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Identifying hidden coalitions 
in the US House of Representatives 
by optimally partitioning signed 
networks based on generalized 
balance
Samin Aref1,2* & Zachary P. Neal3

In network science, identifying optimal partitions of a signed network into internally cohesive and 
mutually divisive clusters based on generalized balance theory is computationally challenging. 
We reformulate and generalize two binary linear programming models that tackle this challenge, 
demonstrating their practicality by applying them to partition signed networks of collaboration and 
opposition in the US House of Representatives. These models guarantee a globally optimal network 
partition and can be practically applied to signed networks containing up to 30,000 edges. In the 
US House context, we find that a three-cluster partition is better than a conventional two-cluster 
partition, where the otherwise hidden third coalition is composed of highly effective legislators who 
are ideologically aligned with the majority party.

Signed networks, in which nodes can be connected by positive or negative ties, occur in many contexts. To 
identify communities in signed networks, it is often useful to put the nodes into clusters so that most positive 
ties are within clusters, while most negative ties are between clusters. Identifying clusters of nodes that optimally 
meet these criteria is computationally challenging, but we present practical methods for doing so. Applying these 
new global optimization methods to signed networks of the US House of Representatives shows that legislators 
are actually organized into three coalitions whose ideological composition offers new insights on the otherwise 
obscured interplay between partisanship and legislative effectiveness.

Signed networks are studied in a diverse range of contexts in both the natural1–3 and social4–7 sciences. Across 
these contexts, it is often of interest to identify clusters of nodes that are internally cohesive and mutually divisive, 
and thus partially satisfy the conditions of generalized balance8–11. Recent computational work on signed network 
analysis has focused on determining the network’s level of balance in general12–15, and in the context of signed 
graphs with node attributes16,17. However, although optimization-based methods exist for estimating a network’s 
level of balance18 by heuristically partitioning it into k = 2 clusters13 or computing its exact level of balance by 
optimally partitioning it into k = 2 clusters2,19,20, identifying an optimal partition of nodes into k ≥ 2 clusters that 
corresponds to the network’s level of k-balance (a.k.a. weak balance, generalized balance, and clusterability8) has 
remained a challenge. This computational challenge involves solving fundamental non-deterministic polynomi-
ally acceptable hard (NP-hard) graph optimization problems to global optimality19,21–23.

A common misconception about solving NP-hard optimization problems is that they can be addressed using 
“only heuristic methods”24. Previous work in this area has used a modified concept of network modularity to 
incorporate signed edges into a modularity maximization procedure24,25. They used a tabu search heuristic algo-
rithm on a signed network with 1131 edges25 and used a simulated annealing heuristic algorithm on a signed net-
work with 2517 edges24, in each case settling for sub-optimal partitions whose distance from optimality remains 
unknown. Unlike modularity, the concept of frustration15,26 requires no modification for application in signed 
networks because it originates from Ising models of atomic magnets in which couplings of opposite nature exist27 
which are analogous to signed ties. Using frustration and two mathematical optimization models, we propose 
and demonstrate a general method for finding a globally optimal partition of signed networks into k ≥ 2 clusters.
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Identifying an optimal partition of nodes into internally cohesive and mutually divisive clusters involves two 
computational challenges. The first challenge is finding a k-partition of a signed network, placing nodes into k 
clusters that minimize intra-cluster negative and inter-cluster positive edges (frustrated edges), where k is selected 
in advance19. A second challenge is finding the smallest number of clusters k∗min that minimizes frustrated edges 
among all partitions across all values of k. These challenges are unique from, but conceptually analogous to 
related challenges in community detection in unsigned networks: It is difficult to find a modularity maximizing 
partition into a specific number of clusters, but even harder to find the modularity maximizing partition into 
any number of clusters28. We solve the first challenge by generalizing a mathematical programming model for 
finding an optimal 2-partition15,19 and introducing a generalized model to find optimal k-partitions. Then, we 
tackle the second challenge by reformulating another mathematical model22 for non-complete graphs and solving 
it without providing the number of clusters.

We demonstrate the practicality of these methods, and illustrate how they can generate novel insights, by 
applying them to signed networks of political collaboration and opposition in the US House of Representatives 
from 1981 to 2018. Research on and descriptions of the US House usually place legislators into clusters defined 
by legislators’ political party affiliations. However, reliance on a simple binary attribute risks oversimplifying this 
complex system because it ignores information about the positive and negative interactions between individual 
legislators. We explore whether placing legislators into optimal clusters defined by their interactions, rather 
than simply by their parties, better captures the coalitional structure of the chamber. We find that the best fit-
ting parsimonious solution places legislators into three clusters characterized by a large liberal coalition, a large 
conservative coalition, and a smaller ideologically fluid coalition. Interestingly, we find that members of this 
ideologically fluid third coalition are substantially more effective at passing legislation than members of either 
dominant coalition. These findings suggest that, although political parties are clearly influential in US politics, 
some of the heavy lifting in the US House is done by a small splinter coalition of highly effective legislators who 
are ideologically aligned, but not necessarily collaborating, with members of the majority party’s core.

Partitioning signed networks
In this section, after introducing notions of k-balance and signed networks, we propose two related mathemati-
cal models. The first model finds a globally optimal partition of nodes into exactly k clusters. The second model 
finds a globally optimal partition across all possible partitions. When used together, these models  also provide 
the smallest number of clusters, k∗minaccording to generalized balance.

Preliminaries.  A signed network is an undirected simple graph with positive and negative signs on the edges 
usually denoted as G = (V ,E, σ) where V and  E are the sets of nodes and edges respectively, and σ is the sign 
function σ : E → {−1,+1} . Signed graph G contains |V | = n nodes and its symmetric signed adjacency matrix 
is denoted by A . The set E of edges contains m− negative edges and m+ positive edges adding up to a total of 
|E| = m = m+ +m− undirected signed edges. An edge with endpoints i and j is represented by (i, j) such that 
i < j . Given a signed graph G = (V ,E, σ) , a k-partition is a division of the set of nodes V into k non-empty sub-
sets V1,V2, . . . ,Vk such that Vi ∩ Vj = ∅∀i �= j and ∪k

i=1Vi = V  (i.e. every node belongs to exactly one subset).
Balance theory was conceptualized in the 1940s in the context of social psychology29, recast in graph theoretic 

terms in the 1950s18, and generalized in the 1960s8. Whereas classic balance holds that a signed network can 
be partitioned into up to two clusters18, generalized balance holds that it can be partitioned into any number of 
clusters. Generalized balance theory allows a more flexible structural decomposition of networked systems, which 
in turn offers a more nuanced view of polarization in social and political systems30–32. According to generalized 
balance theory, a signed network is k-balanced (i.e. clusterable) if its set of nodes can be partitioned into k clusters 
(or “coalitions”33) such that each positive edge joins nodes belonging to the same cluster, and each negative edge 
joins nodes belonging to different clusters8. Edges that fail to meet these criteria (i.e. a negative edge within a 
cluster, or positive edge between clusters) are called frustrated edges under that partition.

Generalized balance in empirical signed networks can be analyzed by measuring their distance to 
clusterability9,11,19. The distance of a given network G to clusterability can be quantified as the minimum num-
ber of frustrated edges among all possible partitions into k clusters [11, k-clusterability index, Ck(G) ], or the 
minimum number of frustrated edges among all possible partitions with any number of clusters 1 ≤ k ≤ n [9, 
clusterability index, C(G) ]. Obtaining these measures require intensive computation and are NP-hard21.

Figure 1A shows an example signed network with five negative edges (dotted lines) and two positive edges 
(solid lines). The signed network can be optimally partitioned into two clusters based on classic balance (B), or 
three clusters based on generalized balance (C). The classic approach leads to the 2-partition {{1, 2, 3}, {4, 5}} 
(shown by green and purple colors in Fig. 1B) which minimizes the total number of intra-cluster negative 
and inter-cluster positive edges to C2(G) = 1 . The generalized approach (Fig. 1C), leads to the 3-partition 
{{1, 2, 3}, {4}, {5}} which satisfies the conditions of generalized balance ( C(G) = C3(G) = 0).

Finding an optimal k‑partition and the k‑clusterability index.  We formulate an optimization model 
that computes the k-clusterability index of an input signed network in its optimal objective function. In a given 
feasible solution of the optimization problem, each node belongs to one of a set of k clusters C = {1, 2, . . . , k} . 
The binary decision variable xic takes the value 1 if node i ∈ V  belongs to cluster c ∈ C (and xic = 0 otherwise).

We consider that a positive edge (i, j) ∈ E+ is frustrated (indicated by fij = 1 ) if its endpoints i and j are in 
different clusters; otherwise it is not frustrated (indicated by fij = 0 ). A negative edge (i, j) ∈ E− is frustrated 
(indicated by fij = 1 ) if its endpoints i and j are in the same cluster; otherwise it is not frustrated (indicated by 
fij = 0).
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Using the binary decision variable xic , we formulate the process of finding an optimal k-partition and com-
puting the k-clusterability index as the binary linear programming model in Eq. (1). The model in Eq. (1) is an 
extension of a model based on classic balance which provides an optimal 2-partition and computes the 2-cluster-
ability index (a.k.a. the frustration index) of a signed network15,19.

The objective function in Eq. (1) computes the minimum number of frustrated edges among all k-partitions. 
The first set of constraints in Eq. (1) ensures that each node belongs precisely to one cluster. The second and 
third sets of constraints formulate the relationship between frustration of an edge (left-hand side) and the cluster 
membership of the endpoints of that edge (right-hand side) respectively for positive edges and negative edges. 
Refer to the Supplementary Information for more details and an illustrative numerical example on how the 
k-partitioning model in Eq. (1) works.

Finding an optimal partition and the clusterability index.  The more general problem of finding an 
optimal partition without specifying k and computing the clusterability index of a signed network G is known 
as the Correlation Clustering problem21 (and the Clique Partitioning problem if the graph is complete34). We 
reformulate the mathematical model initially proposed in22 which is defined in the context of complete graphs 
and widely used in the literature35–38 as follows. For every pair of nodes i, j, i < j , we define the binary decision 
variable yij which takes the value 1 if i and j belong to the same cluster and takes the value 0 otherwise.

The model in Eq. (2) uses these binary variables to count the frustrated edges in the objective function. In Eq. 
(2), the term aij represents the entry of the input graph’s adjacency matrix A associated with the pair of nodes 
i, j ∈ V  . To efficiently handle possibly non-complete graphs, we use the set T for the constraints of the model 
in Eq. (2). T = {(i, j, k) ∈ V3 | |aij| + |aik| + |ajk| ≥ 2, i < j < k} denotes the set of all connected triads (node 
triples connected by at least two edges) in G. Refer to the Supplementary Information for more details and an 
illustrative numerical example on how the partitioning model in Eq. (2) works.

Although we use both models in Eqs. (1)–(2), they are not necessarily dependent. Under the assumption that 
k <<< n , our proposed model in Eq. (1) is less computationally intensive than the model proposed by22, which 
we have reformulated in Eq. (2). Despite similar scaling of the number of variables with O(n2) , constraints of 
(1) have a quadratic growth, O(n2) , while constraints of (2) have a cubic growth, O(n3).

These models can be used for optimally partitioning any signed network into internally cohesive and mutually 
divisive clusters based on generalized balance. However, it is important to note that they can yield a multiplicity 
of optimal solutions, that is, they do not necessarily yield a single unique partition because multiple optimal 
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∑
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Figure 1.   (A) An example signed network. (B) Evaluating classic balance via bi-partitioning involves finding 
the optimal 2-partition {{1, 2, 3}, {4, 5}} and the edge (4, 5) which is frustrated under it. (C) Evaluating 
generalized balance and clusterability via k-partitioning leads to the optimal 3-partition {{1, 2, 3}, {4}, {5}} which 
reduces the frustrated edges to 0.
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solutions may exist (see the Supplementary Information for more details). Despite this potential multiplicity, 
these models offer two kinds of advantages over existing methods with similar goals. First, unlike heuristic 
partitioning methods that can provide locally optimal partitions24, the partitions identified by these models 
come with a guarantee of global optimality that means no better partition exists. Second, unlike other optimal 
partitioning methods that have been applied to small23,35 or complete21 signed networks, these models can be 
practically solved even for networks of considerable size and order, and for networks that are not complete, 
which are typical in social contexts. In the next section, we demonstrate their practicality using networks with 
up to 30,000 edges. We solve the optimization models in Eqs. (1) and (2) to global optimality using Gurobi solver 
(version 9.1)39 on a virtual machine with 32 Intel Xeon CPU E7-8890 v3 @ 2.50 GHz processors running 64-bit 
Microsoft Windows Server 2019 R2 Standard.

Partitioning the US House networks
In the previous section, we generalized one model and reformulated another model that provide globally optimal 
partitions of a signed network according to generalized balance. In this section, we show that they are compu-
tationally feasible and can be solved in a practical amount of time. To illustrate their practicality, we apply them 
to 19 networks varying in size, density, and structure that represent political collaborations and oppositions in 
the US House of Representatives in different eras. Although these networks are not ‘large’ compared to some 
networks ( n ∼ 445 , 4954 ≤ m ≤ 31936 ), they are large by comparison to the size of signed networks for which 
globally optimal partitions have been obtained before23,35,40.

Optimal coalitions.  We compare several ways to partition US House legislators into clusters or “coali-
tions”33, with the goal of determining the optimal number and the composition of these coalitions. The fitness of 
a given partition is indicated by its associated number of frustrated edges. The conventional method is to parti-
tion legislators into coalitions based on their party affiliations, while here we also explore partitioning legislators 
into coalitions by applying the optimization models in Eqs. (1)–(2) to signed networks of their collaborations 
and oppositions. Throughout our application of these models in the US House context, we use the term “coali-
tion” to refer to the clusters of legislators within a partition, however the partition is obtained, not only because it 
is commonly used in political contexts, but also because it was the term suggested for signed network partitions 
by Harary and Kabell33. Legislators’ memberships in these coalitions depend on either an attribute (e.g. their 
political party affiliation) or the solution to the models in Eqs. (1)–(2), but does not necessarily imply their cohe-
sion with other members of the same coalition.

Figure 2 illustrates the number of frustrated edges (y-axis) for partitions based on party affiliations and 
optimal k-partitions for k ∈ {2, 3, . . . , 7} (x-axis) in signed US House networks (see SI Table S1). The number of 
frustrated edges for a party-based partition (denoted by Cparty(G) ) is considerably larger than that of an optimal 
2-partition. This implies that defining coalitions simply in terms of legislators’ party affiliations leads to many 
frustrated edges, and therefore to a poor description of the coalition structure of the chamber. The number of 
frustrated edges decreases further from k = 2 to k = 3 , which implies that defining coalitions in terms of classic 
balance still leads to many frustrated edges and thus a poorer fit than defining coalitions in terms of general-
ized balance. For k > 3 there is only marginal decline, and then stagnation, in the number of frustrated edges. 
Substantively, these results suggest that the signed US House networks are better described by a partition into 
k > 2 coalitions than by a more conventional partition into only two coalitions20.

Figure 2 also reveals the changes over different eras of the House (e.g. sessions with start years 1981−1993 
in darker blue-purple shades and 2003−2017 sessions in lighter green-yellow shades). Party-based parti-
tions offer a better fit (i.e. fewer frustrated edges) in recent sessions than in earlier sessions due to increases 
in partisanship5,20,41. However, despite changes in the level of partisanship over time, for every session 
Cparty(G) > C2(G) > C3(G).
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Figure 2.   Number of frustrated edges (y-axis) of signed US House networks partitioned using different criteria 
(x-axis). Each line represents a single network, corresponding to a session of the US House starting in the given 
year. Fewer frustrated edges indicate that the partition is more consistent with the ties of collaboration and 
opposition between legislators.
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Because the results from Fig. 2 only cover a small range of k, a natural question is whether the fit could be 
improved further by using larger values of k. Finding the answer is not practically feasible using only the model 
in Eq. (1). Therefore, we solve the model in Eq. (2) to find the minimum number of frustrated edges, C(G), across 
all possible partitions for all possible values of 1 ≤ k ≤ n . By juxtaposing Ck(G) from the model in Eq. (1) and 
the values of C(G) from the model in Eq. (2), we determine whether the low-points observed in Fig. 2 represent 
the clusterability indices C(G) of the networks or the number of frustrated edges could decline further for k > 7.

Through this comparison, we verify that further decline in the frustrated edges is not possible because among 
all 19 networks, C(G) = Ck(G) at k ≤ 7 . The legend of Fig. 2 shows for each network the exact point of stagna-
tion k∗min , which is the smallest number of clusters that minimizes the k-clusterability index across all values of 
k: k∗min = argmin1≤i≤n Ci(G).

Coalition ideology.  Having identified several ways to assign legislators to coalitions in the US House, 
including optimal k-partitions and optimal partitions, we now examine the ideological compositions of coali-
tions defined from three perspectives: party, classic balance ( k = 2 ), and generalized balance ( k = 3 ). Although 
we found that 3 ≤ k∗min ≤ 7 , in the remaining substantive analyses we focus on the 3-partitions in the general-
ized balance case because k > 3 offers only small improvements in fit and therefore k = 3 offers a reasonable 
trade-off between fit and parsimony (see SI Figures S1 and S2). Figure 3 displays the distribution of coalition 
members’ ideology, for each method of defining coalitions (see SI Table S2). Coalitions with left-leaning liberal 
ideologies are shaded blue, while coalitions with right-leaning conservative ideologies are shaded in red; the 
solid vertical lines indicate a coalition’s median ideology.

Partitioning legislators into coalitions based on their political party affiliations (Fig. 3, left column) is the 
conventional approach in political science, and here displays the familiar pattern of increasing ideological polari-
zation. Partitioning legislators based on classic balance (Fig. 3, center column) offers a more data-driven classifi-
cation because legislators’ coalition memberships are based on their collaborative and oppositional interactions, 
but is still restrictive because it allows a maximum of two coalitions. The classic balance coalitions display similar 
ideological distributions to those based on political party: Increasing liberal-conservative ideological polarization.

Partitioning legislators into 3 coalitions based on generalized balance (Fig. 3, right column) also offers a 
data-driven classification, but allows more nuance. Like the other partitions, the generalized balance partition 
is characterized by a large liberal coalition and a large conservative coalition that diverge over time. However, it 
also includes a smaller and ideologically fluid coalition shaded in green. In the 435-member chamber, this ‘third 
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Figure 3.   Distribution of coalition members’ ideology in the US House of Representatives. Blue (red) curves 
indicate the ideologies of Democrats (Republicans) in the left column and that of the dominant liberal 
(conservative) coalitions in the center and right columns. In the right column, green curves indicate the 
ideologies of members of the smallest coalition.
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coalition’ ranges in size from only 4 members in the 113th session (2013) to 69 members in the 111th session 
(2009). It also ranges in ideology from very liberal in the 98th–102nd sessions (1983–1991), to center-left in the 
103th and 111th sessions (1993 and 2009), to center-right in the 105th–110th sessions (1997–2007).

Coalition effectiveness.  The primary task of legislators is to pass laws, and their ability to do so is referred 
to as legislative effectiveness42–44. Therefore, we examine the legislative effectiveness of coalitions in the US House 
of Representatives, again considering coalitions defined from three perspectives: party, classic balance ( k = 2 ), 
and generalized balance ( k = 3 ). Figure 4 displays coalition members’ mean effectiveness, for each method of 
defining coalitions (see SI Table S2). The left-leaning liberal coalition shown as a blue line and the right-leaning 
conservative coalition shown as a red line. Gray bands illustrate the 95% confidence interval around each esti-
mate, while the blue (Democrat) and red (Republican) backgrounds indicate the majority party in a given ses-
sion.

Coalitions based on political parties (Fig. 4, top panel) illustrate an expected pattern45: The majority party 
is most effective. This occurs not only because the majority party has more votes, but because it controls key 
procedural details of the chamber including deciding which bills will come for a vote and when (i.e. agenda-
setting power44). Coalitions based on classic balance (Fig. 4, center panel) display essentially the same pattern.

Coalitions based on generalized balance (Fig. 4, bottom panel) also display a similar pattern, but with impor-
tant differences. The large liberal coalition is still more effective when Democrats hold the majority, while the 
large conservative coalition is still more effective when Republicans hold the majority. However, these two 
dominant coalitions are both less effective than their party- or classic balance-defined counterparts. These lower 
levels of effectiveness are explained by the inclusion of the third coalition, shown as a green line, which is the 
most effective coalition in most sessions. The size and color of the dots along this green line indicate the third 
coalition’s size and median ideology, and highlight that members of the third coalition usually are ideologically 
aligned with the majority party.

During transitional periods when the majority party changed, members of the third coalition are tempo-
rarily less effective. However, during periods of stable party control46, the highly effective third coalition has 
been anchored by a small number of consistent and ultra-effective members. For example, the liberal-leaning 
third coalition during the Democratic-controlled 99th–102nd sessions (1985–1990) was anchored by Rep. Pat 
Williams (D-MT1, mean effectiveness = 4.49), Rep. Barney Frank (D-MA4, 4.02), and Rep. Daniel Glickman 
(D-KS4, 3.68). Similarly, the conservative-leaning third coalition during the Republican-controlled 106th–108th 
sessions (1999–2004) was anchored by Rep. Christopher Smith (R-NJ4, 8.44), Rep. Bill Young (R-FL10, 4.41), 
and Rep. Nancy Johnson (R-CT6, 2.98). Most recently, the conservative-leaning third coalition during the 
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Figure 4.   Mean of coalition members’ legislative effectiveness in the US House of Representatives. Blue (red) 
lines indicate the mean legislative effectiveness of Democrats (Republicans) in the top panel and that of the 
dominant liberal (conservative) coalitions in the center and bottom panels. In the bottom panel, the green line 
indicates the mean ideological effectiveness of members of the smallest coalition, while the size and color of the 
dot indicates the size and mean ideology of this coalition. Background shading indicates whether Democrats 
(blue) or Republicans (red) held a majority in the chamber during the respective session.
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Republican-controlled 114th–115th sessions (2015–2018) was anchored by Rep. Edward Royce (R-CA39, 5.46), 
Rep. John Katko (R-NY24, 5.36), and Rep. Dave Reichert (R-WA8, 2.30).

Not only are members of the third coalition more effective than their traditional liberal and conservative 
coalition counterparts, but they also maintain distinctive political relations. Members of the traditional coalitions 
have 2.68 negative edges for every positive edge, but members of the third coalition have 21.18 negative edges 
for every positive edge (see SI Figure S3). Moreover, although 8.44% of traditional coalition members’ negative 
edges are with co-partisans (members of their own party), over one-quarter (25.6%) of third coalition members’ 
negative edges are with co-partisans.

Discussion
Optimally partitioning signed networks according to generalized balance theory is computationally challenging, 
but often essential to understanding their structure. In this paper, we have developed a solution to this chal-
lenge, both demonstrating its computational feasibility and highlighting the novel structural insights that the 
resulting optimal partitions can reveal. Specifically, we have developed a pair of optimization models that make 
it practical to partition a signed network into exactly k clusters that minimize the number of frustrated edges 
across all possible k-partitions (taking 3.3 h on average for our networks with up to ∼ 30,000 edges using Eq. 
(1)), and to identify the smallest number of clusters that minimizes the number of frustrated edges across all 
possible partitions (taking 14 h on average for our networks with up to ∼ 30,000 edges using Eq. (2)). Applying 
these models to signed networks of collaboration and opposition among legislators in the US House allowed 
us to determine that these relationships are not structured by legislators’ political party affiliations, but instead 
by a three coalition system composed of a dominant liberal coalition, a dominant conservative coalition, and 
a previously obscured ‘third coalition’. This hidden third coalition is noteworthy because its median ideology 
is unstable, however its members are consistently more effective at passing legislation than their colleagues in 
either of the dominant coalitions.

Just as community detection algorithms advanced the ability to uncover patterns in unsigned networks a 
decade ago28, these models can advance the ability to uncover patterns in signed networks. However, unlike most 
community detection algorithms for which global optimization is not possible47, our models guarantee an optimal 
signed network partition. These innovations are important because signed networks are already studied in a wide 
range of contexts including biology1–3, finance2,4, and politics5,7,20. Moreover, statistical models now exist that 
enable signed networks to be constructed from virtually any empirical bipartite network data48, making signed 
networks available for analysis in a still broader range of contexts. The models we propose are perfectly general, 
but we demonstrated their practicality for globally optimal partitioning of real-world signed networks with up to 
30,000 edges. In practice, this is a minor limitation because many empirical signed networks contain fewer edges, 
and models for constructing signed networks include methods for sparsifying otherwise dense signed networks48.

In addition to the methodological advances that our optimization models offer in the study of signed net-
works, our illustrative application of these models has also revealed a new way of thinking about how the US 
House of Representatives is organized. We observe that partitioning legislators into three coalitions according 
to generalized balance offers a better fit to their observed pattern of collaborations and oppositions than simply 
clustering them by political party. This suggests that the forces guiding coalition formation in the US House are 
more subtle and go beyond partisanship alone, even during periods of extreme polarization.

The previously obscured ‘third coalition’ we identified is unique in two important respects. First, members 
of the third coalition are highly effective at passing legislation, which has implications for how a party’s majority 
status is interpreted. Although members of the majority political party always appear to be more effective than 
members of the minority party, a substantial portion of this apparent majority advantage is conferred by the 
highly effective members of the third coalition, who tend to be ideologically aligned with the majority. Second, 
members of the third coalition have a much higher ratio of oppositions (negative edges) to collaborations (posi-
tive edges), and maintain more oppositions with members of their own party, which has implications for how 
membership in the third coalition is interpreted. These patterns suggest that although members of the third 
coalition may be ideologically aligned with the dominant coalition and majority party, they nonetheless repre-
sent a breakaway faction that are highly effective despite their rejection of partisanship. Our ability to identify 
such a cluster is noteworthy because it provides empirical support for earlier simulation studies suggesting that 
the introduction of independent legislators to an existing two-party legislature can increase the body’s overall 
legislative effectiveness49. Although these simulation studies might have been viewed as hinting at a strategy for 
reinvigorating democratic systems plagued by partisanship, our findings suggest it may already be in place in 
the US House of Representatives.

Methods
We infer the collaboration and opposition patterns of legislators from their bill co-sponsorships5,50,51. These data 
begin as a bipartite network B in which legislators are connected to the bills they sponsor in a given session. 
From this, we construct the bipartite projection P, which captures the number of bills each pair of legislators 
has co-sponsored together. Finally, we use the Stochastic Degree Sequence Model (SDSM)51, implemented in 
the backbone package (version 1.5.0) in R48,52, to statistically infer a signed network of political collaboration 
and opposition. The SDSM applies a statistical test to the bipartite projection to yield a signed backbone P ′  in 
which there exists a positive (negative) edge between each pair of legislators who have co-sponsored statistically 
significantly more (fewer) bills than expected by chance. The random expectation is obtained from a canonical 
null model in which bill sponsorship is random, but expected values of both degree sequences of B are preserved. 
Because the SDSM involves performing a statistical test for each pair of legislators, we ensure a family-wise error 
rate of α = 0.01 by applying a Holm-Bonferroni correction53.
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We measure legislators’ ideology using 1st dimension Nokken-Poole ideology scores obtained from the Vote-
view database54. These scores are similar to the widely used DW-Nominate ideological scores55–57, ranging from 
−1 (liberal) to 1 (conservative), except that they can vary across sessions. We measure legislators’ effectiveness 
using legislative effectiveness scores provided by the Center for Effective Lawmaking at https://​thela​wmake​rs.​org/​
data-​downl​oad. These scores were computed from fifteen indicators constructed from the intersection of three 
types of bills (commemorative, substantive, or substantive and significant) and five stages of a bill’s progression 
through the legislative life cycle (sponsored, committee action, post-committee action, chamber passage, and 
becoming law)44. These fifteen indicators capture the effectiveness of a legislator to advance their agenda items, 
and are normalized so that the mean effectiveness in each session is 1.

Data availability
All the data and codes used in this study are publicly available with links and descriptions provided in the Sup-
plementary Information.
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