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Abstract

Hydrogels have been used to design synthetic matrices that capture salient features of matrix 

microenvironments to study and control cellular functions. Recent advances in understanding 

of both extracellular matrix biology and biomaterial design have shown that biophysical cues 

are powerful mediators of cell biology, especially that of mesenchymal stromal cells (MSCs). 

MSCs have been tested in many clinical trials because of their ability to modulate immune 

cells in different pathological conditions. While roles of biophysical cues in MSC biology 

have been studied in the context of multilineage differentiation, their significance in regulating 

immunomodulatory functions of MSCs is just beginning to be elucidated. This review first 

describes design principles behind how biophysical cues in native microenvironments influence 

the ability of MSCs to regulate immune cell production and functions. We will then discuss how 

biophysical cues can be leveraged to optimize cell isolation, priming, and delivery, which can help 

improve the success of MSC therapy for immunomodulation. Finally, a perspective is presented on 

how implementing biophysical cues in MSC potency assay can be important in predicting clinical 

outcomes.
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1. Introduction

Mesenchymal stromal cells (MSCs) were first identified in bone marrow in the 1970s [1, 

2] as cells with multilineage potential that can differentiate in vitro into bone, cartilage 

and fat [3, 4]. As resident cells in bone marrow where blood and immune cells are 

produced, MSCs were also postulated to regulate immune cell functions. In early 2000s, 

preclinical in vivo studies showed that injection of MSCs promotes skin graft survival [5] 

and reduces graft-versus-host disease (GvHD) by suppressing T-cell activation [6]. Since 

then, the number of clinical trials to test therapeutic efficacy of MSCs in various acute and 

chronic inflammatory pathologies has grown to over one thousand [7]. In addition to T-cells, 

MSCs were shown to regulate other immune cell lineages, including natural killer cells 

[8], B-cells [9], dendritic cells [10, 11], and macrophages [12]. The predominant mode of 

action by which MSCs modulate immune cells is thought to be by the stimulation of MSCs 

with inflammatory signals from microenvironments, followed by downstream production 

and paracrine secretion of immunomodulatory factors [13].

Most of the studies on the role of MSCs in immunity were based on either MSCs on 

plastic culture in vitro or direct adoptive transfer of MSCs in vivo. However, MSCs in tissue 

microenvironments receive different types of signals, ranging from soluble to insoluble cues. 

Indeed, advances in recombinant protein engineering have enabled investigations into roles 

of soluble cues such as inflammatory cytokines in regulating immunomodulatory functions 

of MSCs. However, the contribution of insoluble cues, especially the extracellular matrix 

(ECM), to MSC-mediated immunomodulation has only begun to be appreciated recently. 

The insoluble cues from microenvironments can be classified further into biochemical 

and biophysical components. While proteomic approaches have defined biochemical 

components in the ECM, which are implicated in regulating MSC functions [14], advances 

in biomaterial design have enabled investigations into how matrix biophysical cues impact 

MSC functions by controlling mechanical properties of the matrix independently of 

biochemical cues [15]. Most studies have so far focused on the role of matrix mechanics in 

mechanotransduction and multilineage differentiation of MSCs. However, emerging studies 
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have highlighted roles of matrix biophysical cues in regulating immunomodulatory functions 

of MSCs.

In this review, we will first summarize the current understanding on the role of MSCs 

in hematopoietic system and discuss how biophysical signals from the microenvironment 

regulate the ability of MSCs to modulate the immune system. We will also discuss potential 

factors and challenges that may impact the success of MSC therapy in immunomodulation 

and how biomaterial strategies can help implement MSC-based mechanomedicine for 

immunomodulation.

2. Stromal cells of mesenchymal origin in hematopoietic and immune 

organs

Various immune cells that serve specific functions in the immune response are generated 

and matured [16] in a number of hematopoietic and immune organs, including bone marrow, 

lymph nodes, spleen and thymus [17]. In this section, we focus on bone marrow and lymph 

nodes, where stromal cells of mesenchymal origin are most well-characterized in terms of 

their roles in immunity. These cells play essential roles in maintaining immunity in large 

part by secreting cytokines to communicate with immune cells.

In bone marrow where immune cells are produced from hematopoietic stem cells (HSCs) 

and progenitors, most MSCs are present as pericytes in the vasculature [18], but some MSC 

subpopulations are also localized near the endosteal surface [19]. Subcutaneous implantation 

of CD146+ MSCs alone is sufficient to create a new bone marrow ossicle, suggesting that 

MSCs play critical roles in generating hematopoietic microenvironments [20]. MSCs serve 

as niche cells for HSCs [21–23], since the number of quiescent HSCs is reduced when 

MSCs are genetically depleted [24]. In addition, MSCs regulate trafficking and production 

of myeloid lineages in bone marrow. MSCs secrete CC-chemokine ligand (CCL)-2 in 

response to systemic inflammation to promote monocyte egress from bone marrow into 

circulation in vivo [25]. MSCs are also able to generate regulatory dendritic cells from HSCs 

through Notch signaling [26, 27]. Moreover, MSCs support the survival of neutrophils in 

bone marrow [28, 29]. In terms of lymphoid lineages, MSCs are known to maintain a pool 

of B cell progenitors [30], while their role in producing T cell and natural killer cells still 

remains to be elucidated.

In lymph nodes, various stromal cell types of mesenchymal origin have been identified 

and are collectively called fibroblastic reticular cells (FRCs) [31]. FRCs are known to 

play important roles in coordinating adaptive immunity. Lymph nodes are formed during 

embryonic development when hematopoietic lymphoid tissue inducer cells interact with 

mesenchymal precursors that differentiate into lymphoid tissue organizer cells, which 

eventually give rise to different types of FRCs [32]. Among FRC subsets, T cell-zone 

reticular cells enwrap a network of the extracellular matrix and form a porous conduit 

network, which undergoes dynamic swelling and regulates lymph flow during inflammation 

[33]. During this process, these reticular cells secrete chemokines, including CCL19 and 

CCL21 to recruit T cells and dendritic cells [34, 35]. In contrast, B cell-zone reticular 

cells promote B cell survival, thereby maintaining humoral immunity by secreting B-cell 
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survival factors, such as B-cell activating factor and CXC-chemokine ligand (CXCL)-13 

[36]. Follicular dendritic cells have been identified within the B cell areas of the lymph node 

cortex and play critical roles in the maintenance of germinal centers [37]. While other types 

of stromal cells have been discovered, such as marginal reticular cells [38] and pericyte 

FRCs [39], their direct roles in mediating immunity remain to be determined. The summary 

of the effects of stromal cells on regulating various types of immune cells in marrow and 

lymph nodes, and potential mediators in these processes are shown in Table 1.

3. Biophysical properties of bone marrow and lymph node 

microenvironments and their biological implications in stromal cell­

mediated immunomodulation

Understanding biophysical properties of tissue microenvironments will inform the design of 

biomaterials with physiologically relevant cues that can be used to better understand and 

control cellular functions. Bone marrow and lymph nodes represent compartments where 

fluid and solid environments interface with each other, thereby providing opportunities to 

understand the effect of diverse biophysical cues on stromal cells of mesenchymal origin 

and functions in the context of immunomodulation. The biophysical cues in tissues can be 

generally classified into (1) intrinsic cues that are encoded within tissues under steady-state, 

such as viscoelasticity, and (2) extrinsic cues that undergo change in response to movement, 

such as strain, pressure, and fluid flow.

Bone marrow as a reservoir of diverse biophysical cues.

From a biophysical point of view, bone marrow is a soft tissue that interfaces with rigid 

bone [40]. Various macroscale measurements including rheology and indentation show that 

overall elastic modulus (E) values can vary significantly from one marrow sample to another 

[41]. Recent analysis by atomic force microscopy (AFM) revealed biophysical complexity 

of the marrow environment at the microscale [42]. The E of marrow is ~0.1 kPa, while 

the regions closer to the inner bone surface after washing away marrow show different 

peaks at 2, 30, and 100 kPa, which likely represent E values of nascently secreted matrix, 

osteoid matrix organized into fibers [43], and the mineralized matrix [44], respectively. 

Adding to this complexity, matrix compositions are known to vary across different marrow 

regions where collagen-I is localized in the endosteal area, collagen-IV and laminin are 

near vessels, and fibronectin is localized throughout marrow [45]. To date, the majority of 

MSC subpopulations have been identified as pericytes that interface with the vasculature 

within the marrow region [21, 22, 46], which could provide a strategic advantage for MSCs 

to regulate immune cell trafficking between marrow and blood via paracrine signaling, as 

shown in the context of systemic infection [25]. In contrast, some MSC subpopulations 

have been identified near the endosteal region and contribute to bone homeostasis [19], 

although the contribution of MSCs in this region in immunomodulation remains unclear. 

A recent study shows that softer matrices increase the ability of MSCs to respond to 

inflammatory signals and synthesize paracrine molecules to regulate monocyte production 

and trafficking [47], which is consistent with the notion that vascular region properties 

promote immunomodulation. In addition to elastic modulus, it is known that marrow [48] 
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exhibits viscoelastic properties. A general viscosity gradient has been reported from the 

~40cP at distal to ~400cP at central regions of the marrow [49], although microscale 

viscoelasticity in marrow remains to be characterized. Indeed, a previous study shows 

that substrates with a higher damping factor increase the ability of MSCs to promote 

hematopoietic recovery after injury [50]. Future investigations are warranted to understand 

combinatorial roles of matrix biophysical cues and matrix compositions [51] in MSC­

mediated immunomodulation.

Bone protects marrow from exogenous strain and pressure. However, marrow is highly 

vascularized and hence subject to regulation by blood flow, which is altered in response 

to cardiac output as a result of habitual movement. Marrow receives fluid primarily from 

the periosteal arteries, which connect to the central arteries and arterioles within the 

marrow. Within marrow, fluid collects within the central sinus and leaves by eventually 

connecting with venous circulation. Between these extremes, sinusoidal circulatory systems 

made up of capillary systems exist to evenly distribute nutrients and collect blood flow 

for venous circulation [52]. Fluid within the arterial regions exhibits a higher shear rate 

at ~2000 s−1, with a steady decrease in velocity towards venous regions to a shear rate at 

~120 s−1 [53]. Intriguingly, MSC subpopulations near the arterioles are known to support 

lymphoid-biased HSCs and lymphoid progenitors [54], and are activated upon exercise via 

the mechanosensitive ion channel Piezo1 [55]. In contrast, MSC subpopulations near the 

sinusoids regulate the production of myeloid lineages, where granulocyte progenitors and 

monocyte/dendritic progenitors are localized at spatially distinct regions near the vessels 

[56]. Whether fluid shear directly impacts the ability of MSCs to regulate lineage decisions 

for adaptive versus innate immune cells in marrow remains to be investigated. Interestingly, 

ex vivo application of wall shear stress is known to promote anti-inflammatory effects of 

MSCs by upregulating prostaglandin E2 [57]. Consistent with this observation, exercise 

is known to reduce inflammatory cell production in an MSC-dependent manner in vivo 
[58]. Together, the in vivo studies suggest that blood flow is an important determinant of 

MSC-mediated immunomodulation in marrow.

Lymph node as a dynamic fibrous network.

A lymph node is a secondary lymphoid organ that is strategically localized between 

vascular and lymphatic branching points to function as filters for antigens and to promote 

infiltration of immune cells during immune response [59]. These filters are characterized 

by the conduit network in the parenchyma, which is a porous mesh of bundled and 

aligned matrix fibers enwrapped by FRCs [60]. The matrix fibers in the conduit network 

primarily consist of collagen-III and collagen-I [61, 62], which are mainly produced by 

FRCs [63]. While chronic tissue inflammation often results in aberrant matrix deposition 

and crosslinking, fibrosis rarely occurs within the lymph node [64] despite the frequent 

occurrence inflammatory episodes there. Interestingly, a recent study shows that matrix 

deposition by FRCs is reduced during inflammation to enable swelling of the conduit 

network [65]. In addition, the contractility of FRCs is also reduced as they interact with 

mature dendritic cells that present antigens [66, 67]. During lymph node swelling, FRCs 

are known to play dual roles in controlling T-cell responses. On one hand, FRCs, just like 

bone marrow-derived MSCs, secrete molecules to restrain T-cell proliferation in response 
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to interferon-γ (IFNγ) [68]. On the other hand, interleukin-6 (IL6) from activated FRCs 

promotes T-cell fitness [69]. While microscale biophysical properties of the conduit network 

remain to be further characterized, these studies highlight the potential of the lymph node 

as an inspiration for a unique material system with dynamic properties at the interface 

of network swelling, stromal-stromal cell adhesion, matrix remodeling, and stromal cell­

mediated immunomodulation.

Interstitial fluid drains into lymph vessels and enters lymph nodes via afferent lymphatics. 

Lymph transport lacks connection with the circulatory system, but instead relies on smooth 

muscle contraction, which operates under a low contraction rate (10–20 contractions per 

min) and low pressure (2–18 cmH2O) [70]. As a result, lymph flow is generally slow, but 

exercise or external massage can increase the velocity [71]. In addition, lymph flow will 

likely increase in some cancer or fibrotic conditions where interstitial fluid pressure becomes 

higher and the interstitial matrix undergoes stiffening, thereby increasing pressure gradients 

to drive the flow [72]. Like MSCs under fluid flow in marrow [55], FRCs in the conduit 

network are highly sensitive to fluid flow via Piezo1, which is essential for lymphocyte 

migration and antibody responses in vivo [73]. Slower fluid flow is known to increase the 

secretion of the chemokine CCL21 from FRCs, and blocking the flow through the lymph 

node inhibits CCL21 expression, suggesting that lymph flow is essential for the ability of 

FRCs to recruit mature dendritic cells and naïve T-cells [74]. While lymph flow likely drives 

conduit network swelling, which can subsequently stretch FRCs, these studies also highlight 

the direct role of fluid flow in regulating stromal cell-mediated immunity.

4. Roles of cellular mechanotransduction in regulating fundamental 

processes related to immunomodulation

Immune cells are known to communicate with each other through receptor-antigen 

interaction on the cell surface or secretion of humoral mediators, such as cytokines. In 

understanding how mechanotransduction impacts the ability of stromal cells to communicate 

with immune cells, it will be important to consider fundamental mechanisms behind how 

biophysical forces impact biological processes that mediate intercellular communications, 

including receptor activation and exocytosis/endocytosis, all of which can be influenced by 

biophysical regulation of the plasma membrane (Fig. 1).

At the molecular level, external force is sufficient to increase affinities of B-cell receptors 

[75] and T-cell receptors [76] to antigens. Consistent with these results, 2D substrate 

rigidity is known to increase T-cell activation [77, 78], B-cell activation [79], and dendritic 

cell activation of T-cells in an actin polymerization-dependent manner [80]. Thus, in cell 

suspension without the matrix or on 2D substrates, it appears that increased biophysical 

forces enhance activation and surface presentation of immune receptors. However, in 3D 

environments, a recent study showed that tumor necrosis factor (TNF) receptor clustering 

on the plasma membrane of MSCs is enhanced in a softer 3D matrix in response to 

TNFα, thereby increasing the downstream production of monocyte factors [47]. Unlike 

2D environments, spatial confinement is an important determinant of cell spreading in 3D 

[81–83], which may also impact plasma membrane dynamics, and subsequently receptor 
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activation. Thus, the effect of matrix degradation and viscoelasticity needs to be considered 

in future studies to understand how 3D matrix mechanics impacts the activation of cytokine 

receptors in MSCs as well as the juxtacrine interactions between MSCs and immune cells.

Earlier studies showed that cell spreading on rigid plastic requires the addition of cell 

membrane, thereby driving biological processes that lead to increased membrane fusion, 

such as exocytosis [84, 85]. These studies have led to a physical model where cells with 

increased intracellular tension activate biological processes that decrease tension to maintain 

homeostasis by adding more membrane, as occurs in exocytosis [86]. This model seems 

to be consistent with the finding that receptors undergo more internalization on softer 2D 

substrates through activation of endocytosis [87], while lysosomal secretion by exocytosis 

is increased by stiffer substrates [88]. However, a recent study showed that MSCs increase 

secretion of immunomodulatory factors on softer substrates in an actomyosin-dependent 

manner [89], although it is possible that this phenomenon is due to changes in protein 

synthesis, rather than exocytosis per se. Indeed, a recent study shows that matrix stiffness 

does not impact constitutive protein secretion, but increased production of secreted proteins 

in softer substrates is due to increased transcription in response to inflammatory activation, 

though it occurs in a myosin-II independent manner [47]. In addition, increasing homotypic 

cell-cell interactions of MSCs by encapsulation in scaffolds with a larger porosity [90] or 

by forming spheroids [91] promotes paracrine factor secretions. While cell-cell interactions 

enhance tissue-scale tension [92], which could then result in increased exocytosis [86], the 

contribution of cell-cell interactions to protein exocytosis/endocytosis vs. synthesis remains 

to be dissected. Future studies will likely address roles of matrix mechanics in regulating 

different membrane vesicle trafficking mechanisms that impact protein secretions, most 

notably, extracellular vesicles, which have emerged as carriers of therapeutic cargo [93] that 

can transport through the matrix [94].

5. Biomaterial strategies to study roles of matrix biophysical cues on 

MSC-based immunomodulation

Many previous studies used biomaterial strategies to reveal the sensitivity of blood and 

immune cells to biophysical cues, a topic which has been reviewed extensively [40, 95–

97]. In general, material biophysical cues are known to mediate fundamental processes 

of immune response, including deformation, adhesion, and trafficking of cells [98, 99], 

cell-cell interactions [76, 100], and antigen affinity [101, 102]. Recent studies have 

shown that some of these regulatory processes for blood and immune cells can also 

be relevant to understanding biophysical regulation of MSC-based immunomodulation. 

Emerging studies show that biophysical properties of biomaterials, including topography, 

porosity, dimensionality, and viscoelasticity may play important roles in MSC-based 

immunomodulation (Fig. 2).

Matrix fibers are visible at the interface between inner bone surface and marrow, where 

they appear to exhibit different orientations [42]. To test the biological significance of 

matrix fiber orientation in stromal cell-mediated immunity, topography of substrates for 

cell adhesion can be controlled by various microfabrication approaches. In the context 

Wong et al. Page 7

Acta Biomater. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of studying stromal cell functions, soft lithography, electrospinning, and stereolithography­

based printing have been employed. Soft lithography has been widely used to generate 

patterns of adhesive substrates at the microscale, including microgrooves and microposts 

[103]. In general, a mask with desired micropatterns is used to fabricate a photoresist 

mold, on which softer materials, such as polydimethylsiloxane (PDMS) can be casted. 

Patterned PDMS substrates can be precisely tuned in terms of mechanical properties and 

functionalization with matrix molecules so that they can be used to interface with MSCs. 

While this approach has been used extensively to study mechanical regulation of MSCs 

[104, 105], it remains to be leveraged to understand biophysical regulation of stromal 

cell-based immunomodulation. Recent studies employed different approaches to fabricate 

more physiologically relevant microenvironments with controlled substate topography to 

study their impact on stromal cell-based immunomodulation. Electrospinning can be used 

to generate fibrous matrices with independent control of architecture and mechanics [106]. 

Using this approach, it was shown that MSCs increase the secretion of immunomodulatory 

factors when cultured on aligned fibers than on random fibers in a Yes-associated protein 

(YAP) and focal adhesion kinase (FAK) dependent manner [107], suggesting the potential 

importance of matrix fiber orientation in regulating stromal cell-mediated immunity. In 

contrast to electrospinning, stereolithography-based printing offers more precise control of 

where matrix fibers can be placed in a given space, at the microscale [108]. This approach 

can also expand the repertoire of materials that can be used to control topography beyond 

PDMS-based materials, such as hydrogels that can be cured by light. By leveraging this 

approach, it was shown that varying the placement and intrinsic properties of discrete matrix 

signals differentially impacts cell volume and YAP-based mechanotransduction of MSCs, 

which could in turn impact MSC-based immunomodulation [109].

Tissues need to be porous to accommodate immune cell production and trafficking. 

However, hydrogels are generally nanoporous. Porosity of nanoporous hydrogels is often 

inversely correlated with stiffness, although stiffness of alginate hydrogels can be tuned 

independently of porosity based on an egg-box model [110]. Increasing porosity in 

hydrogels will likely provide cells with less spatially confined environments, which could 

facilitate cell spreading, migration and intercellular interactions. The most convenient way 

to achieve this goal is to use freeze-drying of crosslinked hydrogels where ice crystals 

create the macroporous voids, followed by reconstitution and seeding of cells [111]. 

Using this approach, a previous study showed that MSCs in macroporous alginate-based 

hydrogels increase the production of growth factors, such as vascular endothelial growth 

factor (VEGF) due to N-cadherin mediated cell-cell interactions as opposed to MSCs in 

nanoporous alginate hydrogels, while the microscale material stiffness is kept constant 

[90]. Consistent with this observation, MSC spheroids in alginate gels show higher VEGF 

secretion compared to dissociated cells [91]. However, a freeze-drying approach results in 

a broad pore size distribution. To overcome this limitation, encapsulation of degradable 

microgels has recently been used to form monodisperse pores in hydrogels independently 

of intrinsic material properties—in this context, the pore-forming microgels have been 

created either by an aerosol-based method [112] or a droplet microfluidic approach [113]. 

In addition, electrospinning or printing can be used to fabricate fibrous matrices with 

defined porosity [114]. These recent approaches will help advance our understanding of 
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how microscale porosity impacts MSC-mediated immunity in conjunction with dynamic 

fluid flow as seen in lymph nodes.

Some stromal cells in tissues are present either on matrix fibers (2D) as in the conduit 

network, while others can be surrounded by the matrix as in marrow (3D). Substate 

dimensionality is generally controlled by seeding of cells on top of pre-formed materials 

(2D) or encapsulating cells in materials (3D) [115]. It is also possible to create an 

intermediate (‘2.5D’) condition where cells are sandwiched between two hydrogel layers 

[116], which can simulate the condition where cells are placed at the interface between 

two different regions, such as marrow and inner bone surface. A previous study showed 

that MSCs secrete less pro-inflammatory cytokines at the basal level in 3D compared to 

2D in a non-hydrogel polymer scaffold [117]. Supporting this observation, another study 

reported that the expression of tryptophan 2,3-dioxygenase, which is associated with an 

immunosuppressive effect, is reduced when MSCs are encapsulated in 3D alginate-based 

hydrogels [118]. However, whether these effects are due to substrate dimensionality per 
se or other factors such as increased spatial confinement in 3D compared to 2D remains 

to be investigated by using strategies to selectively control porosity. With recent advances 

in temporal control of material properties [119], biophysical regulation of stromal cell­

mediated immunity can also be studied over time (a ‘4th dimension’). The ‘4D’ material 

systems will be useful to understand how immunomodulatory properties of MSCs may 

change under temporal pathological conditions where tissues undergo stiffening over time 

such as in fibrosis and cancer, and the potential roles of mechanical memory [120] in 

regulating this process.

To simulate microscale variations in mechanical properties of natural marrow (Section 

3), it is possible to leverage hydrogel systems with tunable matrix viscoelasticity. Matrix 

elasticity is a function of polymer crosslinking and can be controlled independently of 

ligand density and porosity either by conjugating a ligand to a polymer backbone [43, 

121, 122] or interpenetrating a natural polymeric ligand with a synthetic polymer that is 

used to control elasticity [123]. In general, softer matrices have shown to be beneficial in 

enhancing basal secretion of different cytokines and growth factors by MSCs [124] and the 

responsiveness of MSCs to TNFα to increase the production of monocyte regulatory factors 

[47]. Since most tissues exhibit viscoelastic behaviors due to energy dissipation, efforts have 

been made to develop hydrogels with tunable viscoelasticity, which can be characterized 

by stress relaxation (decreased stress under constant strain), creep (increased strain under 

constant stress) or loss tangent (ratio between viscous modulus and elastic modulus). This 

has generally been achieved by employing reversible chemical bonds to crosslink hydrogels. 

For instance, alginate hydrogels undergo faster stress relaxation when they are crosslinked 

with ionic bonds vs. covalent bonds [125]. Decreasing molecular weight of alginate and 

introducing steric hinderance by PEG conjugation can further accelerate stress relaxation 

[81]. For non-ionic hydrogels, variation of monomer ratios [126], host-guest chemistry [127] 

and dynamic covalent crosslinking [128] have been used to introduce viscoelasticity. A 

recent study leveraged an interpenetrating network of collagen-I and alginate to show that 

MSCs in an ionically crosslinked hydrogel produce a higher level of anti-inflammatory 

factors in response to inflammatory challenge than MSCs in a covalently crosslinked 
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hydrogel [129]. Together, these studies highlight the importance of both elastic and viscous 

material properties in regulating MSC-mediated immunomodulation.

6. Relevance of material biophysical cues to isolation and delivery of 

MSCs for immunomodulation

Understanding biophysical regulation of cell-matrix interactions may inform better strategies 

to isolate and deliver stromal cells of mesenchymal origin for immunomodulation (Fig. 3). 

Endogenous MSC populations in marrow are rare (~0.05%) [130]. Thus, most investigators 

have been using MSCs that are derived from plastic adherence followed by culture in low 

glucose medium to remove any adherent hematopoietic cells and to expand MSCs. This 

process can take more than one month to obtain sufficient cells for downstream applications. 

However, it is known that MSCs have mechanical memory [120]. Thus, prolonging culture 

time on plastic may impair the ability of MSCs to sense softer substrates, which might 

negatively impact the corresponding sensitivity of inflammatory activation [47] or the 

constitutive production of immunomodulatory factors [89]. To address this issue, it may 

be beneficial to expand MSCs in natural or biologically-inspired substrates. For instance, 

collagen-based scaffolds were shown to promote MSC seeding and survival after isolation 

[131], to facilitate MSC proliferation [132], and to preserve MSC phenotypes [133]. 

Culturing MSCs in spheroids within Arg-Gly-Asp (RGD)-conjugated alginate hydrogels 

could also increase MSC survival [91].

While MSCs modulate immune cells, they are not resistant to immune clearance. In fact, 

most donor MSCs are cleared from the host within 24~48 hours [134], unless they are 

delivered directly to the tissue of origin as shown by long-term engraftment studies in bone 

marrow [47, 135]. In addition, it is likely that MSCs delivered in circulation respond to 

shear stress, which can impact their survival and functions [57]. While MSCs are known 

to express low Class I Major Histocompatibility Complex (MHC) and no class II MHC, 

both receptors can undergo upregulation upon inflammatory activation, which in turn could 

trigger a host defense mechanism, including foreign body response (FBR) to remove donor 

MSCs after administration [136]. In addition, MSCs express a low level of CD47, ‘marker 

of self’, compared to blood cells [137], thereby making them susceptible to potential 

phagocytosis by macrophages [138]. While some biomaterials are also susceptible to FBR, 

MSCs themselves are known to reduce FBR of biomaterials by reducing macrophage 

activation [139]. It is also possible to modify the surface of biomaterials to reduce FBR 

as shown by introducing zwitterionic groups [140] or triazole analogs to alginate hydrogels, 

the latter of which prolongs allogeneic islet transplantation in primates [141]. However, the 

utility of these approaches in prolonging delivery of MSCs remains unclear. Interestingly, 

coating individual MSCs with a thin alginate gel by droplet-based microfluidics prolongs 

the residence time of MSCs after intravenous injection [142], which is further enhanced 

by modifying the alginate coating with adsorption of poly-l-lysine [143]. Whether these 

observations are also applicable to other routes of administration will likely depend on the 

immune milieu of the administration site. The ability to precisely tune material properties of 

the gel coating around single MSCs [144, 145] will not only help control the biodistribution 

of MSCs, but also allow local cue specification to donor MSCs for optimal efficacy.

Wong et al. Page 10

Acta Biomater. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Potential roles of biomaterials in evaluating MSCs as therapeutic 

products

Like other therapeutic products, MSCs as therapeutic cells must be evaluated in terms of 

potency, cooperativity, and efficacy (Fig. 4). In particular, potency assays that capture the 

relevant biological activity of therapeutic products are essential requirements to submit 

an investigational new drug application to U.S. Food and Drug Administration to use an 

MSC product as an immunotherapy [146]. Investigations into MSC mechanotransduction 

by using biomaterial design have elucidated the effects of microenvironmental properties 

on MSC phenotypes. However, conventional MSC potency assays use standard tissue 

culture plastic, which does not capture the sensitivity of MSCs to matrix biophysical 

cues in different physiological or pathological conditions. To best consider the effects of 

microenvironmental cues on the therapeutic potential of MSCs, it will be important to more 

completely define these effects in terms of the established framework of pharmacodynamics 

for small molecules and biologics [147] (potency, cooperativity, and efficacy), and consider 

how biomaterial design can impact each parameter.

To determine the potency of MSCs as therapies, in vivo dose response studies can be 

performed to determine the cell dose that results in a half-maximum therapeutic response 

in an animal model. Since the primary mode of action by which MSCs modulate immune 

cells requires the exposure to inflammatory signals in the host [13], one way to predict in 
vivo dose response is to test the sensitivity of MSC products to inflammatory activation in 
vitro [148]. In pharmacology, the potency of receptor activation is influenced by intrinsic 

affinity or conformation of receptors, which is indeed influenced by substrate stiffness 

as demonstrated in immune cells [77–80]. Thus, understanding how different biomaterial 

properties impact the potency of inflammatory activation will be a key to better evaluating 

MSC potency for disease indications where mechanical properties of tissues vary. In 

addition, biomaterials may inform how a certain inflammatory ligand can be presented to 

MSCs for optimal immunomodulatory effects. For instance, some receptors, such as c-kit, 

can bind to ligands in an insoluble form at a lower concentration than the soluble form 

[149]. In this case, biomaterials can potentially be delivered along with MSCs to incorporate 

and present ligands from the host to MSCs to increase the potency of inflammatory 

activation.

Cooperativity indicates whether the intended effect is increased gradually with an increasing 

dose or as an “on/off” switch at a specific threshold dose, which is indicated by the slope 

of a dose response curve. The on/off response was previously reported in the context of 

MSC therapy where a systemic cytokine upregulation in the host could be observed only 

when a certain threshold dose of donor MSCs was used [150]. At the cellular level, positive 

cooperativity will likely suggest that the therapeutic activity of MSCs is amplified with a 

higher MSC dose due to homotypic interaction among MSC populations to enhance the 

production of immunomodulatory factors. In addition, positive cooperativity may indicate 

that when a single target immune cell is modulated by a single MSC, this causes other 

immune cells to become better influenced by other MSCs through heterotypic interactions. 

Thus, biomaterials that can tune cell-cell interactions [90] or spheroid formation [91] will 
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inform the cooperativity of a given MSC product. The ability to precisely direct single cells 

by biomaterials [109, 144], and assemble single cells into clusters in a bottom-up manner 

[151–153] will also improve our ability to predict MSC cooperativity.

Efficacy of MSCs refers to the maximum possible effect of a given MSC product. Unlike 

potency, efficacy is influenced by receptor density and clustering on the cell membrane. 

Thus, membrane fluidity, endocytosis and exocytosis are likely important determinants 

to determine the efficacy of MSCs. Indeed, a recent study showed that matrix stiffness 

impacts the maximum response of TNFα activation in MSCs by regulating TNF receptor 

clustering [47]. However, the same study showed that unlike TNF receptor activation, matrix 

stiffness does not impact IFN receptor activation. Thus, mapping the effect of different 

matrix biophysical parameters on paracrine secretions of immunomodulatory factors will 

be an important goal in the field, which can be facilitated by combining single cell RNA 

sequencing [154] with single cell encapsulation approaches [142, 144], both of which are 

based on droplet-based microfluidics. In addition, both secretion and recycling of paracrine 

factors will likely impact the maximum net release of immunomodulatory factors from 

MSCs. At the cellular level, the ability of donor MSCs to interact with the host and gain 

access to immune cells is likely an important determinant of MSC efficacy, since MSCs 

need to undergo substantial mechanical squeezing to permeate biological tissues, while 

immune cells can do so much more readily [155, 156]. To address this issue, biomaterial 

design can be combined with microfabrication approaches [157] to predict the ability of 

MSCs to traffic through spatial confinement and hence interact with immune cells.

8. Potential roles of material biophysical cues in improving MSC-based 

immunotherapy for clinical applications

One major class of clinical indications for which MSCs have been tested is immunological 

rejection due to allogeneic transplantation or autoimmunity. In the context of bone marrow 

transplantation, T-cells in allogeneic donor marrow recognize the host as foreign due to 

human leukocyte antigen mismatches and attack the host within 3 months, leading to acute 

GvHD [158]. The clinical use of MSCs for acute GvHD has been approved in some 

countries for patients that are resistant to anti-inflammatory steroids [159]. However, the 

clinical outcomes have been variable [160]. In fact, two distinct phase 3 clinical trials failed 

to show beneficial outcomes by MSCs in steroid-resistant GvHD patients [161]. Similarly, 

MSCs have been tested to treat autoimmune disorders, most notably, the Crohn’s disease, 

leading to approval in Europe to treat fistulas, a common complication of Crohn’s disease 

[162]. However, a phase 3 trial of MSCs in Crohn’s disease was not successful in the U.S 

[163]. While a number of factors may have contributed to variable clinical outcomes in 

these cases, one plausible possibility is that patients are administered anti-inflammatory 

corticosteroids, which are important clinical interventions to temporarily alleviate the 

symptoms, but also likely reduce the level of inflammation necessary to activate MSCs 

to produce paracrine factors that confer immune tolerance [164]. Priming MSCs on soft 

[47, 124], viscoelastic [129] materials with aligned fiber orientation [107] can potentially 

help increase the sensitivity of MSCs to inflammatory activation even when inflammation 

in the host is alleviated by steroid treatment. In addition, material strategies to prolong the 
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residence time of MSCs [142, 143] will enable the integration of attenuated inflammatory 

signals from the host by steroids.

MSCs have also been tested to treat acute tissue injuries. In particular, MSCs have shown to 

be efficacious in preclinical models of acute respiratory distress syndrome (ARDS) in part 

due to polarization of alveolar macrophages [165], which leads to increased phagocytosis 

[166] and restoration of vascular permeability [167] by secreting paracrine factors or 

extracellular vesicles. The number of clinical trials to test MSCs in ARDS have increased 

dramatically in the past year due to the COVID-19 pandemic [168], since ARDS is a major 

symptom of COVID-19 [169]. While MSCs were shown to be well-tolerated in phase 1 

studies, their efficacy was shown to be unclear in a recent phase 2a clinical trial [170, 171]. 

Since pulmonary functions are significantly compromised in ARDS, it will be important 

to control the dose of MSCs to avoid occurrence of pulmonary embolism. Thus, material 

strategies to increase the sensitivity of MSCs to inflammatory activation or to delay the 

clearance of MSCs will likely help reduce the number of effective MSC doses needed for the 

treatment of ARDS.

In devising treatment strategies for chronic tissue injuries, it is not only important to 

consider inflammation but also subsequent aberrant tissue remodeling processes, eventually 

leading to fibrosis [172], which stiffens tissues due to increased collagen production and 

crosslinking [173]. For example, chronic GvHD leads to fibrosis in different organs, which 

contribute to long-term morbidity and mortality [174]. In addition, a subset of ARDS 

survivors can develop lung fibrosis later in life [175]. In this context, MSCs have shown 

to be potentially beneficial for treatment of myocardial infarction based on some phase 

2 clinical studies, although a large randomized controlled trial remains to be completed 

[176]. A landmark preclinical study showed that the efficacy of MSCs in myocardial 

infarction requires the secretion of TNF-stimulated gene-6 (TSG6) [177], which has also 

been attributed to the efficacy of MSCs in preventing skin fibrosis in a preclinical model 

[178]. MSCs were also shown to be beneficial to prevent preclinical models of fibrotic lung 

injury and chronic obstructive pulmonary disease when administrated at early stages, but not 

later stages [179], highlighting the current limitations of MSC therapy in treating chronic 

tissue injuries. These limitations can be attributed by a couple of factors. First, inflammation 

subsides by the time fibrosis is diagnosed, thereby limiting inflammatory activation of 

MSCs to synthesize therapeutic factors once delivered to the host [13]. Second, significant 

biophysical changes in fibrotic microenvironments may influence donor MSCs to further 

adopt fibrotic phenotypes [180], thereby potentially limiting therapeutic efficacy or even 

exacerbating fibrosis as previously observed in a preclinical study of myocardial infarction 

[181]. To overcome these limitations, a recent study leveraged a conformal gel coating as a 

means to provide donor MSCs with locally specified biophysical and biochemical signals—

using this approach, it was shown that MSCs singly coated with a soft gel that continuously 

presents recombinant TNFα facilitate the reversal of fibrotic lung injury in a preclinical 

model when delivered at later time points [145]. Thus, biomaterial design can be leveraged 

to design MSC-based therapeutics for chronic tissue injuries by providing control over how 

donor cells interact with specifically engineered environments versus those within the host.
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9. Conclusion and Future Directions: Towards a single cell-level control 

for precision mechanomedicine

The contribution of matrix biophysical cues to MSC-based immunomodulation is an 

important yet largely unexplored area. Advances in biomaterials will enable better 

recapitulation of the physiological microenvironment to study MSC functions in various 

immune organs and disease contexts, as well as enable improvement of MSC priming, 

isolation, and delivery. With precise control of biophysical properties, emerging studies 

show that biomaterial systems can be tailored to direct MSC secretomes as potential 

therapeutics to treat immunological rejections and tissue injuries.

One major challenge of understanding the impact of matrix biophysical cues on MSC-based 

immunomodulation is heterogeneity of stromal cell populations, as recently demonstrated 

by single-cell RNAseq analysis [51, 182]. Supporting this challenge, a recent study 

showed that distinct MSC subpopulations exhibit differential mechanosensitivity to varied 

matrix elasticity, which influences their differentiation potential [183]. Since droplet­

based microfluidic approaches have been used to profile cytokine secretions from single 

immune cells [184, 185], these approaches can potentially be combined with single cell 

encapsulation strategies to advance the field of single stromal cell mechanoimmunology. 

This line of approach can also be used to screen for individual MSC clones in engineered 

gel coatings with desired paracrine secretion activities, and subsequently deliver them to the 

host for therapeutic purposes.

The ability to miniaturize biomaterials down to the single cell level and specify their 

properties will likely advance the field of MSC-based immunotherapy. As shown in the 

airways [145], it will be possible to deliver MSCs along with locally specified synthetic 

microenvironments to tissues with a narrow space where immune cells reside via various 

routes of administration. Gel-coated MSCs can also be incorporated into larger tissue 

constructs or used as basic units to assemble into tissues, thereby potentially conferring 

immunomodulatory properties on engineered tissues. One of the biggest challenges in 

translating cell therapy is that mode of action is either poorly defined or considerably 

complex to immediately understand. However, as the clinical success of chimeric antigen 

receptor-T cell therapy has taught us [186], one way to overcome this challenge is to 

precisely define the input that confers a predictable therapeutic activity on engineered cells. 

Together with advances in synthetic biology [187], physical approaches to biomaterial 

design provide opportunities to specify microenvironmental cues around MSCs, to 

understand their impact on immunomodulation, and to use these cues directly to tailor MSCs 

for different disease indications.

The future of MSC-based immunotherapy remains optimistic and with a high ceiling for 

advancement by combining MSCs and biomaterials. With research efforts focused on 

investigating MSC mechanotransduction and developing novel biomaterial systems, the 

therapeutic potential of MSCs to control disorders of the immune system can be improved 

by leveraging biophysical cues.
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Statement of Significance

Stromal cells of mesenchymal origin are known to direct immune cell functions in 
vivo by secreting paracrine mediators. This property has been leveraged in developing 

mesenchymal stromal cell (MSC)-based therapeutics by adoptive transfer to treat 

immunological rejection and tissue injuries, which have been tested in over one thousand 

clinical trials to date, but with mixed success. Advances in biomaterial design have 

enabled precise control of biophysical cues based on how stromal cells interact with 

the extracellular matrix in microenvironments in situ. Investigators have begun to use 

this approach to understand how different matrix biophysical parameters, such as fiber 

orientation, porosity, dimensionality, and viscoelasticity impact stromal cell-mediated 

immunomodulation. The insights gained from this effort can potentially be used 

to precisely define the microenvironmental cues for isolation, priming, and delivery 

of MSCs, which can be tailored based on different disease indications for optimal 

therapeutic outcomes.
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Figure 1. Fundamental mechanisms that impact biological processes related to stromal cell­
mediated immunomodulation.
Biophysical properties such as elasticity, density and viscoelasticity of extracellular matrix 

(ECM) impact the immunomodulatory properties of stromal cells through outside-in 

signaling by regulating the receptor presentation, clustering, the affinity to ligands and 

endocytosis, as well as though inside-out signaling including exocytosis to control the 

release of secreted factors.
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Figure 2. Biologically inspired design of materials to study biophysical regulation of stromal 
cell-mediated immunomodulation.
A deeper understanding of matrix organization and stromal cell-matrix interactions in 

immune organs, including bone marrow and lymph nodes, enables investigators to pursue 

appropriate biomaterial strategies to tune different matrix biophysical parameters, including 

fiber orientation, porosity, dimensionality, and viscoelasticity. Recent studies show the 

effect of these parameters on the level of paracrine secretions by stromal cells to mediate 

immunomodulation.
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Figure 3. Biomaterials with tunable matrix biophysical properties improve the therapeutic 
potential of stromal cells.
With proper design of material properties, stromal cell isolation and culture can be 

improved. Biophysical cues also impact the immunomodulatory properties of stromal cells 

by regulating the receptor expression, sensitivity and the production of secreted factors by 

stromal cells. Encapsulating stromal cells in biomaterials can enhance in vivo residence 

of donor cells by preventing direct contact between donor cells and the host defense, and 

enable continuous presentation of specifically defined cues to donor cells.
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Figure 4. Pharmacodynamics of cells.
Dose response of cells is determined by three key parameters, including potency, 

cooperativity and efficacy as defined below each graph. Factors that can enhance 

each parameter are also described. Biomaterials can be designed to better inform each 

pharmacodynamic parameter of cells.
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Table 1.

Examples of immune cell regulation by stromal cells of mesenchymal origin in bone marrow and lymph 

nodes.

Organs Effector 
cells

Target immune 
cells

Mediators from 
stromal cells

Effects Refs

Bone marrow MSCs Monocytes CCL2 Essential for monocyte emigration from marrow 
upon infection

25

Dendritic cells Notch pathway Facilitate dendritic cell differentiation from 
HSCs

26, 27

Neutrophils GM-CSF, IL6, IL8 Support neutrophil survival, recruitment, and 
phagocytic activity

28, 29

B cells CXCL12 Maintain a B cell progenitor pool in marrow 30

Lymph node TRCs T-cells, dendritic 
cells

CCL19, CCL21 From a conduit network to enwrap the matrix; 
Regulate lymph flow; Recruitment of T-cells and 
dendritic cells during inflammation

34, 35

BRCs B-cells BAFF, CXCL13 Essential for B cell survival and humoral 
immunity

36

FDCs Essential for germinal center maintenance 37

MSCs: Mesenchymal stromal cells; FRCs: Fibroblastic reticular cells; TRCs: T-cell zone reticular cells; BRCs: B-cell zone reticular cells; FDCs: 
Follicular dendritic cells; CCL: CC-chemokine ligand; CXCL: CXC-chemokine ligand; IL: Interleukin; GM-CSF: Granulocyte and monocyte­
colony stimulating factor; BAFF: B-cell activating factor.
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