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Prediction of osteoporosis 
from simple hip radiography using 
deep learning algorithm
Ryoungwoo Jang1,7, Jae Ho Choi2,7, Namkug Kim3, Jae Suk Chang4, Pil Whan Yoon5 & 
Chul‑Ho Kim6*

Despite being the gold standard for diagnosis of osteoporosis, dual-energy X-ray absorptiometry 
(DXA) could not be widely used as a screening tool for osteoporosis. This study aimed to predict 
osteoporosis via simple hip radiography using deep learning algorithm. A total of 1001 datasets of 
proximal femur DXA with matched same-side cropped simple hip bone radiographic images of female 
patients aged ≥ 55 years were collected. Of these, 504 patients had osteoporosis (T-score ≤ − 2.5), and 
497 patients did not have osteoporosis. The 1001 images were randomly divided into three sets: 800 
images for the training, 100 images for the validation, and 101 images for the test. Based on VGG16 
equipped with nonlocal neural network, we developed a deep neural network (DNN) model. We 
calculated the confusion matrix and evaluated the accuracy, sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV). We drew the receiver operating characteristic 
(ROC) curve. A gradient-based class activation map (Grad-CAM) overlapping the original image was 
also used to visualize the model performance. Additionally, we performed external validation using 
117 datasets. Our final DNN model showed an overall accuracy of 81.2%, sensitivity of 91.1%, and 
specificity of 68.9%. The PPV was 78.5%, and the NPV was 86.1%. The area under the ROC curve value 
was 0.867, indicating a reasonable performance for screening osteoporosis by simple hip radiography. 
The external validation set confirmed a model performance with an overall accuracy of 71.8% and an 
AUC value of 0.700. All Grad-CAM results from both internal and external validation sets appropriately 
matched the proximal femur cortex and trabecular patterns of the radiographs. The DNN model could 
be considered as one of the useful screening tools for easy prediction of osteoporosis in the real-world 
clinical setting.

Osteoporosis is a common condition, especially in postmenopausal women; however, it often remains unde-
tected until after fracture occurs. Early detection of osteoporosis is greatly important in preventing osteoporotic 
fractures. In the United States, the incidence of osteoporosis-related fractures is more than four times higher 
compared to that of stroke, heart attack, and breast cancer1, and based on the meeting report of the World Health 
Organization (WHO), osteoporotic fractures account for more hospital bed-days than those diseases in several 
high-income countries2. Hip fractures, one of the major osteoporotic fractures, are associated with limitations 
in ambulation, chronic pain and disability, loss of independence, and decreased quality of life, and 21%–30% of 
patients who have hip fracture die within 1 year3.

To date, the gold standard for osteoporosis diagnosis is the estimation of bone mineral density (BMD) in 
the hip and lumbar spine using dual-energy X-ray absorptiometry (DXA)4. According to the WHO guidelines, 
BMD ≤ 2.5 standard deviations below the young adult mean (T-score ≤  − 2.5) indicates osteoporosis, while a 
T-score at any site between − 1.0 and − 2.5 indicates low bone mass or osteopenia. Moreover, the US Preventive 
Services Task Force has recommended screening for osteoporosis with BMD testing to prevent osteoporotic 
fractures in women aged ≥ 65 years3.
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However, even though DXA is the gold standard of osteoporosis diagnosis, it could not be widely used as 
a screening tool for osteoporosis because of its high cost and limited availability in developing countries5,6. To 
overcome these limitations, until now, great efforts have been made to develop a screening tool for osteoporosis. 
Quantitative ultrasonography is one of them, which has been developed as an alternative to DXA for screen-
ing osteoporosis. It is portable and more economical than DXA; however, it is insufficient to replace DXA as 
a screening tool for osteoporosis6. Furthermore, there are also various clinical risk assessment tools that have 
been developed to predict osteoporosis, including Fracture Risk Assessment Tool (FRAX), QFracture algorithm, 
Garvan Fracture Risk Calculator, and the Osteoporosis Self-assessment Tool6,7. These various risk assessment 
tools are easily accessible and useful; particularly, the FRAX calculator is a major achievement in terms of under-
standing and measuring fracture risk. However, a few limitations also exist, such as the lack of consideration of 
racial and ethnic group difference, especially those regarding body mass index and mortality rate8. Therefore, 
an advanced screening tool for osteoporosis is still needed in clinical practice.

Recently, artificial intelligence (AI) has been used for various medical imaging interpretation fields. Moreo-
ver, several studies attempted to apply AI technology for the development of a screening tool for osteoporosis. 
Based on simple radiographic data, there were a few trials to predict osteoporosis using machine learning or 
deep learning algorithm4,9. However, to the best of our knowledge, there were some limitations in the develop-
ment of a real-world screening tool, such as inappropriate object detection results and extremely small sample 
size with methodological flaws.

This study aimed to predict osteoporosis from simple hip radiography by developing a deep neural network 
(DNN) model, which could be considered as a screening tool for osteoporosis by applying the latest techniques 
in the medical AI field, minimizing the previous limitations.

Results
The mean age of all 1001 female patients was 72.5 ± 12.5 years (range 55.2–100.5). Moreover, 440 right hips and 
561 left hips were included. The mean BMD of the total hip was 0.715 ± 0.162 g/cm2 (range 0.20–1.34), and the 
mean T-score of the total hip was − 2.2 ± 1.3 (range − 6.5–3.1).

Validation of the deep learning model performance.  The confusion matrix of the trained neural 
network applying the 101 test sets is shown in Table 1. Our final DNN model showed an overall accuracy of 
81.2%, sensitivity (recall) of 91.1%, and specificity of 68.9%. The positive predictive value (PPV), which indicates 
“precision,” was 78.5%, and the negative predictive value (NPV) was 86.1%.

Furthermore, to evaluate the performance of our classification model, we drew the receiver operating char-
acteristic (ROC) curve shown in Fig. 1. The area under curve (AUC) value was 0.867, which indicates excellent 
performance10.

Visualization of model performance: gradient‑based class activation map (Grad‑CAM) 
result.  All Grad-CAM results from the 101 test sets were confirmed as appropriate by two orthopedic sur-
geons by perfect agreement (κ = 1.000). Moreover, to predict osteoporosis, we illustrated the Grad-CAM result 
for true positive, false positive, false negative, and true negative (Fig. 2). Not only the true positive and true 
negative results but also all false positive and false negative Grad-CAM results appropriately matched not only 
the cortex line but also the trabecular patterns of proximal femur radiographs, which indicates the validity of our 
classification model (see Supplementary File S1 online).

External validation.  The confusion matrix of the external validation cohorts from 117 datasets is shown 
in Table 2. The performance of the model showed an overall accuracy of 71.8%, sensitivity (recall) of 83.7%, and 
specificity of 38.7%. The PPV, which indicates “precision,” was 79.1%, and the NPV was 46.2%. The AUC value 
was 0.700, which indicates acceptable performance10 (Fig. 1). We also confirmed Grad-CAM results from all 117 
datasets to visually verify the model performance (see Supplementary File S2 online).

Discussion
DXA, which is regarded as the gold standard of osteoporosis diagnosis, uses the spectral imaging with measure-
ment of the differences of energy levels from two X-ray beams11. On the contrary, from the single hip radiographs, 
decreased BMD can be appreciated by decreased cortical thickness and loss of bony trabeculae in the early stages 
in simple radiographs (Fig. 3). Indeed, several previous studies in both orthopedic and other various clinical fields 
have reported that the cortical thickness or trabecular pattern could predict the BMD9,12. Therefore, herein, we 
hypothesized that if we used a deep learning methodology, we could predict the presence of osteoporosis using 
simple hip radiography. Even though the radiation dose of simple hip radiography is higher compared to DXA, 
in case DXA is not available, especially in developing countries, or patients have already undergone simple hip 

Table 1.   Confusion matrix of the final model. OP osteoporosis.

Predicted OP Predicted nonOP Total

Real OP 51 14 65

Real nonOP 5 31 36

Total 56 45 101
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radiography for other symptoms, the use of simple hip radiography for screening osteoporosis could be a good 
alternative to DXA.

In this study, we developed a DNN model that could predict osteoporosis only from a single hip radiograph, 
with > 80% accuracy and > 90% sensitivity with near 70% specificity based on VGG16 equipped with nonlocal 
neural network (NLNN) model. We believe that the current proposed model with high accuracy and sensitivity 
could be considered a useful screening tool for the easy diagnosis of osteoporosis in the real-world clinical setting.

Previously, there were several attempts to predict osteoporosis using simple radiography based on machine 
learning. In 2012, Harrar et al.13 compared the multilayer perceptron neural network to other artificial neural 
networks to predict osteoporosis defined by DXA in their study using calcaneus radiography. Moreover, in the 
following year, Kavitha et al.14 reported the combination method of histogram-based automatic clustering and 
support vector machine technique for the prediction of osteoporosis diagnosed by DXA using mandibular 
cortical bone in the fields of dentistry. However, in the clinical setting, the BMD from DXA is usually based 
on the examination of the lumbar spine and hip region, so there was a fundamental query in performing the 
validation between DXA on the lumbar spine/hip regions and other bones in the human body. Recently, some 
authors reported that their studies tried to predict osteoporosis from lumbar spine or hip radiographs. In 2020, 
Zhang et al.15 used a dataset of 1616 lumbar spine radiographs from 808 postmenopausal women and intro-
duced a deep convolutional neural network (CNN) model to classify the osteoporosis, osteopenia, and normal 
groups. Moreover, Yamamoto et al.4 used the deep learning model to classify osteoporosis using 1131 simple 
hip radiographs, which is similar to our study. However, both studies have some limitations: The former even 
performed three-class osteoporosis classification with great performance of the training dataset; in the test 
dataset, they only showed sensitivity of 57.9–89.3% on screening osteoporosis and sensitivity of 50.0–85.3% 
on screening osteopenia, which showed lack of consistency. Moreover, they have several potential biases from 
the characteristics of spine radiography, which is more sensitive to degenerative changes compared to the hip 
region or several overlying structures near the spine axis. There was also a critical query in the latter study by 
Yamamoto et al.; even though they reported high prediction performance, such as accuracy, precision, recall, 
and specificity numerically, in visualization of their classification model from Grad-CAM, their heatmap result 
was not distributed appropriately to the proximal femoral cortex or trabecular structure, around the lesser 
trochanter without the proximal femur or pelvic bone as they mentioned. They indicated definitely different 
regions of interest of DXA, even though they diagnosed and labeled osteoporosis/nonosteoporosis in the DXA 

Figure 1.   ROC curves of our osteoporosis prediction algorithm. The ROC curve of internal validation with 101 
validation datasets is shown in (A) with AUC value of 0.867, and the ROC curve of external validation with 117 
datasets is shown in (B) with AUC value of 0.700.
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result. However, compared to these previous studies, we achieved a favorable performance from our DNNs, 
which could predict osteoporosis from simple hip radiographs, and the visual explanation of our result from 
Grad-CAM was also appropriately matched with the proximal femur structure. To the best of our knowledge, 
this is the first study that showed acceptable osteoporosis diagnostic efficacy using a deep learning model sug-
gesting appropriate Grad-CAM results.

In this study, considering the neural network algorithm, CNN is an efficient algorithm for image processing. 
However, there are some drawbacks when using CNN architecture. The most significant part related to this study 
is that CNN only focuses on local features, not global features. As CNN uses a filter map for its linear transforma-
tion, CNN only sees locally. In this study, the X-ray dose is not modulated during radiography, and there might 
be a difference between images of soft tissue intensity divided by bone intensity. Therefore, we contemplated 
on how to overcome the different windowing levels automatically, and NLNN provided part of the solution. As 
NLNN works by generating one correlation matrix between every pixel, NLNN provides global information to 
the CNN network. This methodology is known as attention mechanism and used in various algorithms, such 
as transformer16. Without NLNN, we were unable to train the model at all. However, with NLNN, our model 
showed reasonable performance with high sensitivity.

This study has several limitations. First, when diagnosing osteoporosis in the clinical setting, we usually 
consider the BMD from DXA on both the lumbar spine and hip region, but we only considered the hip region 
in this study because of the complexity of the calculation criteria and various conditions of each patient of spine 
BMD (e.g., for interpretation of spine DXA, there were numerous exceptions that we do not routinely calculate 
L1 to L4 BMD). The data preprocessing from both the lumbar spine and hip region could make establishing 
the neural network model more difficult. However, considering the screening tool, the current model could be 

Figure 2.   Visualization of the region of interest that our final neural network model interpreted based on Grad-
CAM results. The comparison of cropped X-ray images (left) and Grad-CAM result that overlapped on original 
images (right). The case of true positive that predicted osteoporosis in a patient with real osteoporosis is shown 
in (A), false positive in (B), false negative in (C), and true negative in (D).

Table 2.   Confusion matrix of the external validation. OP osteoporosis.

Predicted OP Predicted nonOP Total

Real OP 72 14 86

Real nonOP 19 12 31

Total 91 26 117
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helpful even though it did not contain data of the lumbar spine. Second, we did not classify the dataset into three 
classes—“osteoporosis,” “normal,” and “osteopenia”—but only classified them into two classes, “osteoporosis” or 
“nonosteoporosis.” Classification can be thought of as an algorithm that makes the decision boundary between 
classes in data manifold. Therefore, the more subtle the decision boundary is, the more difficult the training pro-
cess becomes. Especially, osteopenia can be considered the gray zone for the classification task, leading to more 
difficult differentiation of osteoporosis and osteopenia. Moreover, the limitation of the relatively small number 
of included dataset was another main reason for the difficulty in dividing the data into three classes, including 
the “osteopenia” group and continuous outcome predicting model, which correlates actual BMD units. However, 
the natural progression from normal to osteopenia to osteoporosis is a continuous process, and in the clinical 
setting, we adopted the T-score for diagnosis of osteoporosis, not a BMD unit, and the two-class identification 
model could be more intuitive in some ways in a real-world clinical setting than three-class identification, as 
the screening tool of the current neural network model. Third, we only included postmenopausal women in the 
study, even though, clinically, they have a high risk of osteoporotic fracture. Indeed, recently, there were concerns 
about both underdiagnosed and undertreated osteoporosis in the older male population because men are typi-
cally not part of routinely recommended screening with DXA, so, in the future study, the larger neural network 
model should contain the data of the male population. Forth, the fundamental question exists for the defini-
tion of osteoporosis, on how well DXA reflects the real osteoporosis. Even though the WHO guideline defined 
osteoporosis as a T-score ≤  − 2.5 in postmenopausal women, DXA is also one of the examination modalities for 
evaluating BMD, not an absolute index for defining osteoporosis. Therefore, our current neural network model 
worked well and showed favorable performance to predict osteoporosis; however, these predictions sometimes 
might be not an actual osteoporosis prediction, and there could be a query that this only means consistency with 
the result of the DXA. In the future, further studies are needed, showing more accurate performance of both 
hip and spine radiography, like central DXA, with larger study datasets. Furthermore, comparisons with other 
examination modalities for osteoporosis, not only BMD-DXA, are required. Lastly, potential concerns regarding 
model performance might exist due to the discordance of AUC values between the internal and external valida-
tion sets, even though both AUC values indicated acceptable model performance10. However, we believe this 
may be due to the domain generalization issue. Moreover, to the best of our knowledge, no previous study has 
completely resolved the domain generalization issue. A few studies have attempted to solve it from a mathematical 
perspective, but they also finally handled this issue on a domain-by-domain basis, that is, as a multicenter study17. 
In the current study, we demonstrated the possibility of predicting osteoporosis using simple hip radiographs. 
Therefore, we assert that, using our proposed method, anyone can implement and train an osteoporosis predic-
tion model using their own dataset.

In conclusion, even though there were some limitations in the study, the current deep learning network 
model could be a useful screening tool for the easy diagnosis of osteoporosis in the real-world clinical setting 
with high accuracy and sensitivity.

Figure 3.   The comparison between normal hip radiographs and osteoporosis. Normal hip radiograph of a 
57-year woman, with confirmed T-score of − 0.7, is shown in (A), and the hip radiograph of 84-year woman 
who was diagnosed with osteoporosis with T-score of − 4.6 is shown in (B).
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Methods
Study design and patient selection.  This study aimed to establish a deep learning algorithm that clas-
sifies osteoporosis or nonosteoporosis defined by the T-score of DXA from simple hip radiographs. This study 
was approved by the Ethics Committee of Institutional Review Board of Asan Medical Center, Seoul, Republic 
of Korea (IRB No. 2019-1489). The Asan Medical Center ethics committee waived the need for the informed 
consent due to the retrospective nature of the study, and the analysis used anonymous clinical data. Data can-
not be shared publicly because it contains potentially identifying information of each patient. Data are avail-
able from the Asan Medical Center Institutional Data Access/Ethics Committee (contact Asan Medical Center 
Institutional Review Board, Convergence Innovation Bldg. 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of 
Korea. Website link, http://​eirb.​amc.​seoul.​kr/; E-mail, irb@amc.seoul.kr; Phone, + 82-2-3010-7165). Data collec-
tion was performed in accordance with the relevant guidelines and regulations of the committee.

We retrospectively reviewed data with both simple hip anterior–posterior (AP) radiographs and DXA exami-
nation results of consecutive patients who visited our hip and pelvic trauma and disease clinic based on our 
outpatient clinic and inpatient pool between January 2010 and February 2019. We only included the data of 
patients who (1) were aged ≥ 55 years, (2) were female, and (3) underwent both hip AP radiography and DXA 
within a month. We excluded the data of patients who (1) had hip osteoarthritis, which potentially leads to BMD 
overestimation; (2) had other diseases with a specific condition that could result in a bias in DXA results, such 
as osteonecrosis of femoral head, tumorous condition, and calcific tendinitis of the hip; (3) underwent DXA of 
the operated hip; (4) underwent hip radiography, which contained foreign body materials on the same side of 
the DXA; and (5) had either radiography or DXA records from other hospitals. All included data, such as simple 
hip radiographs and records of DXA, were provided by a single center (Asan Medical Center, Seoul, Republic of 
Korea). Digital X-ray machines (Model: GM85, Samsung Electronics, Seoul, Korea; Model: GR40CW, Samsung 
Electronics, Seoul, Korea; Model: Discovery XR656, GE Healthcare, WI, USA; Model: Thunder Platform, GE 
Healthcare, WI, USA; Model: CXDI, Canon Inc., Tokyo, Japan) at 70 to 78 kV and 207 to 500 tube current were 
used by an experienced X-ray imaging technologist to acquire standard hip radiographs in the study popula-
tion. BMD measurement by DXA was performed using Lunar Prodigy Advance system (GE Healthcare, WI, 
USA). We did not exclude the data of patients who had vascular calcification or Foley catheter on X-ray and did 
not consider hip dysplasia, even if there was no evidence of osteoarthritis progression. Moreover, we did not 
consider the position of the hip joint on radiography as an exclusion criterion affecting the quality assessment 
of hip simple radiographs, but this was regarded as normal variation of real-world data. Finally, the data of 1012 
patients were collected.

Dataset preparation.  A total of 1012 simple hip radiographs were divided into two groups: the osteoporo-
sis group, defined by a T-score ≤  − 2.5, and the nonosteoporosis group, defined by a T-score >  − 2.5 in DXA. The 
definition of osteoporosis followed the WHO diagnostic criteria18.

Of 1012 subjects, 513 subjects were diagnosed with osteoporosis, and the other 499 subjects were classified as 
nonosteoporotic. Of 1012 subjects, one had two radiographs (one subject). Except for this one radiograph, one 
licensed medical doctor (JR) manually cropped the simple hip bone X-ray images for 1011 subjects.

All images were cropped on the same side where the matched DXA examination was performed. The images 
were cropped on radiography, which fully contained the proximal femur region similar to the region of interest 
of DXA, defined as the acetabular roof as the superior border of the cropped region, as the lower margin of the 
lesser trochanter as the inferior border, lateral margin of the teardrop as the medial border, and lateral of the 
vastus ridge as the lateral border of the cropped image (Fig. 4).

We were unable to crop 10 images for inappropriate quality of the radiograph. Finally, we have 1001 images 
that were used for training, validation, and test sets. We randomly selected 80% for training set from entire 
datasets, and the remaining 10% for validation set and 10% for test set. We used 800 images for the training set 
(393 osteoporosis; 407 nonosteoporosis), 100 images for the validation set (55 osteoporosis; 45 nonosteoporosis), 
and 101 images for the test set (56 osteoporosis; 45 nonosteoporosis).

Training details.  For training, the VGG16 network was chosen19 as a deep learning model. It is a CNN 
model that shows high performance. To increase the performance of the network, we not only used the VGG16 
network itself but also implemented NLNN20 inside the VGG16 network.

When feeding images into the network, due to the nonstandardized image acquiring process of X-ray, we 
normalized X-ray images with Z-transform with 2-sigma, which translates mean to 0, and then divided with 
2-sigma. Furthermore, we randomly mentioned 2-sigma again with 1-sigma to make the model meet various 
windowing levels. In the mathematical term, we can express our Z-transform as

where ǫ is drawn from a random uniform distribution. After Z-transformation, we indicated pixel values that 
are bigger than 1 as 1 and smaller than − 1 as − 1.

Moreover, we used the data augmentation technique. For data augmentation, five strategies were used: origi-
nal imaging, blurring, sharpening, shearing, and rotation with a small angle. As there were five strategies, we 
set the number of iterations per epoch to be 4,000 iterations, which are 800 images multiplied by five strategies.

Additionally, we used Keras framework of Python language, with TensorFlow backend. Loss was set to be 
vanilla binary cross entropy, and we trained the model for 300 epochs. We selected the optimizer to be Adam21 
with a learning rate of 10−6 . After every epoch, validation loss and validation accuracy were calculated, and the 
model with the best validation accuracy was selected for the final model.

zij =
xij − µ

2σ ± ǫ · σ

http://eirb.amc.seoul.kr/
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Model evaluation.  After training, we calculated the confusion matrix to validate model performance, and 
from this, we evaluated the accuracy, sensitivity, specificity, PPV, and NPV. Moreover, we also drew the ROC 
curve and calculated the AUC. Furthermore, we used a Grad-CAM22 overlapping the original image to visual-
ize the model performance. The Grad-CAM is a tool of visual explanations of DNNs, activating the mapping 
that the deep learning network is seeing. Thus, Grad-CAM is a tool for explainable AI. Through Grad-CAM, 
one can visualize where a deep learning algorithm sees using a gradient of deep learning algorithm at the image 
level. All Grad-CAM results of the 101 test sets were independently reviewed by two board-certified orthopedic 
surgeons who are the faculty of orthopedic hip and pelvis (KCH and YPW). The adequacy of Grad-CAM were 
evaluated by the distribution of the heatmap, through not only the cortex line but also the trabecular patterns of 
the proximal femur, which is checked as binary data (yes/no) for adequacy. The agreement between reviewers 
was correlated with kappa values a priori: κ = 1, corresponding to perfect agreement; 1.0 > κ ≥ 0.8, almost perfect 
agreement; 0.8 > κ ≥ 0.6, substantial agreement; 0.6 > κ ≥ 0.4, moderate agreement; 0.4 > κ ≥ 0.2, fair agreement; 
and κ < 0.2, slight agreement.

External validation.  The neural network model was externally validated with the data that were prospec-
tively collected from another university hospital between October 2020 and July 2021. Digital X-ray machines 
(Model: Innovision DXII, DK Medical, Seoul, Korea; Model: Discovery XR656, GE Healthcare, WI, USA) at 
70 to 78 kV and 200 to 500 tube current were used in hip radiography, and BMD measurement by DXA was 
performed using Lunar Prodigy Advance system (GE Healthcare, WI, USA). A total 117 datasets (86 osteopo-
rosis; 31 nonosteoporosis) were used for external validation. The overall accuracy, sensitivity, specificity, PPV, 
and NPV were calculated. The ROC curve and AUC value were calculated. We also used Grad-CAM to visually 
verify the model performance.

Ethical approval and informed consent.  This study was approved by the Institutional Review Board of 
Asan Medical Center, Seoul, Republic of Korea (IRB No. 2019-1489), informed consent was waived due to the 
retrospective nature of the study, and the analysis used anonymous clinical data.

Consent for publication.  All authors agreed to publish this manuscript.

Data availability
The data presented in this study are available on request from the corresponding author. The data are not publicly 
available due to conditions of the ethics committee of our university.

Figure 4.   The region of interest that was cropped on simple hip radiograph. The upper border of the cropped 
image was the acetabular roof (arrows) and femoral head, and the lower border was located as far as the length 
of the lesser trochanter from the tip of it. The medial border (dotted line) was the crossing of the lateral margin 
of teardrop, and the lateral border of cropped image was positioned just lateral of the vastus ridge (asterisk).
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