during biomaterial implantation. DAMPs 

can be intracellular molecules that are released into the extracellular compartment upon cell 

death like high mobility group box 1, myosin heavy chain, S100 proteins, nucleic acids, 

and ATP [14], or from extracellular matrix (ECM) fragmentation during the injury, exposing 

hidden molecular patterns [15,16].

The tissue damaged cause by instrumenting a biomaterial in the body, protein adsorption on 

the biomaterial surface including the activation of the complement system, and the physical 

cues such architecture and stiffness activate innate immune cells and dictate the fate of 

the newly implanted biomaterial. Here we will focus on early events in the innate immune 

response to biomaterial implantation.

3. Complement System

The complement system consists of more than 50 proteins distributed in the circulation and 

it is an integral part of the innate immunity for host defense against endogenous danger 

molecules and invading pathogens [17]. The complement system is activated immediately 

after contact with PAMPs and DAMPs, leading to a cascade of protease-based cleavage and 

activation [18]. Complement activation leads to generation of chemoattractant molecules that 

recruit and activate other innate immune cells, amplifying the inflammatory response [19]. 

Complement activation can occur through three main pathways: classical, alternative, or 

lectin pathways [19]. The activation of these pathways has been described elsewhere [19,20]. 

Common to all activation pathways is the generation of C3 convertase, which cleaves 

C3 into C3a and C3b (19). C3a acts directly as a pro-inflammatory molecule, recruiting 

and activating other innate immune cells like neutrophils and macrophages [19]. C3b can 

function as an opsonin to bind pathogens and induce their phagocytosis, but is also a 

building block of the alternative pathway C3 and C5 convertases [19]. C5 convertase cleaves 

C5 generating C5a and C5b, two important complement mediators, which can act directly 

as a pro-inflammatory mediator, in the case of C5a, inducing chemoattraction of other 

immune cells and activating them through its receptor C5aR1 and C5aR2 [19,20]. C5b is 

an important subunit of the terminal complement complex, which is assembled sequentially 

from C5b, C6, C7, C8, and several C9 molecules [19]. This multi-molecule complex is a 

membrane pore-forming structure with lytic activity known as a membrane attack complex 

[21]. While most complement proteins generate in the liver, several extrahepatic cells, 

including fibroblasts, endothelial cells, and immune cells, can also generate complement 

components locally in their resident tissues [20].
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3.1 Complement System and Biomaterials

Biomaterial interaction with blood leads to the adsorption of proteins onto the biomaterial 

surface. Protein-biomaterial interactions can lead to conformational changes in the adsorbed 

proteins that can expose hidden domains or epitopes that can trigger complement activation 

[22]. C3 binds to the newly adsorbed protein layer and can initiate the alternative pathway 

convertase [23]. Products of the cleavage of C3 at the biomaterial surface can also bind 

directly to proteins adsorbed onto the biomaterial surface and amplify the inflammatory 

signal [24]. In addition, products of the complement function as chemoattractants for other 

immune cells like neutrophils, macrophages, and monocytes through C3aR and C5aR 

receptors [19]. Although complement molecules adsorb onto the surface of biomaterials, 

most studies have focused on how biomaterial chemistry affects complement adsorption. 

Slight changes in the chemical composition of polymers can affect complement adsorption. 

In one study, incorporating methacrylic acid to methyl methacrylate (MMA) increased 

complement molecules adsorbed (C1q, C4a) from plasma when compared to polymethyl 

methacrylate (PMMA), but PMMA adsorbed more C3 [25]. Interestingly, MMA had less 

complement activation when exposed to serum than PMMA. While the study did not 

compare effects of surface roughness or surface energy using the same polymer, the authors 

point out that MMA beads were rougher, which increased the surface area for proteins to 

be adsorbed, and had a higher charge due to the methacrylic acid [25]. Several strategies 

have applied to biomaterials to modify the protein-biomaterial interaction and the cellular 

response. Polyethylene glycol (PEG) functionalization is commonly used to prevent protein 

adsorption. However, PEG-coated surfaces are still able to activate the complement system 

and increase the inflammatory response [26, 27,28]. Similar effects are seen with polyvinyl 

alcohol and dextran functionalization where complement activation occurred through the 

reaction of the C3b with the hydroxyl groups on the biomaterial surface [29]. Another study 

correlated a slightly positive zeta potential with increased complement protein adsorption 

while negative zeta potential materials showed lower adsorption of the same complement 

proteins [30]. Hydrophilicity or hydrophobicity of biomaterials can also affect complement 

activation. Hydrophilic and hydrophobic silicon substrates were assessed in their ability to 

adsorb C3 molecules. C3 adsorbed in higher amounts onto hydrophobic silicon and suffered 

conformational changes exposing antigenic epitopes in comparison to the hydrophilic 

silicon [31]. However, other studies exploring the activation of the complement system 

on Ti did not find any difference in complement activation between hydrophobic and 

hydrophilic modifications on Ti substrates. The same study showed similar levels of C3a 

when comparing rough microstructured Ti surfaces to smooth surfaces [32], despite the 

fact increased surface area results in an increase in protein adsorption. Surface properties 

like surface chemistry, area, and energy affect protein adsorption, including complement, 

less is known about how the complement system is activated at the biomaterial surface. 

Immune cells have the ability and perhaps play a significant role in complement activation, 

and activation of other immune cells by molecules of the complement system usually 

results in production of more complement molecules producing a positive feedback loop that 

chemoattract and activate other immune cells [29,31,33].
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4. Neutrophils

Neutrophils are mobilized to the biomaterial during the initial hemorrhage following 

implantation, and are abundant during hemostasis and the early inflammatory stage [34,35]. 

Neutrophils are key in recruiting macrophages and other immune cells to the injury site but 

have not been well studied in healing and regeneration. They are the predominant immune 

cell type in human blood, and low neutrophil level has often fatal consequences in response 

to infectious agents [36]. In addition, neutrophil activity is also associated with worsening 

disease outcome, particularly in pulmonary diseases like emphysema where neutrophil 

elastase damages the elastic properties of lung tissue [37–40]. Neutrophils play complex, 

multifaceted roles in classical inflammation through cytokine and chemokine production, 

phagocytic activity, myeloperoxidase (MPO) and elastase secretion, and generation of 

reactive oxygen species (ROS) [41–43].

Neutrophils express several receptors that are used to recognize soluble inflammatory 

mediators, from active biolipids to cytokines [44–46]. This first interaction with 

inflammatory mediators primes their response by which neutrophils switch to a pre-activated 

state [47–49]. These signals recruit and activate neutrophils through toll like receptor 

(TLR)/NF-κB [50], ATP-mediated activation of the NLRP3 inflammasome [51], receptor for 

advanced glycation end products (RAGE) [52,53], CXCL8 [54–56], and leukotriene B4 [57–

59]. The priming response, mediated by upregulation of adhesion molecules and inside-out 

activation of integrins [60,61], is critical for neutrophils to transmigrate the endothelium and 

mobilize to the injury site [48,49].

4.1 Neutrophil Phenotypes

The first studies demonstrating that neutrophils may be a heterogenous cell population 

came from cancer, identifying subsets of tumor-associated neutrophils in mice [62]. 

Neutrophils exhibit distinct phenotypes along a spectrum from pro- to anti-inflammatory, 

although these phenotypes are not as well-characterized as those of macrophages. There 

is evidence that the cells’ lifespans depend on their phenotype, as early neutrophils are 

of pro-inflammatory phenotypes and are short-lived, while later neutrophils are more of 

anti-inflammatory phenotypes and persist up to 3 days [63,64]. These phenotypes were 

first explored in tumor immunology where it was found that pro-inflammatory neutrophils 

perform more cytotoxic, tumor-rejecting roles, while anti-inflammatory neutrophils perform 

angiogenic, immuno-suppressive roles and enabling invasive behavior of the tumor [65]. 

Pro-inflammatory neutrophils, designated N1, produce high levels of tumor necrosis factor 

(TNF) alpha, CCL3, CXCL9, and CXCL10, facilitating recruitment of T-cells. In the context 

of cancer, N2 neutrophils produce hepatocyte growth factor (HGF), oncostatin M, and 

matrix metalloproteinases [65].

Interestingly, neutrophils exhibit swarming behavior in the response to inflammatory cues 

and produce specialized DNA-based neutrophil extracellular traps (NETs) [66,67]. NETs 

are enzyme-adorned DNA structures initiated by the action of peptidyl arginine deiminase 

4 on histones and serve to capture bacteria in non-sterile inflammation as well as to 

mediate thrombogenic sequelae of various diseases in sterile inflammation [68–74]. In turn, 
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neutrophils recruit macrophages through CXCL1-3, IL-1β, TNF-α, and MPO-generated 

ROS [13,42,75].

4.2 Neutrophil response to Biomaterials

While neutrophils are well studied in classic and cancer immunology, less is known 

about their role in healing in the biomaterial context. Nevertheless, it has been shown 

that biomaterial surface properties can modulate activation of neutrophils. Abaricia et 

al. shown that neutrophils respond differentially to changes in surface roughness and 

wettability (hydrophilicity) of Ti implant surfaces; on smooth or rough hydrophobic 

surfaces, neutrophils secrete higher levels of pro-inflammatory cytokines and enzymes 

while also undergoing enhanced NET formation (NETosis) compared to those on rough­

hydrophilic surfaces [76]. This disparity was also associated with subsequently decreased 

macrophage inflammatory activation in co-culture, particularly when NET formation 

was inhibited pharmacologically. These results in clinically relevant implant materials 

corroborate earlier findings that hydrophilicity significantly decreases pro-inflammatory 

activation of leukocytes compared to hydrophobic, cationic, or anionic surfaces [77–81]. 

Roughness also affects neutrophil behavior in response to polymers. Regions of rough 

expanded polytetrafluoroethylene and Dacron on polymeric cardiovascular implants were 

found to induce more neutrophil death and ROS generation compared to smooth regions 

[82]. A similar effect was seen on polymeric electrospun scaffolds, where small-diameter 

(~0.3μm) fibers—perceived as rougher on a cellular level—produced an enhanced NETotic 

response compared to large-diameter (~1.9μm) fibers [82]. These results highlight that 

neutrophils are sensitive to changes in physical and chemical properties of biomaterials and 

that this response can affect the subsequent chemotaxis and macrophage activation in vivo 
and clinical settings. In addition to surface topography and wettability, stiffness has also 

been shown to modulate neutrophil activation. In one recent study, neutrophil migration 

speed was decreased on stiff (100 kPa) polyacrylamide (PAA) hydrogel compared to soft (5 

kPa); this study and others have also demonstrated enhanced neutrophil spreading on stiff 

hydrogels, suggesting that NETosis is also regulated by stiffness [83].

Despite their underappreciated role in the immune response to biomaterials, neutrophils 

are important mediators of the initial inflammatory response to implant placement. Future 

work should examine the signaling pathways mediating these responses, drawing on likely 

analogues with pathologic inflammation studies as well as elucidating role of NETosis in 

modulating the inflammatory response at the biomaterial-tissue interface to enhance the 

success of biomaterial implants.

5. Macrophages

Macrophages are the most studied immune cells in respect to the immunological response to 

biomaterials. They are either present in the surrounding tissue (tissue-resident macrophages) 

when the biomaterial is implanted or are recruited to the injury site by neutrophils. 

Macrophage activation and phenotype can be altered by biomaterial physicochemical 

characteristics such as surface topography, wettability, and stiffness [77–80]. However, 

most of the body of work in these topics have contradictory findings, suggesting that 
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while macrophages are sensitive to these parameters, the resulting macrophage activation 

and phenotype are due to both the physicochemical factors of the biomaterial as well as 

biological factors in the recipient tissue [84,85]. Here we will discuss the physicochemical 

factors, in absence of PAMPs, controlling macrophage phenotype and inflammatory 

microenvironment.

Macrophages and their precursors (monocytes) are innate immune cells long known to 

orchestrate both inflammatory responses and tissue dynamics involved in the recognition, 

phagocytosis, and elimination of pathogens. Macrophages are highly phenotypically 

heterogeneous but are broadly classified as M1 or M2 macrophages [86]. M1, or 

classically activated macrophages, are traditionally associated with a pro-inflammatory 

response induced by IFNγ, lipopolysaccharides (LPS), and TNF-α [86,87]. When 

stimulated, M1 macrophages secrete high-levels of pro-inflammatory cytokines like IL-1α, 

IL-1β, IL-6, IL-12, and IL-23 [88–91]. M2 macrophages are associated with an anti­

inflammatory, pro-regenerative phenotype, mainly due to the high production of IL-10, 

matrix metalloproteinases, and growth factors such as VEGF [86,87,92,93]. While the 

M1/M2 paradigm has been useful to exemplify two extreme phenotypes for in vitro 

studies, the macrophage phenotype exists along a continuum of activated states [86,94]. 

For example, macrophages treated with LPS have reduced phagocytic capacity compared 

to macrophages treated with IFNγ but both increase the production of pro-inflammatory 

mediators [95]. M2 activation has different subset populations (M2a, M2b, M2c, M2d, M2f) 

based on the induction protocol, cytokine and growth factor secretion, and surface markers 

present [96]. This demonstrates the complexity of macrophage activation in vivo that cannot 

be replicated in vitro.

5.1 Macrophage Ontology

The prevailing dogma was that macrophages in tissues were constantly replenished by 

circulating monocytes originated from bone marrow; however, early evidence of locally 

long-lived macrophage proliferation in tissues laid the work to revise the mononuclear 

phagocyte system [97,98]. Cre-lox-based inducible fate-mapping models using Runx1 and 

Cx3Cr1 showed that macrophage populations originated from the early yolk sack before 

the appearance of hematopoietic stem cells [99,100]. Successive studies demonstrated that 

embryonically derived macrophages arise from distinctive and successive waves of early 

yolk sac macrophages, fetal liver monocytes, and bone marrow derived monocytes; in that 

regard, adult tissues in homeostasis contain a mosaic of these three ontogenetically distinct 

populations [101].

Embryonic origin, local microenvironment, inflammatory status, and time of residency in 

the tissue modifies the cellular and biological response to stimuli [97,102,103], which 

can explain the heterogeneity and sometimes contradictory results seen when comparing 

macrophage response to biomaterials implanted in different tissues. However, the distinct 

response of these macrophage subsets to biomaterials is not well studied. Several wound 

healing studies demonstrate that macrophages from different origins have distinct roles 

during the healing process and suggest the possibility that similar effects can be observed 

with implanted biomaterials into those tissues [89,91,104–106]. While most studies have 
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shown that the majority of macrophages at the injury site are bone marrow derived, 

these macrophages are activated through TLRs [107]. Studies in skin have proposed 

that tissue-resident macrophages serve extremely early roles in wound healing, first 

responding to DAMPs produced by injury by secreting hydrogen peroxide, which triggers 

the inflammatory cascade [108]. Another study showed that long-term tissue resident 

macrophages predominantly exhibit an alternate activation state in a model of skin would 

healing, whereas bone marrow derived macrophages contribute to both, early and late stages 

of wound healing and show classical and alternative activation states [109]. In other studies, 

monocyte-derived macrophages accumulate under injury conditions in the liver and function 

as the primary determinants of injury outcome [110–112]. Thus, the importance of these 

subsets on biomaterial responses, especially considering their unique importance to aspects 

of healing, remains an open area of study.

5.2 Macrophage Activation

Following triggering of the inflammatory cascade, circulating monocytes begin extravasation 

into the injury or implant site. The recruitment of monocytes and subsequent exposure 

to DAMPs and PAMPs in the injury site induces a pro-inflammatory phenotype of this 

macrophage population, which serves to debride dead tissue, kill pathogens, and recruit 

both innate and adaptive immune cells. Key markers of pro-inflammatory macrophage 

phenotypes include enhanced production of surface CD80 (B7-1), CD86 (B7-2), and TLR-4, 

as well as increased gene expression or production of inducible nitric oxide synthase 

(iNOS), IL-1β, IFNγ, TNF-α, IL-6, IL-12p40, and chemokines CXCL1-3. Activation of 

TLR-4, whose ligands include PAMPs and DAMPs, can mediate immunological recognition 

of implanted biomaterials, and deletion of TLR-4 in mice shifts the material-adherent 

immune cell population from monocytes/macrophages to neutrophils [11]. Indeed, the 

failure of orthopedic implants by both aseptic and septic loosening has been tied to 

unwanted DAMP- and PAMP-activated inflammatory activation [113].

After recruitment, macrophages take on microenvironment- and biomaterial surface­

dependent phenotypes that dictate the integrative fate of the implant. The predominant 

macrophage phenotype during early injury or implantation are pro-inflammatory, but 

multiple subtypes within the “M2” or anti-inflammatory classification are involved in 

tissue repair at later time points in the implantation or injury response. Ablation of 

macrophages using clodronate liposomes or inducible transgenic models dramatically affect 

the microenvironment, immune and stem cell recruitment, and ultimately, biomaterial 

integration [77,114]. Macrophage phenotypes can be induced by both bulk and surface 

physicochemical material properties like material composition, substrate stiffness, surface 

topography and hydrophilicity or wettability have been found to affect the inflammatory 

response and consequent integrative fate of biomaterials.

5.3 Response of Macrophages to Changes in Substrate Stiffness

The effect of biomaterial stiffness on macrophage activation and phenotype has been broadly 

explored. In polymers with similar chemistry, increasing stiffness has been associated with 

increased pro-inflammatory macrophage phenotype in multiple studies, both in vitro and in 
vivo [115,116]. Sridharan et al. recently demonstrated that increasing stiffness modulates 
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macrophage polarization and changes their mode of migration; using collagen-coated 

polyacrylamide gels, the authors showed that higher stiffnesses increased pro-inflammatory 

polarization and change the mode of macrophage migration from ROCK-dependent fast 

ameboid migration to slow podosome-dependent mesenchymal [117]. Conversely, another 

study found that increased stiffness enhances anti-inflammatory polarization through NF-κB 

signaling [118]. This study was also performed on polyacrylamide hydrogels of varying 

stiffness but without collagen coating, suggesting that both stiffness and protein adsorption 

profiles might regulate macrophage polarization, where activation of NF-κB by some class 

of denatured adsorbed protein might change the cellular response to stiffness. Other studies 

with both biologic and manufactured substrates have shown that increasing biomaterial 

stiffness promotes a pro-inflammatory phenotype that migrates more readily, accompanied 

by dysregulated integrin production [119]. While many of these high-stiffness responses 

have been shown to be mediated by Wnt/β-catenin signaling [120,121] and MAPK 

signaling [122,123] in macrophages and other cells, the signaling pathways, receptors, 

and transcription factors involved in macrophage response to biomaterial stiffness remains 

unclear. While stiffnesses of current FDA-approved biomaterials exhibit elastic moduli much 

higher than macrophages are capable of distinguishing, stiffness may be a useful tunable 

property that can be used to control the macrophage activation and the overall inflammatory 

response.

5.4 Macrophage Response to Changes in Surface Topography

Surface topography also modulates macrophage phenotype. In commonplace implant 

materials—chiefly Ti or its alloys—roughness can modulate macrophage polarization in 

different ways. Early work in this field performed by Barth, Waterfield, and Brunette 

demonstrated that mildly enhanced anti-inflammatory polarization occurred in response 

to roughened Ti surfaces by RAW264.7 macrophage-like cells [124]. Another study 

demonstrated that anti-inflammatory macrophage polarization was enhanced over a small 

range of roughness (Ra=0.51–1.36μm), while roughness outside of the range upregulated 

a mixture of pro- and anti-inflammatory markers [125]. The effect of microtopography 

on reducing pro-inflammatory activation has been observed also in other biomaterials 

outside of Ti or its alloys like resorbable zinc, zirconia polycrystal, shape memory PCL­

PEG substrates and polyethylene films, and silicon [126–129]. However, opposite results 

have been also reported. Early studies using RAW264.7 macrophage-like cells showed 

that sand blasted and acid etched Ti substrates increased levels of pro-inflammatory 

cytokines [130]. Li et al. recently showed that that micron roughness, on tricalcium 

phosphate substrates, generated by diamond microtome resulted in upregulation of iNOS 

and IL-1β in RAW264.7 cells while submicron roughness resulted in an anti-inflammatory 

phenotype [114]. In another study, Hamlet et al. showed that M2 activated macrophages 

cultured on microstructured Ti surfaces promoted a switch to a pro-inflammatory phenotype 

with an upregulation of pro-inflammatory cytokines [80]. In contrast, other studies have 

shown that macrophages can activate into both pro- and anti-inflammatory phenotypes, 

microstructures on polyvinylidene fluoride (PVDF) substrates induced human macrophages 

into a pro-but also an anti-inflammatory phenotype [131]. Similar results were found by 

Hotchkiss et al. using medical- and dental-grade implant materials; surface roughness 

enhanced anti-inflammatory activation of primary murine macrophages compared to smooth 
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surfaces, while also interestingly upregulating pro-inflammatory activation markers as well 

[78,132,133]. These conflicting results can be result of the diverse cells used (primary cells 

vs. cell lines, species, cell source) and culture conditions.

Our current understanding of macrophage activation and function is based on studies 

using primary cells isolated from specific tissues or from immortalized cell lines. RAW 

264.7 cells are a murine-leukemic macrophage-like cell line that has been widely used to 

study macrophage-biomaterial interactions [134, 135, 136, 137]. While RAW 264.7 cells 

phenotypically resemble bone-marrow-derived primary macrophages in some markers like 

CD11b, CD11c, CD14, F4/80 and in their response to microbial molecules through TLR3 

and TLR4, they do not mimic the phenotypic markers and microbial response of splenic 

macrophages [138]. There are also significant differences in cell surface receptors between 

bone marrow derived macrophages and common macrophage-like immortalized cell lines 

(IC-21, J774A.1, and RAW 264.7) in response to polystyrene, poly-l-lactic acid (PLLA), 

and Teflon-AF [139]. The authors also found differences in cell morphology, surface marker 

expression, and cytokine expression profile in response to LPS activation and in cytokine 

expression in response to biomaterial composition [139]. Macrophages are a highly plastic, 

heterogeneous, and dynamic cell type which vary in phenotype based on cues from their 

microenvironment. Their heterogeneity is due to the various functions processes that they 

carry out in different tissues, such bone marrow derived macrophages differ in phenotype, 

function, and activation from those derived from other sources (spleen, intraperitoneal cavity 

lung). Therefore, cell source is an important consideration when designing a testing system 

for biomaterials.

Nanostructures have been also reported to affect macrophage phenotype. Ion et al. 

demonstrated that nanochannel structures created by anodizing Ti50Zr alloy resulted in 

less metabolically active macrophages with a decrease in pro-inflammatory cytokines 

[140/118]. Similar results were reported by Lee et al. creating nano-roughness with Ti 

coated coverslips, where they found a decrease in nitric oxide, iNOS, and pro-inflammatory 

cytokines in response to Ti nanotopography [141]. In another study, Park et al. showed 

that murine J774.A1 macrophage-like cells decrease pro-inflammatory markers in response 

to Ti nanostructures created by hydrothermal modification [142]. Similarly, Lu et al. 

showed that nanostructured and submicron-structured Ti stents decreased levels of pro­

inflammatory cytokines when compared with smooth stents [142]. This anti-inflammatory 

effect of nanostructures on biomaterials has also been observed on other biomaterials. 

Linares et al. showed that nanocrystalline hydroxyapatite and nanocrystalline silicon 

substituted hydroxyapatite increased macrophage polarization towards an M2 phenotype, 

decreasing the M1 population [143]. Besides nanostructures, nanofibers have been shown 

to increase the anti-inflammatory phenotype of macrophages when compared to flat or 

micron scale fibers in poly electrospun PLA [144]. Recent studies have shown in vitro 

and in vivo that the diameter of the nanofibers is not the only parameter that alters 

macrophage phenotype but also fiber orientation. Aligned nanofibers altered macrophage 

morphology but more importantly, increased activation of anti-inflammatory macrophage 

phenotype, whereas random nanofibers induced a pro-inflammatory phenotype [145,146]. 

Nanostructures created on Ti by anodization with a size of 30 nm favor an M2 polarization 

and nanostructures around 100 nm favor an M1 macrophage phenotype [147].
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5.5 Effect of Hydrophilicity on Macrophages

Perhaps the most potent surface property found to modulate anti-inflammatory macrophage 

activation is surface hydrophilicity or wettability. Typically measured indirectly through 

hydrophilicity, increased surface energy greatly enhances anti-inflammatory macrophage 

polarization in various applications. Hotchkiss et al. showed that while markers of 

M1 and M2 macrophage activation increased with roughness, the combination of 

roughness and hydrophilicity suppressed pro-inflammatory markers and greatly enhanced 

anti-inflammatory markers [77,78,132,133]. Hamlet et al. showed that the same rough 

hydrophilic Ti substrates decrease pro-inflammatory cytokine expression on human 

macrophages and RAW264.7 cells [148,149]. The same group have recently showed 

that the same hydrophilic Ti substrate is able to re-establish macrophage homeostasis 

in diabetic animals by switching a M1 macrophage phenotype to a pro-regenerative M2 

phenotype [149]. Similarly, Sunarso et al. showed that superhydrophilic Ti substrates 

created by ozone gas functionalization mitigated proinflammatory cytokine production 

on RAW264.7 macrophage-like cells [150/128]. Ultraviolet light also has been used to 

increase hydrophilicity on Ti substrates or on anatase TiO2 films where the increase in 

hydrophilicity resulted in a decrease of pro-inflammatory cytokine expression and increase 

in macrophage M2 phenotype [151,152]. Oxygen plasma treatment also has been used to 

increase biomaterial hydrophilicity and has been shown to decrease macrophage activation 

and levels of important pro-inflammatory cytokines in RAW264.7 cells and primary 

murine macrophages on poly(L-lactide-co-glycolide) (PLGA) [153], polyether ether ketone 

(PEEK) [154], and Ti [78]. Additionally, on milled polystyrene used for microfluidic 

applications, hydrophilicity produced comparable effects in primary human monocyte­

derived macrophages, increasing anti-inflammatory IL10, MRC1, and CCL18 [155]. 

Mechanistically, Lin et al. demonstrated that hydrophilicity determines the conformational 

adsorption of fibronectin and fibrinogen though integrin signaling and consequent PI3K and 

NF-κB activation [156].

The consequences of altered macrophage polarization by biomaterials are myriad. 

Macrophages are responsible for recruitment and activation of T-cells and stem cells in the 

injury or implant microenvironment [88,90]. Many studies show they are also responsible 

for early angiogenic signaling [157,158]. When comparing rough and rough-hydrophilic 

Ti implants in vivo, Hotchkiss et al. found that greater numbers of anti-inflammatory Treg 

cells and MSCs were present on rough-hydrophilic implants; in vitro, macrophages alone 

on rough-hydrophilic Ti recruited greater levels of MSCs in a transwell assay [77]. Hamlet 

et al. demonstrated that conditioned media from anti-inflammatory macrophages polarized 

on hydrophilic Ti enhanced osteoblast BMP signaling [64]. Mechanistically, Wnt signaling 

can mediate both anti-inflammatory macrophage polarization in response to hydrophilicity 

as well as MSC recruitment [159]. Given that Wnts regulate MSC differentiation and 

proliferation on Ti implants [160,161], it is likely that macrophage Wnt ligands are targeted 

to MSCs as well, reflecting their role in orchestrating the behavior of stem cells in other 

tissues. It is still unclear how macrophages recognize the physicochemical properties of 

biomaterials and the possible signaling mechanisms that may be involved.
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Another key consequence of material properties on macrophage activation is the formation 

of foreign body giant cells. These cells form from chronic inflammatory responses 

where high levels of IL-4 and IL-13 are produced and contribute heavily to fibrous 

capsule formation, which impairs the functionality of eluting, degrading, loadbearing, or 

electroconductive implants [162]. In bone, macrophage fusion produces multinucleated giant 

cells known as osteoclasts, which serve to resorb bone, leading some to postulate that 

foreign body giant cells form from mechanical mismatch between implants and surrounding 

tissue, inducing cell formation to attempt to degrade the foreign body and later encapsulate 

it [163]. Indeed, a correlation between high numbers of recruited macrophages and higher 

foreign body giant cell formation has been shown, suggesting that persistent or enhanced 

inflammatory activation leads to foreign body giant cells. While little is known about the 

role of foreign body giant cell formation in early healing, histologic studies have shown 

their presence on implants long-term [164], suggesting some level of inevitability of their 

formation with non-degradable materials. Nevertheless, these cells appear to be unfavorable 

in the context of osseointegration.

As evidenced by the large body of work exploring macrophage-biomaterial interactions, 

these highly plastic cells serve as both regulatory targets and effective “canaries in the 

coalmine” of biomaterial implants. While there is not a single biomaterial parameter that 

predicts macrophage activation, implants may succeed or fail based on the effects of 

their surfaces on macrophage phenotype, and as such, surface properties should always 

be considered when designing novel implants.

6. Dendritic cells

Dendritic cells (DCs), close relatives of macrophages but more specialized for antigen 

presentation, are also understudied players in the immune response to implantable 

biomaterials. DCs have been broadly explored in drug delivery application aimed to induce 

immune tolerance and to confer immunity for their antigen-presenting capabilities [165–

167]. Like macrophages, DCs are mononuclear phagocytic cells that serve as gatekeepers to 

the inflammatory response in both non-sterile and sterile inflammation. Unlike macrophages 

that are recruited en masse during acute changes to homeostasis (e.g., injury, implantation), 

DCs classically serve more tolerogenic roles during homeostasis, having been shown to 

drive peripheral tolerance in the lungs, gut, and other mucosal surfaces in contact with 

microbiota or the external environment [168,169]. However, DCs play similar roles in 

healing as macrophages, promoting early inflammation and resolving late inflammation 

[170]. A key example of this role is the role of plasmacytoid DCs, a specialized circulating 

DC subpopulation, which enhance early wound pro-inflammatory activation by sensing 

host nucleic acids (as DAMPs) via intracellular TLR7 and -9, consequently secreting 

type I IFNs [171–173]. In burn wound healing, loss of CD11c+ cells, the archetypical 

DC surface marker, was associated with delayed healing, while enhancement of DC 

populations with fms-like tyrosine kinase-3 ligand accelerated it; these findings were 

correlated with decreased or increased levels of local TGF-β [174]. In bone, DCs have 

been implicated in inflammation-induced bone loss by activating of CD4+ T-cells, which 

induce osteoclastogenesis and bone turnover [175,176]. This suggests that DCs serve similar 

roles as macrophages at both the start and end of the inflammatory phase of healing.
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DCs have expansive roles in the immune response to biomaterial implants. Vasilijic et al. 

demonstrated that as many as 25% of monocytes recruited to polyvinyl sponge implants 

differentiate into DCs, and their numbers increase steadily to 10 days post-implantation; 

interestingly, many of these dendritic cells were plasmacytoid [177]. Additionally, DCs 

isolated from the late inflammatory response (14d post-operatively) did not respond as 

robustly to allogeneic T-cell activation as earlier DCs (6d post-op), suggesting a true 

phenotypic shift as with macrophages in the implant response. DCs also respond to 

changes in surface roughness and hydrophilicity. Hydrophobic Ti with either smooth or 

rough topography induced mature or pro-inflammatory DC phenotypes, while hydrophilic 

Ti induces an immature or anti-inflammatory phenotype [178], similar to the phenotypic 

changes seen in macrophages [62]. Hydrophobic polymers like poly(lactic-co-glycolic 

acid) (PLGA) can induce mature DC phenotypes through direct agonism of integrin-β2 

receptors [179,180], while highly hydrophilic hyaluronic acid surfaces induce immature 

DC phenotypes [181]. This is likely due to the distinct protein adsorption profiles of 

surfaces with different energy; hydrophilic surfaces adsorb fewer proteins that permit 

DC adherence and maturation [3,182]. Three-dimensional surface topography can also 

enhance DC maturation, whether on Ti, polystyrene, Teflon, or poly(methyl methacrylate) 

[178,183,184]. Further work exploring the tolerogenic roles of DCs in classical wound 

healing might yield valuable insight into their role in the response to implants.

7. Mast Cells

Mast cells (MC) are granulocytic cells of the innate immune system that play fundamental 

roles in both innate and adaptive immune responses. MC are chiefly known for their role 

in allergic reactions; however, recent studies have shown that MC are important in wound 

healing through cell recruitment, angiogenesis, and ECM deposition, as well as in fibrosis 

and foreign body response to implanted biomaterials [185]. MC exist as tissue-resident 

populations and are present in all vascularized tissues with a particular presence in skin, 

airways, and gastrointestinal tract [186]. The expression of the high-affinity immunoglobulin 

E (IgE) receptor, FcεRI, is one significant factor that distinguishes MC from other 

granulocytes. When a foreign antigen or allergen activates FcεRI, MCs degranulate and 

release mediators like histamine, proteases, proteoglycans, and cytokines and chemokines 

from cytoplasmic granules. MC activation also generates lipid mediators of inflammation 

like prostaglandin, leukotriene, and thromboxane, as well as the de novo production of 

cytokines, chemokines, and growth factors [186]. Antigens and pathogens directly activate 

MC through FcεRI and other pattern recognition receptors, including TLR, c-type lectin, 

NOD-like, and RIG-like receptors [187]. In this way, MC activation significantly impacts 

the activation and function of other immune cells and surrounding tissues. Besides their 

role in IgE-mediated allergic reactions, MC also play significant roles in defense against 

pathogens and other physiological and pathological processes like angiogenesis, wound 

healing, atherosclerosis, cardiovascular disease, and fibrosis [188].

7.1 Mast Cells and Biomaterials

MCs actively participate in inflammation, proliferation, and regeneration/remodeling 

following biomaterial implantation, and have a well-documented role in the development 
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of a foreign body response. MC degranulation after biomaterial implantation, especially 

histamine release, leads to recruitment and adhesion of other inflammatory cells at the 

implantation site [189]. The long-term presence of MC at the implantation site is related to 

the degree of fibrosis around the implant [190]. In one study, MC deficient mice implanted 

with polymeric materials had lower fibrous capsule thickness and lower collagen type 1 

presence as compared to wild type mice [191], suggesting that MCs play a significant role in 

the biomaterial integration and fibrous encapsulation.

Biomaterial architecture, surface topography, and chemical composition can also affect MC 

activity and function [192]. In one study, cultured on polystyrene with a honeycomb-like 

structure had higher cell attachment, proliferation, and more multinucleated cells when 

compared to smooth polystyrene surfaces, proliferation, and more multinucleated cells when 

compared to smooth polystyrene surfaces [193]. In another study, MC on nanostructured Ti 

substrates had higher cell adhesion, migration, and proliferation when compared to smooth 

Ti substrates [194].

These results suggest that MC are sensitive to biomaterial architecture and topography and 

that these parameters can influence MC activation and proliferation. While the scope and 

focus of this review is in sterile inflammation in response to implantable biomaterials, 

it is worth to note that some reports have studied the effects of architecture or physical 

properties on MC in the presence of LPS [195]. Chemical composition of biomaterials 

and the presence of stimulatory factors are also factors affecting MC activity. A study 

investigated the adhesion of MC to electrospun polydioxanone (PDO), poly-e-caprolactone 

(PCL), and silk scaffolds showed that MC readily adhere to synthetic and natural polymeric 

materials with cytokine release. However, MCs activated with IgE had increased adhesion, 

proliferation, migration, and cytokine secretion [196]. Interestingly, another study showed 

that MC adhere poorly to PDO and fibronectin coating increase adhesion [196]. In this 

context, Abebayehu et al. used electrospun fibronectin-coated PDO scaffolds with two 

architectures and pore sizes and showed that decrease in fiber diameter and pore size 

affected MC response to stimuli, increasing levels of IL-6 after LPS or IL-33 exposure and 

increasing TNF secretion after exposure to IL-33, suggesting that scaffold architecture can 

shape MC response to innate immune signals [195]. MC are understudied cells that play 

a significant role during all phases of biomaterial integration, controlling recruitment and 

activities of other immune cells as well as tissue adjacent cells. Control of MC activation 

should be considered when designing biomaterials for use in skin, lung, and mucosal 

barriers to facilitate biomaterial integration.

8. Other innate immune cells

8.1 Innate lymphoid cells

Innate lymphoid cells (ILCs) are a heterogeneous subset of novel lymphoid cells lacking 

antigen-specific receptors, making them distinct from B and T cells and similar to innate 

cells [197]. They are present in low frequency and are difficult to distinguish from other 

immune cells due to their complex surface marker phenotype, but are recognized as tissue 

resident, cytokine producing cells present in various organs and tissues [196,198]. ILCs 

are classified into three subsets (ILC1, ILC2, and ILC3) based on their surface markers, 
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cytokine profiles, and functions [199]. ILCs share a developmental origin and many of the 

phenotypic markers of the major CD4 T helper cells, however, ILCs are activated by stress 

signals, cytokines in the microenvironment, and microorganism-derived compounds rather 

than by antigens [200].

8.2 ILC subsets

The ILC1 subset produce typical type 1 cytokines like interferon (IFN) gamma and TNF-α 
and are defined by the expression of the transcription factor T-bet, which is also a marker 

of Th1 cells [201]. ILC1s predominantly participate in type 1 immune responses that aim 

to clear intracellular bacterial and viral infections and can be activated by macrophage- 

and dendritic-cell-derived IL-12, IFN-γ, and IL-18 (201). They have been implicated in 

conditions like chronic obstructive pulmonary disease and Crohn’s disease [202].

ILC2s resemble Th2 cells and are primarily tissue resident cells that are prominent in lung, 

skin, intestine, and adipose tissue (202). ILC2s express the transcription factor GATA3 

and, once activated, generate a type 2 immune response through production of IL-4, 

IL-5, IL-13 [203]. ILC2s are activated by IL-25, IL-33, and thymic stromal lymphopoietin 

[199]. ILC2s activation results in recruitment and degranulation of eosinophils, basophils, 

and mast cells, which define their role in allergic responses like allergic asthma, atopic 

dermatitis, and allergic rhinitis [204,205]. ILC2s can also determine the inflammatory 

phenotype of macrophages through secretion of IL-4 and IL-13 which favor the macrophage 

transition into the anti-inflammatory, reparative M2 phenotype [199]. ILC2s also produce 

amphiregulin which can facilitate restoration of tissue integrity and homeostasis after 

inflammation and infection [199]. ILC2s are also key regulators in establishing neonatal 

immunity, tissue repair, homeostasis, and pathological tissue damage and disease, such 

fibrosis [206,207].

ILC3s express the transcription factor retinoic acid related orphan receptor (RORγt), and 

they secrete GM-CSF, IL-17, IL-22, and TNF-α in response to myeloid derived IL-1β, 

IL-23 and TGF-β [208]. ILC3s are divided into two subgroups based on the expression of 

the natural cytotoxicity receptor NKp44 [208]. ILC3s can promote or suppress the immune 

response depending on the microenvironment within the tissues [206].

8.3 ILC Plasticity and Role Following Biomaterial Implantation

ILCs display plasticity across tissues and can change their phenotype and function in 

response changes in their microenvironment. ILC2s and ILC3s lose the expression of 

GATA3 and RORγt and gain the expression of T-bet and secrete IFNγ like ILC1s [209,210]. 

Stimulation with IL-1β, IL-23, and retinoic acid convert ILC1s into ILC3s [211]. IL-1β, 

IL-23 and TGF-β stimulation transforms ILC2s into ILC3s with secretion of IL-17 [211]. 

Furthermore, IL-1β and IL-4 stimulation convert ILC1s into ILC2s [211]. ILCs and T cells 

are similar in several levels, however, a key difference is the prompt activation of ILCs 

after infection or injury, which results in their expansion and release of cytokines [210]. 

On the other hand, T cells require several days to undergo clonal selection after antigen 

presentation, which triggers expansion and migration towards the infected or injured tissues 

[212]. While ILC plasticity is accepted, whether these cells play a role in biomaterial 
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integration or how biomaterial properties can affect ILCs phenotypes and activities is 

unknown. Pro- or anti-inflammatory effects normally associated with other innate or 

adaptive immune cells in response to physical or chemical properties on biomaterials, 

such increases in pro-inflammatory cytokines IL-1β, IL-17 and TNF-α or release of anti­

inflammatory cytokines, may be in part the result of ILC activation. Moreover, ILCs may 

also participate in fibrous encapsulation of biomaterials since IL-13 plays a role in fibrosis in 

a TGF-β-dependent and independent manner and their control over macrophage phenotype 

is well documented [213]. However, the precise role of ILCs either in response to implanted 

biomaterials or in affecting the activity of macrophages and dendritic cells in the biomaterial 

microenvironment is not known.

8.4 Natural Killer Cells

Natural killer (NK) cells are part of the innate immune system and recently classified as part 

of the ILC1s. NK cells were named for their ability to kill tumor cells without stimulation 

or exposure to antigens [214]. NK cells recognize and kill infected or cancerous cells and 

regulate other cells under physiological and pathological conditions through receptor-ligand 

interactions or cytokine/chemokine secretion [215]. NK cell functions are mainly regulated 

by activating (NKp46, NKp30, NKG2D, DNAM-1, 2B4) and inhibitory receptors (killer 

cell immunoglobulin-like receptors, killer cell lectin-like receptors, NKG2A) [216]. NK 

cells kill their target cells by secreting lytic granules that contain pore-forming perforin 

and apoptosis-inducing granzymes, or by engagement of death receptors expressed on 

the NK cell surface like Fas ligand and TNF-related apoptosis inducing ligand (TRAIL) 

with cognate ligands expressed on target cells [216,217]. NKs also produce cytokines and 

chemokines in response to stimulation (e.g., IL-5, IL-10, IL13, TNF-α, IFNγ) that activate 

macrophages and dendritic cells that in turn produce other cytokines that facilitate NK 

cell cytotoxicity [216–218]. NK cells amplify the inflammatory response and control the 

microenvironment through this feedback loop. NK cells participate in the repair of cutaneous 

wounds, and their involvement slows the speed of wound closure suggesting other functions 

besides killing target cells [219].

8.5 NK Activation and Biomaterials

The response of NK cells to their target is a complicated balance between activating and 

inhibitory signals. The cytotoxic activity of NK cells is closely regulated by the micro 

clustering of their activating and inhibitory receptors [220]. While receptor clustering 

is undoubtedly the main factor in regulating the cytotoxic activity of NKs, it can be 

regulated either biochemically via antigens or physically via mechanical properties [221]. 

The cytoskeleton is a major mediator of NK cell effector activity. Actin undergoes 

polymerization and depolymerization during NK cell migration and conjugation with target 

cells (198). The integrin lymphocyte function-associated antigen 1 (LFA-1) induces outside­

in signaling to promote actin polymerization during NK cell adhesion to target cells. 

Then, F-actin induces physical forces on LFA-1, affecting LFA-1 conformation at the 

immunological synapse and affecting other signaling molecules that impact NK activities 

via mechanotransduction [222].
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While NK cells are known to play important roles in immune protection in cancer and 

infection, whether NK cells contribute to the initial inflammatory response and inflammation 

resolution during biomaterial implantation is unknown. Most of the literature examining NK 

cells in the biomaterial context examines fabrication of nano or micropatterned substrates 

or particles with activating, co-stimulating, or inhibiting signals for immunotherapies 

[221]. These studies have shed some light on the possible effects of physical properties 

of implantable biomaterials on NK cell activation and their possible contribution to the 

initial inflammatory response and inflammation resolution. Cells sense physical cues of 

their microenvironment applying and sensing mechanical forces of their surroundings, 

and transducing these mechanical stimuli into biochemical signals [221]. These stimuli 

determine cell functions like cell adhesion, migration, differentiation, apoptosis, etc. [223]. 

Several reports have demonstrated that infected or malignant transformed cells have changes 

in cell mechanical properties that immune cells are able to “sense” and to respond 

[223,224]. Immunological receptor complexes can recognize antigens under mechanical 

load and discriminate between low and high affinity antigens [225]. NK cell response can be 

mediated by actomyosin retrograde flow [226]. A recent study showed that smooth surfaces 

stimulate enhanced spreading while 20 μm nanowires reduced spreading and increased NK 

cell activation, measured by surface recruited CD107a, suggesting that topography and 

mechanical forces can control NK cell activation. Furthermore, the same study showed that 

functionalization of the smooth surface with antigens such as class I polypeptide-related 

sequence A did not affect the activation of NKs, while the functionalization of nanowires 

synergistically activated NKs [221]. Based on these results it was suggested that NKs 

mechanically probe their microenvironment and that high mechanical compliance produces 

a mechanical stimulus that enhances activation of NKs. Although the specific mechanism 

by which environment stiffness controls the clustering of receptors in NKs is unclear, there 

is a possibility of NKG2D receptors sensing mechanical forces and transducing mechanical 

signals through conformational changes [223]. In regulating NK cell immune and actin 

retrograde flow controls, mechanical forces induced by the ECM or physicochemical 

properties on biomaterials also play a role in NKs response [226]. In vivo, NK cells 

can activate on a broad range of stiffnesses, from relatively soft myeloid, monocyte, and 

dendritic cells whose stiffness varies from hundreds to thousands of Pa to stiffer ECM, 

tumor cells, and tissues with stiffnesses of nearly 100 kPa [187, 227,228]. Changes in 

surface topography induce a directional preference in NK movement even in the absence of 

chemoattractant. In one study, microchannel confinement was used to reduce the migration 

track of NKs to a one-dimensional model. Topographical changes of biomaterials induced 

cell deformation that affected chemotaxis and NK cell migration by disrupting NK cell 

polarization [229].

9. Conclusions

Recent studies in both classical wound healing models and with implanted biomaterials have 

identified important roles for macrophages, neutrophils, DCs, and other innate immune cells. 

Benchmarking the interactions of innate immune cells with better- and worse-performing 

biomaterials by measuring inflammatory activation can provide a useful context for the 

design and evaluation of novel implants or surfaces to improve the rate of implant success.
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Statement of Significance:

This review highlights recent advances in the understanding of the role of innate 

immunity in the response to implantable biomaterials, especially in neutrophils and 

macrophages, as well as key mechanobiological findings in innate immune cells 

underpinning these advances. Here we discuss how physicochemical properties of 

biomaterials control innate immune cell behavior.
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Figure 1. 
A schematic of events that take place at the biomaterial/host interface after implantation. 

Early events are depicted on the left of the figure and later events are depicted on the right. 

Created with BioRender.com.
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Table 1.

Summary of innate immune response to biophysical properties

Cell Type Material Biophysical 
Property

Biological 
Model

Origin/Cell 
line Biological effect Reference

Neutrophils

Titanium

Hydrophilicity In vitro C57BL/6J mice ↓ Cytokine release
↓ NET formation 76

Hydrophilicity In vitro Human PBMC ↓ Cell activation
↓ ROS generation 230

Titanium PEEK Roughness 
Hydrophilicity In vivo New Zealand 

White Rabbits ↑ Neutrophils on PEEK 231

PDO Architecture In vitro in vivo

Human PBMC 
(in vitro) 
Sprague-

Dawley rats (in 
vivo)

↓ NET formation on large 
diameter fibers

↓ Net formation in vivo
232

PDMS Stiffness In vitro C57BL/6J mice ↑ NET formation 233

Polyacrylamide Stiffness In vitro Human PBMC

↓ Migration speed
↑ Spreading

↑ NET formation with LPS 
treatment

84

Polyacrylamide Stiffness In vitro
Murine 
myeloid 

progenitor
↑ Spreading 234

PEG-Gelatin Hydrophilicity In vitro Human PBMC ↑ MPO release ↓ MMP-9 235

PTFE Dacron Hydrophobicity In vitro in vivo Human PBMC ↑ Cell death
↑ ROS generation 83

PTFE Hydrophobicity In vitro Human PBMC

↑ Net formation
↑ Histone citrullination
↑ Elastase and ROS 

generation

236

Macrophages Titanium

Roughness In vitro THP-1 ↑ Pro- and anti-inflammatory 
markers 125

Roughness In vitro RAW 264.7 ↑ Cell elongation
↑ Chemokine levels 127

Macrophages Titanium

Roughness In vitro RAW 264.7 ↑ Pro-inflammatory markers 130

Roughness 
Hydrophilicity In vitro C57BL/6J mice

↓ Pro-inflammatory 
cytokines

↑ M2 phenotype
80

Roughness In vitro J774A.1 ↓ Nitric oxide, iNOS, and 
pro-inflammatory cytokines 141

Roughness In vitro J774.A1 ↓ Pro-inflammatory 
cytokines 142

Roughness In vitro in vivo C57BL/6J mice
30 nm structures ↑ M2 

phenotype 100 nm structures 
↑ M1 phenotype

147

Roughness 
Hydrophilicity In vitro in vivo C57BL/6J mice

↑ M2 phenotype
↑ Anti-inflammatory 

cytokines
↓ Pro-inflammatory 

cytokines

77

Roughness 
Hydrophilicity In vitro C57BL/6J mice ↓ IL-1β, IL-6, TNF

↑ IL-4, IL-10 78

Roughness 
Hydrophilicity In vitro RAW 264.7

↓ Pro-inflammatory cytokine
↑ Anti-inflammatory 

cytokines
149
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Cell Type Material Biophysical 
Property

Biological 
Model

Origin/Cell 
line Biological effect Reference

Roughness 
Hydrophilicity In vitro THP-1 ↓ Pro-inflammatory 

cytokines 148

Hydrophilicity In vitro RAW 264.7 ↓ Pro-inflammatory 
cytokines 150

Roughness 
Hydrophilicity In vitro Human PBMC

↓ Pro-inflammatory 
cytokines

↑ M2 phenotype
152

Hydrophilicity 
Hydrophobicity In vitro Human PBMC

↑ Anti-inflammatory 
cytokines on hydrophilic 

material
156

Titanium 
Titanium alloy

Roughness 
Hydrophilicity In vitro C57BL/6J mice ↓ IL-1β, IL-6, TNF

↑ IL-4, IL-10 132

Titanium 
Titanium alloy

Roughness 
Hydrophilicity In vitro C57BL/6J mice

↑ Anti-inflammatory 
cytokines

↓ Pro-inflammatory 
cytokines

133

Macrophages

Titanium PEEK Roughness 
Hydrophilicity In vivo New Zealand 

White Rabbits
↑ Macrophages on PEEK

↑ M2 phenotype on Titanium 231

Titanium alloy Architecture In vitro RAW 264.7
↓ Metabolism

↓ Pro-inflammatory 
cytokines

140

PLLA Architecture In vitro RAW 264.7 ↑ Anti-inflammatory 
phenotype 144

PLGA Hydrophilicity In vitro RAW 264.7
↓ Cell activation

↓ Pro-inflammatory 
cytokines

153

PCL

Roughness In vitro In vivo

C57BL/6J (in 
vitro) Sprague-
Dawley rats (in 

vivo)

↑ Cell elongation
↑ Arginase 1 and IL-10 

expression
↑ Anti-inflammatory 

phenotype

128

Architecture

THP-1 (in 
vitro) Sprague 
Dawley rats (in 

vivo)

↑ M1 phenotype on random 
alignment 237

PLLA-PCL Architecture In vitro in vitro Sprague-
Dawley rats

↑ IL-10 and Arg1
↓ TNF and iNOS

↑Anti-inflammatory 
phenotype

145

PEEK Hydrophilicity In vitro RAW 264.7

↓ Pro-inflammatory 
cytokines

↑ Anti-inflammatory 
cytokines

154

Polyethylene Architecture In vitro C57BL/6J mice
↑ Anti-inflammatory 

cytokines
↓ TNF

126

Polyvinylidene 
fluoride Roughness In vitro Human PBMC ↑ Pro- and anti-inflammatory 

activation 131

Polystyrene Hydrophilicity In vitro Human PBMC ↑ Anti-inflammatory 
cytokines 238

Tricalcium 
phosphate Roughness In vitro RAW 264.7 ↑ iNOS and IL-1β 114

Hydroxyapatite Roughness In vitro RAW 264.7 ↑ M2 phenotype
↓ M1 phenotype 143
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Cell Type Material Biophysical 
Property

Biological 
Model

Origin/Cell 
line Biological effect Reference

DC Titanium Roughness 
Hydrophilicity In vitro Human PBMC

↑ CD86
↓ IL-10, IL-1ra, MCP-1, 

IL-8
178

DC Polystyrene PTFE 
PMMA

Hydrophilicity 
Hydrophobicity 

Architecture
In vitro Human PBMC ↑ Activation and migration 

on smooth surfaces 183

MC

Titanium Roughness In vitro RBL-2H3
↑ Adhesion

↑ Proliferation
↑ Migration

194

PLGA Hydrophilicity In vivo Balb/c mice ↑ Cell recruitment
↑ Degranulation 239

PDO Architecture In vitro C57BL/6J mice ↓ IL-6 and TNF
↑ VEGF 240

PDO
PCL

Fibroin

Chemistry 
Architecture In vitro C57BL/6J mice

↑ Adhesion on polymers
↑ Proliferation on polymers
↑ TNF, MCP-1, and IL-13 on 

polymers

241

Polypropylene Hydrophilicity In vivo Wistar rats ↑ Cell number
↑ NADPH 242

Polystyrene Architecture In vitro NCL-2 ↑ Proliferation 243

NK

PDMS

Stiffness In vitro Human PBMC

Bell shaped of NK adhesion 
and CD107 expression in 

response to stiffness
↑ Activation in response to 

stiffness

221

Architecture In vitro NK-92MI ↑ NK cytotoxicity on large 
microwells 229

PLA Chitosan Architecture In vitro Human PBMC ↓ NK metabolism
↑ NK number 244
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