Skip to main content
. 2021 Sep 24;12:727245. doi: 10.3389/fphar.2021.727245

TABLE 2.

Performance of 14 models.

Metrics R 2 MAE RMSE Accuracy of the predicted concentration within ±30 (%)of the actual concentration
Models
Liner regression 0.42 0.29 0.37 61.5
LASSO regression 0.32 0.30 0.40 48.7
Ridge regression 0.42 0.29 0.37 61.5
Elastic Net regression 0.18 0.32 0.39 53.9
Bayesian Ridge regression 0.34 0.29 0.37 56.4
KNN 0.27 0.36 0.44 51.3
SVR 0.28 0.29 0.35 53.9
Random Forest 0.45 0.29 0.38 51.3
XGBoost 0.54 0.25 0.33 74.4
LightGBM 0.48 0.27 0.35 61.5
CatBoost 0.36 0.30 0.36 53.6
NGBoost 0.37 0.29 0.36 56.4
AdaBoost 0.36 0.29 0.36 50.0
GradientBoosting 0.40 0.32 0.37 64.1

Abbreviations: KNN, K-nearest neighbor; SVR, Support Vector Regression; MAE, Mean Absolute Error; RMSE, Root Mean Square Error.