TABLE 2.
Metrics | R 2 | MAE | RMSE | Accuracy of the predicted concentration within ±30 (%)of the actual concentration |
---|---|---|---|---|
Models | ||||
Liner regression | 0.42 | 0.29 | 0.37 | 61.5 |
LASSO regression | 0.32 | 0.30 | 0.40 | 48.7 |
Ridge regression | 0.42 | 0.29 | 0.37 | 61.5 |
Elastic Net regression | 0.18 | 0.32 | 0.39 | 53.9 |
Bayesian Ridge regression | 0.34 | 0.29 | 0.37 | 56.4 |
KNN | 0.27 | 0.36 | 0.44 | 51.3 |
SVR | 0.28 | 0.29 | 0.35 | 53.9 |
Random Forest | 0.45 | 0.29 | 0.38 | 51.3 |
XGBoost | 0.54 | 0.25 | 0.33 | 74.4 |
LightGBM | 0.48 | 0.27 | 0.35 | 61.5 |
CatBoost | 0.36 | 0.30 | 0.36 | 53.6 |
NGBoost | 0.37 | 0.29 | 0.36 | 56.4 |
AdaBoost | 0.36 | 0.29 | 0.36 | 50.0 |
GradientBoosting | 0.40 | 0.32 | 0.37 | 64.1 |
Abbreviations: KNN, K-nearest neighbor; SVR, Support Vector Regression; MAE, Mean Absolute Error; RMSE, Root Mean Square Error.