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SUMMARY

Quantifying movement is critical for understanding animal behavior. Advances in computer vision 

now enable markerless tracking from 2D video, but most animals move in 3D. Here, we introduce 

Anipose, an open-source toolkit for robust markerless 3D pose estimation. Anipose is built on 

the 2D tracking method Deep-LabCut, so users can expand their existing experimental setups 

to obtain accurate 3D tracking. It consists of four components: (1) a 3D calibration module, 

(2) filters to resolve 2D tracking errors, (3) a triangulation module that integrates temporal and 

spatial regularization, and (4) a pipeline to structure processing of large numbers of videos. We 

evaluate Anipose on a calibration board as well as mice, flies, and humans. By analyzing 3D leg 

kinematics tracked with Anipose, we identify a key role for joint rotation in motor control of fly 

walking. To help users get started with 3D tracking, we provide tutorials and documentation at 

http://anipose.org/.
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In brief

Karashchuk et al. introduce Anipose, a Python toolkit that enables researchers to track animal 

poses in 3D. Anipose performs 3D calibration, filters tracked keypoints, and visualizes resulting 

pose data. This open-source software and accompanying tutorials facilitate the analysis of 3D 

animal behavior and the biology that underlies it.

INTRODUCTION

Tracking body kinematics is key to answering questions in many scientific disciplines. For 

example, neuroscientists quantify animal movement to relate it to brain dynamics (Mathis 

and Mathis, 2020; Seethapathi et al., 2019), biomechanists quantify the movement of 

specific body structures to understand their mechanical properties (Alexander, 2017; Bender 

et al., 2010), social scientists quantify the motion of multiple individuals to understand their 

interactions (Schwager et al., 2008; Halberstadt et al., 2016), and rehabilitation scientists 

quantify body movement to diagnose and treat disorders (Souza, 2016; Chiba et al., 2005; 

Rinehart et al., 2006). In all of these disciplines, achieving rapid and accurate quantification 

of animal pose is a major bottleneck to scientific progress.

While it is possible for human observers to recognize body movements, scoring behaviors 

by eye is laborious and often fails to detect differences in the rapid, fine-scale movements 

that characterize many behaviors. Methods for automated tracking of body kinematics from 

video have existed for many years, but they typically rely on the addition of markers to 

Karashchuk et al. Page 2

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identify and disambiguate body parts. Although such methods can achieve very precise 

pose estimation (Marshall et al., 2021), the use of markers is often impractical, particularly 

when studying natural behaviors in complex environments, tracking multiple body parts, or 

studying small animals. Thus, there is a pressing need for methods that perform automated, 

markerless tracking of body kinematics.

Recent advances in computer vision and machine learning have dramatically improved 

the speed and accuracy of markerless body-pose estimation (Mathis and Mathis, 2020). 

There are now a number of tools that apply these methods to track animal movement 

from 2D videos, such as DeepLabCut (Mathis et al., 2018), SLEAP (Pereira et al., 2020), 

DeepPoseKit (Graving et al., 2019), among others (Cao et al., 2021; Machado et al., 

2015; https://github.com/kristinbranson/APT). These software packages allow users to label 

keypoints, train convolutional neural networks, and apply them to identify keypoints from 

videos; several toolkits also include auxiliary tools, such as visualizing and filtering the 

tracked keypoints. Among them, DeepLabCut is the most widely used (Mathis et al., 2020).

While tracking of animal movement from 2D video is useful for monitoring specific body 

parts, full body-pose estimation, and measurement of complex or subtle behaviors require 

tracking in three dimensions. Multiple tools have emerged for 3D tracking and body-pose 

estimation, including DANNCE (Dunn et al., 2021), FreiPose (Zimmermann et al., 2020), 

DeepFly3D (Günel et al., 2019), and OpenMonkeyStudio (Bala et al., 2020). However, these 

tools use fundamentally distinct network architectures, workflows, and user interfaces from 

popular 2D tracking methods. Out of the existing 2D tracking tools, only DeepLabCut (Nath 

et al., 2019) supports triangulation with up to 2 cameras. However, three or more cameras 

are often required to resolve pose ambiguities, such as when one body part occludes another. 

Thus, there is a need for additional tools that allow users to extend their existing 2D tracking 

setups to achieve robust 3D pose estimation while preserving their established workflows.

Here, we introduce Anipose (a portmanteau of “animal” and “pose”), a toolkit to quantify 

3D body kinematics by integrating DeepLabCut tracking from multiple camera views. 

Anipose consists of a robust calibration module, filters to further refine 2D and 3D tracking, 

and an interface to visualize and annotate tracked videos (link to example here). These 

features allow users to analyze 3D animal movement by extracting behavior and kinematics 

from videos in a unified software framework. Below, we demonstrate the value of 3D 

tracking with Anipose for analysis of mice, fly, and human body kinematics (Figure 1). 

Applying 3D tracking to estimate joint angles of walking Drosophila, we find that flies move 

their middle legs primarily by rotating their coxa and femur, whereas the front and rear 

legs are driven primarily by femur-tibia flexion. We then show how Anipose can be used to 

quantify differences between successful and unsuccessful trajectories in a mouse reaching 

task. Finally, we visualize how specific leg joint angles map onto a manifold of human 

walking.

We designed Anipose to make 3D tracking accessible for a broad community of scientists. 

Because it is built on DeepLabCut, Anipose allows users to easily upgrade from 2D to 

3D tracking, as well as take advantage of the DeepLabCut community, documentation, 

and continued support. To help users get started, we provide in-depth tutorials and 
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documentation at http://anipose.org. The release of Anipose as free and open-source Python 

software facilitates adoption, promotes ongoing contributions by community developers, and 

supports open science.

RESULTS

We implement 3D tracking in a series of steps: estimation of calibration parameters 

from calibration videos, detection and refinement of 2D joint keypoints, triangulation and 

refinement of keypoints to obtain 3D joint positions, and computation of joint angles (Figure 

2). In addition to the processing pipeline, the key innovations of Anipose are a robust 3D 

calibration module, spatiotemporal filters that refine pose estimation in both 2D and 3D, 

and a visualization incorporating videos, tracked keypoints, and behavioral annotations in 

one interface. We evaluated the calibration and triangulation modules without filters by 

testing their ability to accurately estimate lengths and angles of a calibration board with 

known dimensions (Figure 1A) and to track the hand of a mouse reaching for a food pellet 

(Figure 1B). We then evaluated how filtering improves estimation in 3D of position and time 

derivative of walking flies (Figure 1C) and humans (Figure 1D). Representative examples of 

tracking from each dataset are shown in Video S1.

Robust calibration of multiple camera views

An essential step in accurate 3D pose estimation is precise camera calibration, which 

determines the relative location and parameters of each camera (i.e., the focal length 

and distortions). We implemented an automated procedure that calibrates the cameras 

from simultaneously acquired videos of a standard calibration board (e.g., checkerboard 

or ChArUco board) moved by hand through the cameras’ fields of view (Figure 2A). 

We recommend the ChArUco board because its keypoints may be detected even with 

partial occlusion, and its rotation can be determined uniquely from multiple views. The 

pipeline starts by detecting keypoints on the calibration board automatically using OpenCV 

(Bradski, 2000), based on the board’s geometric regularities (e.g., checkerboard grid pattern, 

specific black and white markers). These board detections are used first to initialize camera 

calibration parameters from arbitrary positions through a greedy algorithm that adds edges 

between cameras one by one until it reaches a fully connected tree (Figure S1A).

Although some tracking tools (e.g., Cao et al., 2021; Dunn et al., 2021) stop at the 

initial estimate of camera parameters based on estimated calibration board orientation from 

different cameras, we found that this is often not sufficient to obtain accurate camera 

calibrations, especially when there are few frames with a detected board. To resolve this 

issue, we implemented procedures that optimize the camera calibration parameters to 

minimize the reprojection error of the calibration board keypoints, referred to as bundle 

adjustment in the camera registration literature (Triggs et al., 2000). We implemented 

bundle adjustment with standard (least-squares) as well as robust losses (Huber and 

soft L1). Furthermore, we developed an iterative procedure we term “iterative bundle 

adjustment,” which performs bundle adjustment in multiple stages, using only a random 

subsample of detected keypoints points in each stage (see STAR Methods for a detailed 

description). This procedure automatically tunes the outlier thresholds and minimizes the 
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impact of erroneous keypoint detections and bad camera initialization. Each of these bundle 

adjustment procedures improves the reprojection error from the initial estimate (Figure 

S1B). Iterative bundle adjustment produced marginally better results, but with no parameter 

tuning, so we use this as the default in Anipose.

Accurate reconstruction of physical lengths and angles in 3D

An important test of any calibration method is whether it can accurately reconstruct an 

object with known dimensions. We evaluated the Anipose calibration and triangulation 

toolkit by asking whether it could estimate the lengths and angles of a precisely 

manufactured ChArUco board (Garrido-Jurado et al., 2014).

We first compared the accuracy of tracking the 9 corners of the ChArUco board (Figure 3A) 

with three methods: manual annotation, neural network detections, and OpenCV detections 

(example detections in Figure 3B). Although manual annotations are typically assumed to 

be the ground truth in tracking animal kinematics, we started by assessing the reliability of 

manual annotations relative to high-precision, sub-pixel resolution keypoint detection based 

on the geometry of the ChArUco board with OpenCV (Bradski, 2000; Garrido-Jurado et al., 

2014). Relative to the OpenCV points, the manual keypoint annotations had a mean error 

of (0.52, −0.75) pixels and standard deviation of (2.57, 2.39) pixels, in the (x, y) directions, 

respectively (Figure 3C). These observations provide a useful baseline of manual annotation 

accuracy.

We evaluated the accuracy of reconstructing ChArUco board lengths and angles as estimated 

by three methods: manual keypoint annotations, OpenCV keypoint detections, and neural 

network keypoint detections (see STAR Methods for detailed descriptions). As our ground­

truth dataset, we chose the known physical lengths and angles between all pairs of 9 corners 

on the ChArUco board. The ChArUco board was manufactured with precise tolerance (<2 

μm), which allowed us to evaluate the accuracy of lengths and angles from manual keypoint 

annotations and OpenCV keypoint detections, which are commonly taken to be the ground 

truth. As expected, OpenCV detections had the lowest error in length and angle, as they 

leveraged prior knowledge of the ChArUco board geometry to make high-precision corner 

estimates (Figure 3D). Surprisingly, neural network (trained with DeepLabCut) predictions 

had a lower error than manual annotations, despite the network itself being trained on 

manual annotations. More than 90% of poses estimated by Anipose had an error of less than 

20 μm in length and 1 degree in angle, relative to the true dimensions of the ChArUco board 

(Figure 3D). These results demonstrate the efficacy of camera calibration with Anipose and 

serve as useful bounds of expected performance.

Animal tracking in 3D

We evaluated the triangulation of markerless tracking on three different animal datasets 

(Figures 3E–3G). For each dataset, we computed the error of estimated joint positions and 

angles on labeled animals withheld from the training data. The error in estimated joint 

angles was <16° in over 90% of frames, and <10° in over 75% of frames. Furthermore, the 

error in the estimated joint position was <18 pixels (approximately 1.6, 0.14, and 86 mm 

for mouse, fly, and human datasets, respectively) in over 90% of frames and <12 pixels 
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(approximately 1, 0.09, and 57 mm for mouse, fly, and human datasets, respectively) in 

over 75% of frames. Importantly, the position error in units of camera pixels is roughly 

comparable across these three datasets, spanning more than 3 orders of magnitude in spatial 

scale. Therefore, we believe these errors are representative of what can currently be expected 

for accuracy of 3D markerless tracking.

Although triangulation usually resulted in accurate estimates of joint positions and angles, 

there were still some frames where it failed due to missing keypoint detections (as in 

Figure 3E). In other cases, incorrect keypoint detections led to erroneous 3D joint position 

estimates (as in Figure 3F). Even though these issues occurred in a small minority of 

frames, tracking errors are especially problematic for analyzing movement trajectories. For 

instance, missing estimates complicate the estimation of derivatives, whereas erroneous 

estimates bias the distribution of summary statistics. To minimize these issues, we leveraged 

complementary temporal and spatial information within each dataset to refine tracking 

performance in 3D.

Addition of filters to improve tracking accuracy

Naturally behaving animals present unique challenges for 3D pose estimation. Animals can 

contort their bodies into many different configurations, which means that each behavioral 

session may include unique poses that have not been previously encountered, even across 

multiple animals. Our approach to tackling these challenges is to leverage prior knowledge 

that animal movements are usually smooth and continuous, and that rigid limbs do not 

change in length over short timescales. In particular, we developed and implemented a set of 

2D and 3D filters that refine keypoints, remove errors in keypoint detections, and constrain 

the set of reconstructed kinematic trajectories. We demonstrate that both sets of filters work 

together to significantly improve pose estimation. Here, we focus on detailed quantification 

of these filters in tracking flies and humans, where our datasets included keypoints at every 

limb joint tracked with at least 4 camera views.

Refining keypoints in 2D—We implemented three distinct algorithms to remove or 

correct errors in 2D keypoint detection: a median filter, a Viterbi filter, and an autoencoder 

filter. The median and Viterbi filters operate on each tracked joint across frames, and the 

autoencoder filter refines keypoints using learned correlates among all joints. The median 

filter removes any point that deviates from a median filtered trajectory of user-specified 

length and then interpolates the missing data. The Viterbi filter finds the most likely path of 

keypoint detections for each joint across frames from a set of top (e.g., 20) detections per 

frame, given the expected standard deviation of joint movement in pixels as a prior. Finally, 

the autoencoder filter corrects the estimated score of each joint based on the scores of the 

other joints, with no parameters set by the user. Where errors in tracking cannot be corrected 

by filtering, the keypoint is removed altogether, since the missing joint can be inferred 

from other camera views, but an erroneous keypoint can produce large discrepancies in 

triangulation. We document the parameters we used to produce results across the paper in 

Table S1. Anipose users are encouraged to evaluate the effect these filtering parameters may 

have on their analyses. Depending on the particulars of the experimental setup, including the 

spatial and temporal resolution of the videos, the parameters may need to be adjusted.
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The addition of each filtering step noticeably improved the tracking of fly leg joints (Figure 

4A). The median and Viterbi filters both reduced spurious jumps in keypoint position, 

which may occur if the neural network detects a similar keypoint on a different limb or at 

another location in the frame. The Viterbi filter is able to remove small erroneous jumps in 

detected keypoint trajectories while also preserving high-frequency dynamics, whereas the 

median filter may mistakenly identify fast movements as an error and remove them. The 

autoencoder filter removed detections for keypoints that were typically not visible from a 

given view, which improved 3D position estimates after triangulation (Figure S2).

For each of the 2D filters, we quantified the performance improvement of estimating the 

joint position and angle on manually annotated validation datasets. The 2D median filter 

significantly reduced error in joint position and angle estimation on the human dataset (t = 

−14.8, p < 0.001 for position, t = −7.7, p < 0.001, paired t test) but not on the fly dataset 

(t = −1.2, p = 0.2 for position, t = −0.98, p = 0.3, paired t test). The Viterbi filter reduced 

error on both fly and human datasets (t = −4.4 and t = −4.1 for fly position and angle, t = 

−10.9 and t = −8.7 for human position, with p < 0.001 for all, paired t test). The autoencoder 

filter also reduced error in joint positions and angles on the fly dataset (t = −5.4, p < 0.001 

for positions, t = −2.16, p = 0.03 for angles, paired t test). We did not apply the autoencoder 

filter to human tracking, since all occluded points are annotated in the training dataset. In the 

fly dataset, applying the autoencoder filter after the Viterbi filter further improved the joint 

position and angle estimates above the autoencoder (t = −3.97, p < 0.001 for positions, t = 

−3.44, p < 0.001 for angles, paired t test). In summary, we found the addition of these three 

filters improved the ability of Anipose to accurately estimate joint positions and angles.

Refining poses and trajectories in 3D—To further refine joint position and angle 

estimates in 3D, we developed a triangulation optimization that takes advantage of 

the spatiotemporal structure of animal pose and behavior. Specifically, our optimization 

produces pose estimates that are smooth in time using temporal regularization, and limbs 

demarcated by adjacent keypoints that are constant in length with spatial regularization. The 

length for each limb is automatically estimated in the optimization. The relative strengths 

of the temporal and spatial regularization terms may be balanced and tuned independently. 

As with the 2D filters, we empirically determined default strengths that worked across 

multiple datasets. A complete description of each filter, along with all the parameters, is 

detailed in the STAR Methods. For illustration, we compared the performance of these 

filters (Figure 5A) to other commonly used methods from the literature (random sample 

consensus, or RANSAC, triangulation and 3D median filter) on the walking fly dataset. We 

applied the 3D filters on kinematic trajectories partially corrected with 2D filtering (Viterbi 

then autoencoder filters for the fly dataset, and Viterbi filter only for the human dataset), 

to evaluate how much the 3D filters improved the accuracy. Spatiotemporal regularization 

substantially improved pose estimation. The temporal regularization noticeably reduced 

jitter in the trajectory (Figure 5A), while the spatial regularization stabilized the estimate 

of limb length (Figure S3B). These improvements are also obvious in example videos of 

reconstructed pose before and after filtering (Video S2).

For each of the 3D filters, we quantified the improvement in position and angle error 

relative to tracking with 2D filters alone (Figures 5C and S3C). We found that RANSAC 
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triangulation did not improve position and angle error. The 3D median filter significantly 

reduced position and angle errors relative to only 2D filters for the human dataset (t = − 

11:8 for position, t = − 7:3 for angle, p < 0.001 for both, paired t test), but not for the fly 

dataset. Spatial and temporal regularization applied together provided the largest reduction 

in tracking error (t = − 18:7 and t = − 6:1 for human positions and angles, t = − 10:8 and t = 

5:8 for fly positions and angles, p < 0.001 for all, paired t test). Overall, we find that the 3D 

filters implemented in Anipose significantly improve pose estimation.

Improving estimation of derivatives—In addition to tracking body pose, it is often 

valuable to track the speed of body movements. We compared the temporal derivative of 3D 

joint positions estimated with Anipose to the derivative computed from manual annotations 

(Figures 5B and 5D) and found both qualitative and quantitative improvements to estimation 

of body-movement speed.

Filtered trajectories produced smoother derivatives, due to the fact that tracking errors are 

corrected through 2D and 3D filtering, and the temporal regularization explicitly penalizes 

deviations from smoothness (Figure 5B). It is challenging to evaluate the accuracy of 

Anipose derivative estimates because computing finite difference derivatives of manual 

annotations amplifies known errors in these annotations. Given that manual annotations 

deviate from the ground truth tracking with a standard deviation of at most 3.5 pixels 

in distance (Figure 3C), we expect computing the finite difference derivative of such 

annotations to produce derivatives with error of 4.95 pixels (about 0.037 mm corresponding 

to 11.1 mm/s over one frame in the fly dataset). Therefore, the manual annotations 

(dark-green trace in Figure 5B) do not represent the true derivative but rather a noisy 

approximation of the true derivative. The temporally regularized trajectory resembles this 

estimate of the derivative but is more smooth because of temporal regularization. The 

strength of this regularization, and the subsequent smoothness of the tracked keypoints, is 

a parameter that users may fine-tune (see van Breugel et al., 2020 for a systematic way to 

tune this parameter). We suggest some default values and provide guidance on choosing 

parameters in the Discussion.

We found that the 2D filters (Viterbi and autoencoder in fly, only Viterbi in human) 

improved the error in derivative by 2.78 mm/s for the fly dataset (t = −9.4, p < 0.001, 

paired t test) and by 30.0 mm/s on the human dataset (t = −28.0, p < 0.001, paired t test) 

relative to no filters. The 3D median filter improved the error in derivative by 1.65 mm/s in 

the fly dataset (t = −4.8, p < 0.001, paired t test) and by 177.3 mm/s in the human dataset 

(t = −324, p ≪ 0.001, paired t test). RANSAC improved error in the derivative estimate by 

2.16 mm/s in the fly dataset (t = 7.07, p < 0.001, paired t test) but did not improve the error 

in the human dataset. The spatiotemporal regularization improved the error in derivative 

by an additional 0.67 mm/s for the fly dataset (t = −4.10, p < 0.001, paired t test) and by 

217.7 mm/s on the human dataset (t = −213, p ≪ 0.001, paired t test) relative to the 2D 

filters. Overall, we found that the filters implemented in Anipose significantly improved the 

estimation of body movement in the fly and human datasets.
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Structured processing of videos

Animal behavior experiments are often high throughput, meaning that large numbers of 

videos are recorded over many repeated sessions with different experimental conditions. 

To make the process of 3D tracking scalable to large datasets, we designed a specific 

file structure (Figure S5) to organize and process behavior videos, configuration files, and 

calibration data. This file structure also facilitates scalable analysis of body kinematics 

across individual animals and experimental conditions. For example, the command “anipose 

analyze” detects keypoints for each video in the project folder, and “anipose calibrate” 

obtains calibration parameters for all the cameras in all calibration folders. Each command 

operates on all videos in the project, circumventing the need to process each video 

individually. In addition, this design allows the user to easily reanalyze the same dataset 

using different filtering parameters or with different 2D tracking libraries (e.g., to compare 

DeepLabCut and SLEAP). For the users that prefer to set up their own pipelines, we also 

package the calibration, triangulation, and filtering functions in a separate library called 

aniposelib.

Visualization of tracking

The large number of videos and keypoints tracked in many behavior experiments make 

it challenging to visualize the resulting data. In addition, the large files created with high­

speed video often make it impractical to store and visualize an entire dataset on a laptop. 

To facilitate evaluation and interpretation of data tracked with Anipose, we developed a 

web-based visualization tool (Figure 6). The tool shows, for a given trial, each camera 

view, 3D tracking, and 2D projections of the tracked keypoints. The user can speed up and 

slow down the speed at which the videos play and rotate the tracked keypoints in 3D. By 

taking advantage of the standardized file structure, the interface provides a dropdown menu 

to navigate between trials and sessions. The interface also allows the user to annotate the 

behaviors in each video, which is particularly useful for isolating specific behaviors for 

further analysis. As this tool is web based, it may be run on a server, allowing users to 

preview videos and inspect tracking from any computer. Furthermore, if the server is public, 

users may easily share links to particular trials with collaborators to point out specific 

behaviors (link to example here).

3D tracking with Anipose provides insights into motor control of Drosophila walking

We first used 3D tracking with Anipose to analyze the leg joint kinematics of fruit flies 

walking on a spherical treadmill. Although fly walking has been studied in great detail from 

a 2D perspective (DeAngelis et al., 2019; Mendes et al., 2013; Berendes et al., 2016), 3D 

joint kinematics of walking flies have not previously been analyzed. Thus, it was not clear 

how fly leg joints move during walking. Specifically, we sought to understand the relative 

contributions of leg joint flexion and rotation.

Some limb joints are not restricted to movement in a single plane but can also rotate 

around the long axis of a limb segment. Whereas the importance of rotation angles has long 

been recognized for human gait analysis (Roberts et al., 2017), rotation angles have been 

comparatively understudied in other animals. This gap exists largely because estimating 

rotation angles requires precise tracking of joint kinematics in 3D.
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The fly leg consists of five segments, whose movements are defined by 8 angles (1 

abduction, 3 rotation, 4 flexion). We observed significant rotations between the coxa and 

femur segments during walking. Figure 7A shows trajectories of coxa rotation, femur 

rotation, and femur-tibia flexion angles for one walking bout.

Interestingly, the magnitude of joint rotation varied across different legs. Although the 

femur-tibia flexion angle has a high range of motion in the front and back legs, the 

femur-tibia flexion angle has a comparatively smaller range of motion in the middle legs 

(Figure 7B). In contrast, the middle legs are primarily driven by coxa and femur rotation. 

Furthermore, the coxa joints of contralateral legs rotate in opposing directions. These results 

suggest that the circuitry that coordinates walking (e.g., the central pattern generator) cannot 

be the same for all six legs. Rather, walking circuits must control different motor neurons 

and muscles to generate unique joint kinematics for each leg.

In addition to comparing joint angle distributions across legs, we analyzed trajectories of 3D 

leg kinematics across flies. We used the UMAP nonlinear embedding method (McInnes et 

al., 2018) to embed coxa rotation, femur rotation, and femur-tibia flexion angles and their 

derivatives of all legs (Figure 7C). The three-dimensional embedding of joint kinematics 

formed a mushroom-shaped manifold. Individual flies reside at specific regions of the 

manifold, but, for all flies, step phase is distributed along the circumference of the cap 

(Figure 7D). These results are consistent with the existence of a continuum of walking gaits 

across flies (DeAngelis et al., 2019) but also suggest that different flies have slightly distinct 

walking kinematics. This analysis also demonstrates how 3D tracking can be used to dissect 

the contributions of specific joints to complex motor behaviors. Visualizing a manifold of 

3D joint kinematics provides a means to understand how joint kinematics vary within the 

high-dimensional space of a motor control task (Figure 7E; Figure S6B).

Analysis of 3D mouse reaching and human walking kinematics

To illustrate the value of 3D tracking with Anipose for studying other animal species, 

we analyzed data from reaching mice and walking humans. Joint positions and angles 

have long been used to quantify movement in both healthy and impaired animals (Koch 

et al., 2017; Balbinot et al., 2018; Fukuchi et al., 2018). However, previous quantification 

has relied primarily on laborious manual tracking or marker-based tracking with extensive 

manual corrections. Here, we demonstrate analysis of mouse and human behavior using 

fully automated 3D tracking with the Anipose toolkit.

We first analyzed 3D hand trajectories from mice trained to reach for and grasp a pellet. This 

task has been extensively used to study neural circuits for sensorimotor control underlying 

skilled limb movements (Azim et al., 2014; Becker and Person, 2019; Guo et al., 2015; 

Low et al., 2018; Farr and Whishaw, 2002; Esposito et al., 2014). Using the Anipose 

visualization tool, we labeled the reach outcome and start/end frame for each trial. We 

labeled the trial a “hit” if the mouse successfully grasped the pellet, a “miss” if the mouse 

missed the pellet holder, and a “bump” if the mouse bumped into the pellet holder or the 

pellet but failed to grasp the pellet. Each of the four mice in the dataset had multiple 

instances of each outcome. Figure 7F shows example 3D reaching trajectories, which 

demonstrate that reaching movements vary significantly from trial to trial (see also Figure 
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S7A). Although reaching is a challenging behavior to track due to its speed and variability, 

Anipose was able to accurately reconstruct forelimb reaching trajectories. The trajectory of 

each movement was variable, but plotting the distance to the pellet holder as a function of 

time to contact revealed that each reach type has a stereotyped trajectory (Figures 7G and 

S7B). Interestingly, the hit/bump and miss trajectories diverged around 50 ms prior to pellet 

contact, suggesting that mice are unable to correct their reaching trajectories in this period.

We next analyzed 3D walking kinematics reconstructed from the human dataset using 

methods similar to our analysis of fly walking. We extracted knee flexion, hip rotation, and 

hip flexion angles from 3D joint positions tracked with Anipose (Figures 7H and S7C). The 

distributions of these joint angles are symmetric across the two legs (Figures 7I and S7D) 

and match previous characterizations of human gait (Fukuchi et al., 2018). To characterize 

the structure of walking across the subjects, we used the UMAP nonlinear embedding 

method (McInnes et al., 2018) to embed knee flexion, hip rotation, hip flexion, and their 

derivatives into a 3D space, as for the fly dataset above. The UMAP embedding reveals a 

manifold of angle coordination across subjects (Figure 7J). The manifold forms a cylindrical 

structure with the knee flexion angle mapping circularly along the cylinder (Figure 7K). 

The two trials that are to the left outside the main cylinder have lower variation of left leg 

hip rotation (Figure S7E). These examples illustrate the ease and utility of tracking and 

analyzing human walking behavior with Anipose. In the future, this approach could be used 

to automatically identify individuals with distinct walking gaits or other motor patterns.

DISCUSSION

In this paper, we introduce Anipose, an open-source toolkit to accurately track animal 

movement in 3D. Anipose is designed to augment DeepLabCut, a toolkit for 2D markerless 

tracking (Mathis et al., 2018), with calibration, filters, and a visualization tool to facilitate 

robust 3D tracking and analysis. Current users of DeepLabCut can easily upgrade to 3D 

tracking with Anipose by adding and calibrating additional cameras to an existing behavioral 

setup. We validated each optimization module and the full pipeline against ground truth 

data from four different experimental datasets and three organisms, demonstrating accurate 

reconstruction of 3D joint positions and angles. To help users get started, we developed 

detailed tutorials for both the Anipose pipeline and aniposelib at anipose.org.

The Anipose tracking pipeline is designed to streamline structured processing of videos 

recorded in high-throughput experiments. Users do not need to know Python to use the 

Anipose pipeline. All that is required to get started is editing a small configuration file and 

running the provided commands from a terminal. Although we designed Anipose to leverage 

2D tracking with DeepLabCut (Mathis et al., 2018), it can be made compatible with other 

2D markerless tracking methods, including SLEAP (Pereira et al., 2020) and DeepPoseKit 

(Graving et al., 2019) by modifying a single file. Users with programming experience can 

convert their 2D tracked data to the Anipose structure (see Figure S5) to take advantage of 

the calibration, filters, and visualization tools. We also provide access to individual functions 

via a separate library, aniposelib.
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Impact of robust markerless 3D tracking

A key technical advantage of tracking with Anipose is the ability to interpret and analyze 

movement speed from 3D pose trajectories that are smooth in space and time, due to 

filtering and interpolation from multiple camera views. The resulting improvements in 

tracking smoothness make it easier to analyze pose and movement dynamics. Specifically, 

interpolated data enable the user to obtain better estimates of behavior statistics, such as 

mean and variance, and to perform dimensionality reduction techniques, such as principal­

component analysis (PCA). Additionally, temporal regularization reduces noise in the first 

derivative and thus enables the user to obtain more precise estimates of movement speed 

(Figures 5D and S4).

This ability to analyze 3D pose trajectories may open up opportunities for behavioral 

neuroscience, where key insights have been gained through carefully controlled behavioral 

paradigms. In particular, experiments are often designed to accommodate the practical 

limitations of movement tracking, recording neural activity, and perturbing the animal in 

real time (e.g., Tzschentke, 2007; D’Hooge and De Deyn, 2001; Olton, 1979; Branson 

et al., 2009; Berman et al., 2014). Recent advances in experimental technologies (e.g., 

high-density extracellular recording probes [Jun et al., 2017], optical imaging of fluorescent 

reporters [Dana et al., 2019; Abdelfattah et al., 2019], and optogenetics [Bernstein et al., 

2012]) have made it feasible to precisely record and perturb neural activity from animals 

behaving freely in three dimensions. Complementing these technologies, a comprehensive 

toolbox for high-throughput 3D tracking will not only enable deeper analysis of current 

experiments but also make it possible to study more natural behaviors.

A robust 3D markerless tracking solution could also greatly expand the accessibility of 

quantitative movement analysis in humans. Many neurological disorders, including some 

commonly thought of as cognitive disorders, affect walking gait (Stolze et al., 2005; Wittwer 

et al., 2010) and upper-limb coordination (Solaro et al., 2007; Tippett et al., 2007). Many 

clinicians and basic researchers currently rely on qualitative evaluations or expensive clinical 

systems to diagnose motor disorders and assess recovery after treatment. While clinical 

approaches are commercially available (Windolf et al., 2008), they are costly, require 

proprietary hardware, rely on the addition of markers to the patient, and cannot assess 

walking gait in natural contexts such as a patient’s home. Anipose could be used as a tool in 

the diagnosis, assessment, and rehabilitative treatment of movement and neurodegenerative 

disorders.

Insights into the motor control of Drosophila walking

By analyzing 3D joint kinematics of tethered walking Drosophila, we found that each leg 

has a unique set of joint angle distributions. One valuable insight, which was not evident 

from 2D tracking alone, is that the movement of the middle legs is driven primarily by 

femur rotation, in contrast to the front and hind legs, which are driven primarily by femur­

tibia flexion. We also observed small differences in femur-tibia flexion and femur rotation 

distributions between front and hind legs (Figure 7B). Thus, the neural circuits that move 

each leg during walking must be specialized for controlling joints with distinct forces and 

dynamics within each leg. Previous models of Drosophila walking have used an identical 
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control architecture for intra-leg joint coordination for all six legs (Aminzare et al., 2018; 

Goldsmith et al., 2020). Our results provide a framework for constructing more biologically 

plausible neuromechanical models using distinct architectures for controlling different joints 

within each leg.

Inter-leg differences in joint kinematics also raise questions about limb proprioception. 

Proprioceptors in the fly femoral chordotonal organ (FeCO) encode femur-tibia flexion and 

movement (Mamiya et al., 2018). Does the role of the FeCO differ for the middle legs, 

for which the femur-tibia generally does not flex in a rhythmic pattern during walking? 

Which proprioceptors, if any, are used to sense femur and coxa rotation of the middle 

legs? Answering these questions will be facilitated by combining Anipose with in vivo 
measurements and perturbations of proprioceptive neural circuits (Dallmann et al., 2021).

Rythmic motor behaviors, such as walking, are thought to be controlled by central pattern 

generators (CPGs): neural circuits that generate intrinsic rhythmic activity (Bidaye et al., 

2018). If fly walking is controlled by CPGs, our results suggest that the CPG for each leg 

must control different muscles. For example, we would predict that a walking CPG for 

the front legs would connect to motor neurons that control the tibia flexor and extensor 

muscles in the femur (Azevedo et al., 2020). In contrast, a CPG for the middle legs might 

connect to motor neurons innervating muscles in the trochanter that control femur rotation. 

These insights will be useful in guiding ongoing efforts to trace motor control circuits using 

connectomic reconstruction of the Drosophila ventral nerve cord (Maniates-Selvin et al., 

2020) and leg (Kuan et al., 2020).

Femur rotation is also likely to be important for walking in other insect species. Fransevich 

and Wang tested the passive rotation of the trochanter-femur articulation in 23 insect species 

and found rotation ranges from 10° to 120°, depending on the species (Frantsevich and 

Wang, 2009). Our estimate for the physiological range for walking Drosophila is about 70° 

(Figure 7B), which falls within the trochanter-femur articulation range observed in other 

insects. Thus, it is plausible that articulation of the trochanter-femur joint is sufficient to 

account for the femur rotation we measured during walking, and that other insects rely 

on femur rotation during walking as well. As an example, Bender et al. reported different 

kinematics across legs in walking cockroaches, with larger femur rotation and smaller 

femur-tibia flexion in the middle legs relative to the hind legs (Bender et al., 2010). The 

application of Anipose to track 3D joint kinematics in other species will enable further 

comparative studies of the biomechanics and neural control of walking.

Potential for future improvement based on related work

Camera calibration has long been a rich topic in computer vision research. The most 

commonly used calibration code, based on Zhang’s work (Zhang, 2000) and part of 

OpenCV (Bradski, 2000), can calibrate up to 2 cameras using images of checkerboards 

from multiple angles. Although this method can be used to calibrate 3 or more cameras 

by calibrating pairs of cameras, in practice, precise calibration requires an additional 

optimization step called bundle adjustment (Triggs et al., 2000). Bundle adjustment has 

been a key part of structure from motion toolkits (Agarwal et al., 2011; Schönberger, 2018), 

but the method has received comparatively little attention as a solution to camera calibration 
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for markerless tracking. An exception is DeepFly3D, which supports calibration based on 

animal keypoints but not based on a calibration board, which hinders its ability to handle 

setups with arbitrary camera positions (Günel et al., 2019). Our key innovation is to provide 

an open-source implementation of sparse bundle adjustment targeted for camera calibration 

for motion tracking. Our current implementation could eventually benefit from incorporating 

other methods from the literature. For instance, using a neural network to detect the 

calibration board may yield more detected keypoints and lead to more robust calibration 

under difficult conditions (Hu et al., 2018). Currently, Anipose requires a calibration board 

to initialize camera parameters (even with animal calibration), but it may be possible to 

initialize camera parameters based on commonly detected points, as is commonly done in 

the structure from motion literature (Agarwal et al., 2011; Schönberger, 2018), or perhaps 

by using a neural network directly (Ummenhofer et al., 2017). Bundle adjustment itself may 

be made more robust by incorporating gauge constraints in the optimization function, further 

reducing the number of parameters (Triggs et al., 2000). Finally, the calibration process itself 

may be streamlined if it were made interactive (Richardson et al., 2013).

There has been extensive recent work to improve markerless tracking based on deep learning 

approaches. One common approach has been to improve the neural network architecture 

for training. For instance, this approach has been used to induce priors in the neural 

network based on occlusions (Sárándi et al., 2018; Cheng et al., 2019), multi-view geometry 

(Iskakov et al., 2019; Zimmermann et al., 2020; Dunn et al., 2021; Yao et al., 2019), limb 

lengths (Zhou et al., 2017), or time (Núñez et al., 2019). We note that this approach is 

complementary to our work, as the Anipose filters could be used with keypoint detection 

by any neural network. Another approach is to resolve tracking by using pictorial structures 

to add priors on limb lengths (Yang et al., 2016; Amin et al., 2013; Günel et al., 2019) or 

motion (Wu et al., 2020) or both (Zhang et al., 2021). The Viterbi filter used in Anipose 

is analogous to the motion based pictorial structures and could be further extended to 

handle priors on limb lengths based on insights from these papers. Beyond tracking single 

animals, toolboxes like SLEAP (Pereira et al., 2019), Open-Pose (Cao et al., 2021), and 

DeepLabCut (Nath et al., 2019) have some support for multi-animal pose estimation in 

2D. For tracking multiple animals in 3D, a promising approach is to build correspondences 

based on geometry and appearance (Dong et al., 2019) across multiple views. As automated, 

high-throughput tracking of animal behavior grows in scale, new methods for data analysis, 

visualization, and modeling will also be needed to gain insight into the neural control of 

dynamic behavior (York et al., 2020; Marshall et al., 2021; Berman et al., 2014; Dallmann et 

al., 2021).

Limitations and practical recommendations

There are several common scenarios under which Anipose may fail to produce accurate 

3D tracking. Below, we enumerate some of the scenarios we have encountered in applying 

Anipose on different datasets and suggest practical strategies for troubleshooting.

As is the case for any tracking system, the ability of Anipose to track and estimate body 

pose is fundamentally limited by the quality of the underlying data. High-quality videos 

are well illuminated, contain minimal motion blur, and provide coverage of each keypoint 
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from different views. A common failure mode we encountered was when the neural network 

misplaced 2D keypoints in some frames. If the errors are uncorrelated across camera views, 

then the Anipose filters can compensate and still produce accurate tracking in 3D. But in 

some cases, multiple views have correlated errors or these errors persist in time. These type 

of errors most commonly arise when the neural network has not been trained on a subset of 

rare behaviors, so that the animal adopts poses unseen by the trained network. One solution 

to reducing the frequency of such errors involves systematically identifying outlier frames, 

manually relabeling them, then retraining the network. Anipose supports this functionality, 

as do other tracking toolboxes (Mathis et al., 2018; Pereira et al., 2019; Graving et al., 2019; 

Günel et al., 2019).

Poor multi-camera calibration also results in tracking errors. A good calibration should have 

an average reprojection error of less than 3 pixels, and ideally less than 1 pixel. To obtain 

a quality calibration, the calibration videos should be recorded so that the board is clearly 

visible from multiple angles and locations on each camera. If it is not possible to achieve 

this, we suggest exploring a preliminary calibration module in Anipose that refines an initial 

calibration based on the detected points on the animal itself. This module was inspired by 

the animal based calibration in DeepFly3D (Günel et al., 2019), but our implementation uses 

the initial calibration from a calibration board as a starting guess, permitting generalization 

in different setups. It also takes advantage of our iterative calibration procedure to yield 

robust calibration even with errors in tracking.

An effective experimental setup needs to have an appropriate number of cameras to track 

all keypoints across possible pose configurations. In particular, each joint must be visible 

from at least 2 cameras at all times. Thus, for tracking multiple limbs or body parts, we 

recommend at least 3 equally spaced cameras, so that half of the body is visible from any 

single camera. We evaluated this quantitatively in the human dataset (Table S2), where there 

is a dramatic reduction in error from 2 to 3 cameras.

The mouse reaching dataset is one example where tracking was reasonably accurate without 

filters, but filters did not further improve tracking accuracy. There are several potential 

explanations for this result. The reaches are very short (about 40–100 frames or 200–500 

ms), and the hand is hard to see when it is on the ground, so temporal filters such as 

the Viterbi filter or temporal regularization lack the information to resolve tracking errors. 

There are very few keypoints (only 3 per hand), and these can change in distance relative 

to each other, so the spatial regularization cannot impose strong constraints. With only 2 

cameras, the spatiotemporal regularization cannot fully leverage multiple views to remove 

outliers (Table S2), and the autoencoder has limited utility. In this situation, using basic 

linear least-squares triangulation works well enough for analysis (Figures 7F and 7G). The 

accuracy of tracking mouse reaching might be improved by labeling more keypoints on each 

hand, increasing the camera frame rate, and adding more cameras.

As a practical starting point, we recommend users start with no filters to first evaluate 

the quality of the tracking. If outliers or missing data impede data analysis, then we 

recommend enabling the default filter parameters in Anipose, which we have found to 

produce good tracking results across multiple datasets. In some cases, some additional 
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tuning of parameters may be required, especially on datasets with unique constraints or 

when studying behaviors with unusual dynamics. If any joints are not visible for an 

extended period of time in certain videos, we recommend disabling the spatiotemporal 

optimization, as can hallucinate trajectories, increasing overall error (as in Table S2). We 

provide suggestions for tuning parameters in our documentation at anipose.org.

Outlook

We designed Anipose to make markerless 3D tracking simple and broadly accessible for 

the scientific community. With this goal in mind, we built Anipose on DeepLabCut, a 

widely used 2D tracking toolkit. As many labs develop machine learning tools for behavior 

tracking and analysis, we advocate for pooling efforts around common frameworks that 

emphasize usability (Kane et al., 2020; Saunders and Wehr, 2019). In particular, we suggest 

that tools be built in a modular way, so that code can be extended and reused in other 

frameworks. We hope that the Anipose toolkit contributes to these community efforts. We 

welcome contributions to improve and extend the Anipose toolkit and conversely are ready 

to contribute the ideas and code from Anipose to other toolkits.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, John Tuthill (tuthill@uw. edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Data has been deposited at https://doi.org/10.5061/dryad.nzs7h44s4 and are 

publicly available as of the date of publication. DOIs are listed in the key 

resources table.

• All original code has been deposited at https://zenodo.org/record/5224213. 

Documentation for the software is available at anipose.org. DOIs are listed in 

the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse—Reaching data were obtained from four adult C57BL/6 mice (JAX:000664, ~8–12 

weeks old, two male and two female) trained to reach for a pellet. Procedures performed 

in this study were conducted according to US National Institutes of Health guidelines for 

animal research and were approved by the Institutional Animal Care and Use Committee of 

The Salk Institute for Biological Studies.
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Fly—Male and female Berlin wild-type Drosophila melanogaster (RRID:BDSC_8522), 4 

days post-eclosion, were used for all experiments. Flies were reared on standard cornmeal 

agar food on a 14 hr/10 hr light-dark cycle at 25 °C in 70% relative humidity.

Human—We evaluated 3D tracking with Anipose on the Human 3.6M dataset (Ionescu et 

al., 2014; Catalin Ionescu, 2011). The Human 3.6M dataset contains data from 5 subjects as 

a training dataset (2 female and 3 male), 2 subjects as a validation dataset, and 4 subjects as 

a testing dataset (2 female and 2 male).

METHOD DETAILS

ChArUco dataset—To evaluate the performance of Anipose compared to physical ground 

truth, we collected videos of a precision-manufactured ChArUco board (Garrido-Jurado et 

al., 2014). The ChArUco board was manufactured by Applied Image Inc (Rochester, NY) 

with a tolerance of 2 μm in length and 2° in angle. It is a 2 mm × 2 mm etching of opal and 

blue chrome, on a 5 mm × 5 mm board. The ChArUco pattern itself has 6 × 6 squares, with 

4 bit markers and a dictionary size of 50 markers. With these parameters, the size of each 

marker is 0.375 mm and the size of each square is 0.5 mm. We filmed the ChArUco board 

from 6 cameras (Basler acA800–510μm) evenly distributed around the board (Figure 1A), at 

30Hz and with a resolution of 832 × 632 pixels, for 2–3 minutes each day over 2 separate 

days. While filming, we manually rotated the ChArUco board within the field of view of the 

cameras. These videos were used as calibration videos for both the ChArUco dataset and the 

fly dataset detailed below.

We chose 9 of the corners as keypoints for manual annotation and detection (Figures 1A and 

3A). We extracted and manually annotated 200 frames from each camera from day 1, and 

an additional 200 cameras per camera from day 2 (1200 frames per day, 2400 frames total). 

We used the frames for day 1 for training the neural network and the frames from day 2 for 

evaluation of all methods.

Mouse dataset—The reaching task is described in detail elsewhere (Azim et al., 2014). 

Briefly, the training protocol consisted of placing the mouse in a 20 cm tall × 8.5 cm wide 

× 19.5 cm long clear acrylic box with an opening in the front of the box measuring 0.9 cm 

wide and 9 cm tall. A 3D-printed, 1.8 cm tall pedestal designed to hold a food pellet (20 

mg, 3 mm diameter; Bio-Serv) was placed 1 cm away from the front of the box opening 

and displaced to one side by 0.5 cm (to encourage mice to use their preferred forelimb), and 

food pellets were placed on top as the reaching target (Figure 1B). Mice were food deprived 

to ~85% of their original body weight and trained to reach for food pellets for either 20 

minutes or until 20 successful reaches (defined as pellet retrieval) were accomplished. Mice 

were trained in this setup for 14 consecutive days before reaches were captured with 2 

cameras (Sentech STC-MBS241U3V with Tamron M112FM16 16mm lens) placed in front 

and to the side of the mouse (~85° apart). Videos were acquired at a frame rate of 200 Hz at 

a resolution of 1024 × 768 pixels.

We chose 6 points on the mouse hands as keypoints (Figure 1B). On each mouse hand, we 

labeled 3 points: the dorsal wrist, the base of digit 5, and the proximal end of digit 3. In 

total, we manually labeled 2200 frames (1100 frames per camera) for training the neural 
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network from 2 mice. For test data to evaluate the post estimation performance, we labeled 

an additional 400 frames (200 frames per camera) taken from videos of 2 mice that were not 

in the training set.

Fly dataset—We next evaluated 3D tracking with Anipose on walking fruit flies. The 

flies’ wings were clipped 24–48 hours prior to the experiment in order to increase walking 

and prevent visual obstruction of the legs and thorax. For all experiments, a tungsten wire 

was tethered to the dorsal thorax of a cold-anesthetized fly with UV cured glue. Flies were 

starved with access to water for 2–15 hours before they were tethered. After 20 minutes of 

recovery, tethered flies were positioned on a frictionless spherical treadmill (Buchner, 1976; 

Götz, 1973) (hand-milled foam ball, density: 7.3 mg/mm3, diameter: 9.46 mm) suspended 

on a stream of compressed air (5 L/min). Six cameras (imaging at 300 Hz, Basler acA800–

510 μm with Computar zoom lens MLM3X-MP) were evenly distributed around the fly, 

providing full video coverage of all six legs (Figure 1C). Fly behavior was recorded in 2 

s trials, capturing a range of behaviors such as walking, turning, grooming, and pushing 

against the ball. The recording region of each video was cropped slightly so that the fly filled 

the frame and the camera was able to acquire at 300Hz. For all training and test evaluation 

data, the interval between trials was 25 s. For some of the flies in the larger walking dataset 

used in Figure 7, the interval between trials was set to 9 s.

We selected 30 points on the fly as keypoints (Figure 1C). On each fly leg, we labeled 5 

points: the body-coxa, coxa-femur, femur-tibia, and tibia-tarsus joints, as well as the tip of 

the tarsus. In total, we manually labeled 6632 frames (about 1105 frames per camera) for 

training the neural network. For test data to evaluate the post estimation performance, we 

labeled an additional 1200 frames (200 frames per camera) taken from videos of 5 flies that 

were not in the training set. For analyzing flexion and rotation of angles during walking in 

Figure 7, we used a larger dataset of videos from 39 flies, all collected with the methods 

described above.

Human dataset—We evaluated 3D tracking with Anipose on the Human 3.6M dataset 

(Ionescu et al., 2011, 2014). Because this dataset has been used extensively for human pose 

estimation, it provides a useful comparison to existing computer vision methods. It consists 

of 11 professional actors performing a range of actions, including greeting, posing, sitting, 

and smoking. The actors were filmed in a 4 m × 3 m space with 4 video cameras (Basler 

piA1000) at a resolution of 1000 × 1000 pixels at 50Hz (Figure 1D). To gather ground-truth 

pose data, the actors were also outfitted with reflective body markers and tracked with 

a separate motion capture system, using 10 Vicon cameras at 200 Hz. Leveraging these 

recordings, the authors derived the precise 3D positions of 32 body joints and their 2D 

projections onto the videos. For camera calibration, we used the camera parameters from the 

Human 3.6M dataset, converted by Martinez et al. (Martinez et al., 2017).

To compare the performance of Anipose against previous methods, we used a protocol from 

the literature (Iskakov et al., 2019). We used frames from the training dataset to train the 

network and evaluated the predictions on the validation dataset. We also removed frames 

from the training dataset in which the subject did not move relative to the previous frame 

(<40mm movement of all joints from the previous frame). We evaluated the tracked human 
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dataset on every 64th frame. We used 17 of the 32 provided joints as keypoints (Figure 1D). 

Iskakov et al. (Iskakov et al., 2019) showed that some scenes from the S9 validation actor 

(parts of the Greeting, SittingDown, and Waiting actions) have ground-truth shifted in global 

coordinates compared to the actual position (Iskakov et al., 2019), so we exclude these 

scenes from the evaluation set. Furthermore, for subject S11, one of the videos is corrupted 

(part of the “Directions” action), so we exclude this from the dataset as well. In total, we 

obtained 636,724 frames (159,181 per camera) for training the neural network, and 8608 

frames (2152 per camera) frames for evaluation.

Manual annotation of datasets—To produce neural network training data, we 

annotated the fly dataset using Fiji (Schindelin et al., 2012) and the VGG Image Annotator 

(VIA) (Dutta et al., 2016; Dutta and Zisserman, 2019). All the images in the fly test set were 

annotated with VIA. We annotated all the images in the ChArUco dataset and mouse dataset 

with VIA.

QUANTIFICATION AND STATISTICAL ANALYSIS

Neural network keypoint detections—Detection of keypoints in each of the datasets 

was performed with DeepLabCut 2.1.4 (Nath et al., 2019). Briefly, to produce training 

data, we used k-means clustering to pick out unique frames from each of the views, then 

manually annotated the keypoints in each frame. We trained a single Resnet-50 (He et al., 

2016) network for all camera views for each of the fly, mouse, and ChArUco datasets, 

starting from a network pretrained on Imagenet. For the human dataset, we started with a 

Resnet-101 network pretrained on the MPII human pose dataset (Insafutdinov et al., 2016). 

During training, we augmented the training dataset with cropping, rotation, brightness, blur, 

and scaling augmentations using Tensorpack (Wu et al., 2016). We then used the Anipose 

pipeline to run the network on each video. For each keypoint, the network produced a list of 

predicted positions, each associated with a confidence score (between 0 and 1). We saved the 

top-n most likely predictions of each joint location for each frame for use in Viterbi filtering 

of likely keypoints in 2D, as described below.

Filtering of 2D keypoint detections—The raw keypoint detections obtained with 

DeepLabCut were often noisy or erroneous (Figure 4). Thus, filtering the detections from 

each camera was necessary before triangulating the points. Anipose contains 3 main 

algorithms to filter keypoint detections; we elaborate on each algorithm below. Example 

applications of these filters and results are compared in Figure 4.

Median filter: The first algorithm identifies outlier keypoint detections by comparing 

the raw detected trajectories to median filtered trajectories for each joint. We started by 

computing a median filter on the detected trajectory for each joint’s x and y positions, 

which smooths the trajectory estimate. We then compared the offset of each point in the raw 

trajectory to the median filtered trajectory. If a point deviated by some threshold number of 

pixels, then we denoted this point as an outlier and removed it from the data. The missing 

points were then interpolated by fitting a cubic spline to the neighboring points. The median 

filter is simple and intuitive, but it cannot correct errors spanning multiple frames.

Karashchuk et al. Page 19

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Viterbi filter: To correct for errors that persist over multiple frames, we implemented the 

Viterbi algorithm to obtain a single most consistent path in time from the top-n predicted 

keypoints in each frame for each joint. To be specific, we expressed this problem as a hidden 

Markov model for each joint, wherein the possible values at each frame are the multiple 

possible detections of this keypoint. To obtain a cleaner model, we removed duplicate 

detections (within 7 pixels of each other) within each frame. To compensate for missed 

detected keypoints over many frames, we augmented the possible values at each frame 

with all detections up to F previous frames, weighted in time elapsed by multiplying their 

probability 2−F. We then identified the best path through the hidden Markov model using 

the Viterbi algorithm (Forney, 1973). This procedure estimates a consistent path, even with 

missed detections of up to F frames.

Autoencoder filter: We found that the network would often try to predict a joint location 

even when the joint was occluded in that view. This type of error is particularly problematic 

when used in subsequent 3D triangulation. The convolutional neural network confidence 

scores associated with these predictions can be high, making them difficult to distinguish 

from correct, high-confidence predictions. To remove these errors, inspired by (Murphy, 

2019), we implemented a neural network that takes in a set of confidence scores from all 

keypoints in one frame, and outputs a corrected set of confidence scores. To generate a 

training set, we made use of the fact that human annotators do not label occluded joints but 

label all of the visible joints in each frame. Thus, we generated artificial scores from biased 

distributions to mimic what the convolutional neural network might predict for each frame, 

with visible joints given a higher probability on average. Specifically, we sample the scores 

from a normal distribution, with standard deviation of 0.3 and mean 0 for invisible and 1 

for visible joints, clipped to be between 0 and 1. To mimic false positive or false negative 

detections, we flip 5% of the scores (x →1 − x) at random. The task of the network is to 

predict a high score for each joint that is truly visible in that frame and a low score for any 

occluded joint. The network is a multilayer perceptron network with a single hidden layer 

and tanh activation units to perform this task. The size of the hidden layer is the number of 

joints (e.g., if there are 10 joint scores to predict, we set the hidden layer to 10 units). We 

trained the network using the Adam optimizer (Kingma and Ba, 2017) implemented in the 

scikit-learn library (Pedregosa et al., 2011)

Camera model—A camera captures 2D images of light reflecting from 3D objects; thus, 

we can think of each camera as a projection, transforming 3D vectors to 2D vectors. To 

establish our notation, for a point p = (x, y, z)T or u = (x, y)T, we use a tilde to denote 

that point in homogeneous coordinates (with a 1 at the end), so that p = (x, y, z, 1)T  or 

u = (x, y, 1)T .

A camera model specifies a transformation from a 3D point p to a 2D point u. We use 

the camera model described by Zhang (Zhang, 2000), which consists of a product of an 

intrinsics matrix A, an extrinsics matrix P, and a distortion function D.
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The extrinsics matrix P ∈ ℝ4 × 3 describes how the camera is positioned relative to the world. 

We represent P as the product of a rotation matrix and a translation matrix. Both rotations 

and translations may be fully specified with 3 parameters each, for 6 parameters total in P.

The intrinsics matrix A ∈ ℝ3 × 3 describes the internal coordinate system of the camera. It is 

often modeled using 5 parameters: focal length terms fx and fy, offset terms cx and cy, and a 

skew parameter s:

A =
f s cx
0 fy cy
0 0 1

.

In practice, we found that we obtain a more robust calibration by reducing the number of 

parameters, setting f = fx = fy, s = 0, and (cx, cy) to be at the center of the image, so that we 

need to estimate only the focal length parameter f for the intrinsics matrix.

The distortion function models nonlinear distortions in the camera pixel grid. This distortion 

is typically modeled with 3 parameters as

D([x, y]) =
x + x k1 x2 + y2 + k2 x2 + y2 2 + k3 x2 + y2 4

y + y k1 x2 + y2 + k2 x2 + y2 2 + k3 x2 + y2 4 .

In practice, we found that the higher-order distortion terms k2 and k3 are often small for 

modern cameras, so we assume k2 = k3 = 0 and only estimate a single parameter k1.

Thus, the full mapping may be written as

u = D(APp) .

In total, the camera model involves estimating 8 parameters per camera: 6 for extrinsics, 1 

for intrinsics, and 1 for distortion.

For the camera calibration and triangulation methods described below, we define the 

projection T from p to u as

T p, θc = u = D(APp),

where θc are the 8 parameters for the camera model of camera c.

Initial estimate of camera parameters—In order to calibrate the cameras and estimate 

parameters of the camera models, we start by obtaining an initial estimate of the camera 

parameters. We detected calibration board keypoints in videos simultaneously captured from 

all cameras. We then initialized intrinsics based on these detections following the algorithm 

from Zhang (Zhang, 2000). We initialized the distortion coefficients to zero.
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We developed the following method to initialize camera extrinsics from arbitrary locations. 

For each pair of cameras, the number of frames in which the board is seen simultaneously 

is counted and used to build a graph of cameras. To be specific, each node is a camera, and 

edges represent pairs of cameras whose relation we will use to seed the initialization.

The greedy graph construction algorithm is as follows. Starting with the pair of cameras for 

which the number of frames the board is simultaneously detected is the largest, connect the 

two camera nodes with an edge. Next, proceed with iterations in decreasing order of the 

number of boards simultaneously detected. At each iteration, if the two nodes (cameras) are 

not already connected through some path, connect them with an edge. Processing iteratively 

through all pairs of cameras in this manner, a graph of camera connectivity is produced. Full 

3D calibration is possible if and only if the graph is fully connected.

To initialize the extrinsics using this graph, we start with any camera and set its rotation 

and translation to zero. Then, we initialize its neighbors from the estimated relative pose of 

the calibration board between them using the initial intrinsics. This procedure is continued 

recursively until all cameras are initialized. A diagram of the camera initialization for an 

example dataset is provided in Figure S1A.

Bundle adjustment—To refine the camera parameters from initial estimates, we 

performed a bundle adjustment by implementing a nonlinear least-squares optimization 

to minimize the reprojection error (Triggs et al., 2000). Given all uc, j, t, the detected jth 

keypoints from the calibration board at cameras c in frames t, we solve for the best camera 

parameters θc and 3D points pj, t such that the reprojection loss ℒ is minimized:

ℒ = ∑
c

∑
j

∑
t

E uc, j, t − T pj, t, θc .

Here, E(·) denotes the norm using which the error is computed. This norm may be the 

least-squares norm, but in practice, we used a robust norm, such as the Huber or soft ℓ1 norm, 

to minimize the influence of outliers.

This optimization is nonlinear because the camera projection function T is nonlinear. We 

recognized that it is a nonlinear least-squares problem with a sparse Jacobian and thus 

solved it efficiently using the Trust Region Reflective algorithm (Byrd et al., 1988; Branch et 

al., 1999), as implemented in SciPy (Virtanen et al., 2020).

Iterative bundle adjustment—When calibrating cameras, we found that outliers have 

an outsized impact on calibration results, even when using robust losses such as the Huber 

loss or soft ℓ1 loss. Thus, we designed an iterative calibration algorithm, inspired by the 

fast global registration algorithm from Zhou et al. (Zhou et al., 2016), which solves a 

minimization with a robust loss efficiently through an alternating optimization scheme.

We approximate this alternating optimization in the camera calibration setting through an 

iterative threshold scheme. In our algorithm, at each iteration, a reprojection error threshold 

is defined and the subset of points uc;i with reprojection error below this threshold is 
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chosen. Bundle adjustment is then performed on these points alone. The threshold decreases 

exponentially with each iteration, to refine the points to be calibrated. The pseudocode for 

the algorithm is listed in Algorithm 1.

Triangulation and 3D filtering—The 3D triangulation task seeks 3D points pj;t for joint j 
at frame t, given a set of detected 2D points uc;j;t from cameras c with camera parameters θc. 

There are several common methods for solving this triangulation task. Below, we describe 3 

of these methods, then describe our method for spatiotemporally constrained triangulation. 

For illustration, a comparison of the performance of these methods is shown on an example 

dataset in Figure 5.

Linear least-squares triangulation—The first method triangulates 3D points by using 

linear least-squares (Hartley and Sturm, 1997). Linear least-squares is the fastest method 

for multi-camera triangulation, but it may lead to poor results when the 2D inputs contain 

noisy or inaccurate keypoint detections. To be specific, we start with a camera model with 

parameters estimated from the calibration procedure described above, so that the extrinsics 

matrix Pc, intrinsics matrix Ac, and distortion function Dc are known for each camera c. By 

rearranging the camera model, we may write the following relationship:

Dc−1 uc, j, t = AcPcpj, t .

We solved this linear system of equations using the singular value decomposition (SVD) 

of the product AcPc to approximate the solutions for the unknown pj, t (Hartley and Sturm, 

1997).

Median-filtered least-squares triangulation—As a simple extension of least-square 

triangulation to correct some of the noisy detections, we applied a median filter to the 

resulting 3D points tracked across frames. This filtering improves the tracking, but at the 

cost of losing high frequency dynamics. Furthermore, a median filter does not improve 

triangulation if the original tracking is consistently poor.

RANSAC triangulation—Random sample consensus (RANSAC) triangulation aims to 

reduce the influence of outlier 2D keypoint detections on the triangulated 3D point, 

by finding the subset of keypoint detections that minimizes the reprojection error. We 

implemented RANSAC triangulation by triangulating all possible pairs of keypoints 

detected from multiple views and picking the resulting 3D point with the smallest 

reprojection error.
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Formally, let pi, t
a, b be the triangulated 3D point for keypoint j at frame t computed using 

the 2D keypoint detections from cameras a and b, then our algorithm finds pj, t using the 

following relation:

pj, t = argmin
pj, t

a, b
T pj, t

a, b, θa − ua, j, t 2 +

T pj, t
a, b, θb − ub, j, t 2 .

Spatiotemporally regularized triangulation—We formulated triangulation as an 

optimization problem, which allowed us to specify soft spatiotemporal constraints (i.e., 

regularization) on the triangulated points. We propose that the points must satisfy three 

soft constraints: (1) the projection of the 3D points onto each camera should be close to 

the tracked 2D points, (2) the 3D points should be smooth in time, and (3) the lengths 

of specified limbs in 3D should not vary too much. Each of these constraints may be 

formulated as a regularization in the full objective function.

First, the reprojection loss is written as

Lproj = ∑
c

∑
j

∑
t

E T pj, t, θc − uc, j, t .

Here, E(·) is a robust norm function such as the Huber or soft-ℓ1 norm, to minimize the 

influence of outlier detections.

Second, the temporal loss is formulated as follows:

Ltime  = ∑
j

∑
t

pj, t − pj, t − 1 2

We extend this penalty to minimize higher-order (e.g., 2nd or 3rd) finite-difference 

derivatives, which produces smoother trajectories but has less impact on important high 

frequency dynamics (see Figure S4).

Third, the limb loss may be formulated by adding an additional parameter dl for each limb l, 
defined to consist of joints j1 and j2:

Llimb = ∑
l, j1, j2 ∈  limbs 

∑
t

pj1, t − pj2, t 2 − dl
dl

2
.

The limb error is normalized relative to the limb length so that each limb contributes equally 

to the error.

Given each of the losses above, the overall objective function to minimize may be written as:
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ℒ = Lproj  + αtime Ltime  + αlimb Llimb  .

We solve this sparse nonlinear least-squares problem efficiently using the Trust Region 

Reflective algorithm (Byrd et al., 1988; Branch et al., 1999), as implemented in SciPy 

(Virtanen et al., 2020), similarly to the bundle adjustment optimization. To initialize 

the optimization, we use linear least-squares triangulation. When formulated as a sparse 

nonlinear least-squares problem, the time and memory requirements of the optimization 

scale linearly relative to the number of input time points.

The parameters αtime and αlimb may be tuned to adjust the strength of the temporal or limb 

loss, respectively. Note, however, that the temporal loss is in units of distance, which may 

vary substantially across datasets. Thus, to standardize these parameters, we break down the 

parameter αtime in terms of a user-tunable parameter βtime and an automatically computed 

scale γ such that

αtime  = βtime γ .

We compute the scale γ as

γ = N
∑j ∑t pj, t − pj, (t − 1) 2

,

where pj, t is an initial estimate obtained from linear least-squares triangulation. We found 

that the parameters βtime = 2 and αlimb = 2 work well across a variety of datasets, and 

we used these parameters for tracking all four datasets in this manuscript. The user may 

additionally specify weaker constraints for the lengths of certain limbs to allow for some 

flexibility, such as the shoulder length in humans or the length of the tarsus in flies.

Estimating joint angles—We estimated joint angles from the tracked 3D positions. To 

compute the flexion angle defined by the three 3D points surrounding the joint (pi,pj,pk), 

where point pj lies at the joint, the angle ϕj is

ϕj = arccos pi − pj ⋅ pk − pj .

To estimate rotation and abduction angles, we solve an inverse kinematics problem treating 

the set of limb joints as a kinematic chain. When estimating limb angles from 3D 

coordinates of joints, the rotation of a joint is indistinguishable from the abduction of the 

next joint in the chain. We observed that fly and human limbs can be approximated to only 

have abduction at the joint closest to the body, so we resolve this ambiguity by assuming 

that only the first (most proximal) joint may abduct and the last (most distal) joint may not 

rotate.

The solution proceeds in two stages. In the first stage, we estimate the absolute rotation 

of each joint based on its {x, y, z} coordinate axes. The axes of the first joint match the 
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coordinate system for the body. For other joints, the z axis is in the direction of the limb 

segment pointing from that joint away from the body, the x axis is in direction of proximal 

limb segment (toward the body) orthogonalized to the z axis, and the y axis is the cross 

product of the z axis with the x axis. In the second stage, the relative rotation between 

joints is computed and transformed to an Euler angle with an order of {z, y, x} for axis 

rotations. The rotations about the {z, y, x} axis represent rotation, flexion, and abduction 

angles, respectively. For more details of the implementation, see the accompanying code.

Comparison of bundle adjustment algorithms—To evaluate the different bundle 

adjustment algorithms (Figures S1B and S1C), we ran the algorithms with different 

parameters on the calibration videos from the fly setup. There were 4475 frames where 

the calibration board was detected in 2 or more cameras. To demonstrate the usefulness of 

our iterative bundle adjustment procedure with lower number of detections, we evaluated 

all bundle adjustment algorithms after subsampling the frames with board detections to 

313 (7%) and 4475 (100%). At each of these frame counts, we initialized the camera 

parameters and then ran our iterative bundle adjustment procedure, as well as traditional 

bundle adjustment with a linear least-squares loss, a Huber loss, and soft L1 loss. As the 

Huber and soft L1 losses are sensitive to the outlier threshold parameter, we evaluated them 

at multiple outlier thresholds on our dataset (Figure S1C). We picked the loss with the best 

outlier threshold, as evaluated by the reprojection error at the 75th percentile, to plot in the 

main calibration figure. The iterative bundle adjustment procedure was run with the default 

parameters in Anipose: Niter = 12,μstart = 15, μend = 1.

Evaluation against physical ground truth—To evaluate the calibration and 

triangulation, we compared the accuracy of manual keypoint annotations, neural network 

keypoint detections, and OpenCV keypoint detections (Figure 3). The ground truth was 

considered to be known physical length and angles of the ChArUco board. The physical 

lengths were calculated between all pairs of keypoints by taking the length between the 

known positions of pairs of corners. Similarly, the physical angles were estimated between 

all triplets of non-collinear keypoints. The sub-pixel OpenCV detections were done using 

the Aruco module (Garrido-Jurado et al., 2014). The manual annotation and neural network 

methods are detailed above. Given the keypoint detections from each method, we used linear 

least-squares triangulation to obtain 3D points and computed angles using the dot product 

method detailed above. If a keypoint was detected in fewer than 2 cameras at any time, we 

could not triangulate it and therefore did not estimate the error at that frame.

Evaluation of 3D tracking error for different filters—To evaluate the contribution of 

2D and 3D filters, we applied each filter and measured the reduction in error. For the 2D 

filters, we applied each of the filters (2D median filter, Viterbi filter, and autoencoder filter) 

and computed the 3D position using linear least-squares triangulation. We could not train the 

autoencoder filter on the human dataset, as the filter relies on occluded keypoints not being 

present in the annotated dataset and, due to the nature of the human dataset, all keypoints are 

annotated from every view at every frame. When applying the spatiotemporal regularization, 

we assumed a low variance in length of the coxa, femur, and tibia in flies and of the arm, 

the forearm, pelvis, femur, and tibia in the human. We assumed a slightly higher variance for 

Karashchuk et al. Page 26

Cell Rep. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the length of the tarsus in each fly and of the neck and shoulders in each human, because 

these body segments are more flexible. The parameters for each filter are listed in Table S1. 

We measured the error in joint positions and angles relative to those computed from manual 

annotations, using the ℓ2 norm. To evaluate the effect of the filter addition, as there was a 

lot of variance in error across points, we computed the difference in error for each point 

tracked. We treated points with reprojection error above 20 pixels as missing. The procedure 

for evaluating the 3D filters was similar, except that we compared the error in joint position 

and angle relative to the error from 3D points obtained with a Viterbi filter and autoencoder 

filter with linear least-squares triangulation.

Evaluation of derivative error for different filters—To evaluate the contribution of 

different 2D and 3D filters to the error in derivative estimation, we applied each filter to 

the 3D trajectory of each joint and estimated the derivative by using the finite difference 

method. For each joint, each frame, and each filter, we obtain a 3D vector representing a 

derivative. We compare the error between this derivative vector and the true derivative vector 

from manual annotations by using the ℓ2 norm, as in the previous section.

Evaluation of 3D tracking error for different number of cameras—To evaluate 

how the number of cameras contributes to the estimate of error, we ran Anipose on all 

combinations of 2, 3, and 4 cameras for the human dataset. We measured the error in joint 

position and angles relative to manual annotations as described above. We plotted the mean 

error across all joint positions or angles and across all possible combinations of cameras 

(Table S2) at each number of cameras.

Evaluation of temporal regularization on synthetic dataset—To evaluate how 

minimizing higher order derivatives affects tracking of high frequency movement dynamics, 

we evaluated the temporal regularization on a synthetic dataset (Figure S4). We synthesized 

30 ground-truth keypoint trajectories, each of length 500, by applying a low-pass filter 

with a cutoff of 0.12 cycles/sample on white noise. We then corrupted these trajectories 

by adding white noise and removing 10% of the points, simulating observed triangulated 

points (for example, as in the “No filters” trace in Figure 5A). We reconstructed the signal 

using temporal regularization and minimizing the 1st, 2nd, or 3rd derivative across different 

levels of smoothing factor βtime. We estimated the power spectrum of the ground truth, 

corrupted, and reconstructed signals by taking the average power spectral density at each 

frequency across all 30 simulated trajectories. We estimated the power spectral density using 

the Welch’s method as implemented in SciPy (Virtanen et al., 2020). We computed the root 

mean squared error (RMSE) between the ground truth and reconstructed signals for each 

derivative minimized at different levels of smoothing. We evaluated the RMSE of median 

filters with window size of 3 to 25 samples on the same trajectories, and found the median 

filter with a window size of 9 samples to have the lowest RMSE, which we plot as a 

reference.

Analysis of fly walking kinematics—For the analysis in Figure 7, we used data from 

39 wild-type Berlin flies on a spherical treadmill (details of experimental setup above). 

We tracked the flies using Anipose with spatiotemporal regularization and Viterbi and 
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autoencoder filters. We confirmed by visual inspection and by checking reprojection errors 

that all flies were well tracked.

To restrict the data to only walking, we manually labeled fly behavior for a random subset of 

videos using the VGG Image Annotation tool (Dutta and Zisserman, 2019). The categories 

of behaviors labeled were abdomen grooming, antennae grooming, ball push, ball tapping, 

eye grooming, head grooming, standing, t1 grooming, t3 grooming, walking. To detect 

walking behavior across the entire dataset, we fit a logistic classifier to predict the type of 

behavior. The input data to the classifier for each time point was a chunk of 24 samples 

around that time of 3D joint positions and angles and the Fourier transform of the 24 

samples of each variable. The confusion matrix for the classifier on a test set is shown in 

Figure S6C. The false negative rate was 0%, whereas the false positive rate was about 3%. 

To detect bouts of walking, we used the classifier to predict a walking probability for each 

sample in a video, applied a mean filter with a window of 16 samples to the probability, 

then kept bouts where the probability was above 0.5 for at least 40 consecutive samples. To 

further reduce spurious walking bout detections, we removed any bout where the femur-tibia 

flexion of the left front and hind legs varied less than 10 degrees over the full bout. We 

confirmed with visual inspection that all bouts removed in this way did not include walking.

To perform the UMAP embeddings, we followed a procedure inspired by DeAngelis et 

al. (DeAngelis et al., 2019), which mapped the manifold structure of Drosophila walking 

from 2D tracking data. We took chunks of 32 samples, advancing by 8 samples, of the 

coxa rotation, femur rotation, and femur-tibia flexion angles and their derivatives. Thus, we 

obtained a set of vectors of size 1152 (32 samples * 6 legs * 3 angles * 2 raw & derivatives), 

which we standardized by subtracting the mean and dividing by the standard deviation 

along each dimension. We embedded this set of vectors in 3 dimensions using the UMAP 

algorithm (McInnes et al., 2018), with effective minimum distance of 0.4 and 30 neighbors 

as parameters. To compute the phase of the step cycle, we applied a band-pass filter (1st 

order Butterworth over 3–60Hz) to front left leg femur-tibia flexion and estimated the phase 

from the analytic signal obtained using the Hilbert transform.

Analysis of mouse reaching kinematics—In Figures 7 and S7, we analyzed videos 

from 4 mice recorded over 2 different days (details of experimental setup above). We tracked 

3 keypoints on the hand for each mouse using Anipose with no filters. To obtain accurate 3D 

tracking for all trajectories, we removed all points with reprojection error above 10 pixels, 

then filled in missing data (about 11% of the data) using linear interpolation. We used the 

proximal end of digit 3 as a marker for the overall hand position. Mice 1 and 3 reached 

with their left hand, whereas mice 2 and 4 reached with their right hand. Accordingly, we 

quantified the movement of the hand each mouse reached with. We labeled the start and end 

of each reach, along with the reach type using the Anipose visualizer (Figure 6). To obtain 

the 3D position of the pellet holder, we labeled the pellet holder for each mouse and day 

from both views using the VGG Image Annotation tool (Dutta and Zisserman, 2019), then 

triangulated the labeled points for each pair of views using aniposelib. We measured the 

distance of the hand (proximal end of digit 3) to the pellet holder by using the ℓ2 norm.
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Analysis of human walking kinematics—In Figures 7 and S7, we analyzed videos 

from all 7 publicly available subjects in the Human 3.6M dataset (dataset described above). 

We tracked 17 keypoints for each human using Anipose with spatiotemporal regularization 

and Viterbi filters.

To focus on walking, we restricted our analysis on the “Walking-1,” “Walking-2,” 

“WalkingTogether-1,” and “WalkingTogether-2” actions in the dataset. We estimated the 

knee flexion, hip flexion, and hip rotation angles as described in the “Estimating joint 

angles” section above. For the UMAP embedding, we followed a procedure similar to our 

analysis of fly kinematics. Specifically, we took chunks of 24 samples, advancing by 8 

samples, of the knee flexion, hip rotation, and hip flexion angles and their derivatives. 

Thus, we obtained a set of vectors of size 288 (24 samples * 2 legs * 3 angles * 2 raw & 

derivatives), which we standardized by subtracting the mean and dividing by the standard 

deviation along each dimension. We embedded this set of vectors in 3 dimensions using the 

UMAP algorithm (McInnes et al., 2018), with effective minimum distance of 0.4 and 30 

neighbors as parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Open-source Python toolkit for 3D animal pose estimation, with DeepLabCut 

support

• Enables camera calibration, filtering of trajectories, and visualization of 

tracked data

• Tracking evaluation on calibration board, fly, mouse, and human datasets

• Identifies a role for joint rotation in motor control of fly walking
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Figure 1. Four experimental datasets were used for evaluating 3D calibration and tracking with 
Anipose
(A) To evaluate tracking errors, a 2×2mm precision manufactured ChArUco board was 

simultaneously filmed from 6 cameras focused on the same point in space. We manually 

annotated and tracked 9 keypoints on the ChArUco board, a subset of the points that can be 

detected automatically with OpenCV.

(B) Adult mice were trained to reach for food pellets through an opening in a clear 

acrylic box. After training, reach attempts were captured from 2 cameras. To quantify reach 

kinematics, we labeled and tracked 3 keypoints on each hand.

(C) Fruit flies were tethered and positioned on a spherical treadmill, where they were able 

to walk, groom, etc. Fly behavior was filmed from 6 cameras evenly distributed around the 

treadmill. We labeled and tracked 5 keypoints on each of the 6 legs, one keypoint for each of 

the major leg joints.
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(D) As part of the Human 3.6M dataset, professional actors performing a range of actions 

were filmed from 4 cameras. We tracked 17 joints on each human, covering the major joints 

of the human body.
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Figure 2. Overview of the Anipose 3D tracking pipeline
(A) The user collects simultaneous video of a calibration board from multiple cameras.

(B) Calibration board keypoints are detected from calibration videos and processed 

to calculate intrinsic and extrinsic parameters for each camera using iterative bundle 

adjustment (see Figure S1).

(C) With the same hardware setup as in (A), the user collects behavior videos.

(D) Behavior videos are processed by a neural network (e.g., DeepLabCut) to detect 2D 

keypoints.

(E) 2D keypoints are refined with 2D filters to obtain refined 2D detections (Figure 4).

(F) The filtered 2D keypoints are triangulated to estimate 3D poses.

(G) The estimated 3D poses are passed through an additional spatiotemporal filtering step to 

obtain refined 3D poses (Figure 5).

(H) Joint angles are extracted from the refined 3D poses for further analysis.
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Figure 3. Anipose can consistently estimate positions and angles of keypoints across four 
different datasets
(A) We identified 9 corners as keypoints on the ChArUco board in 200 frames from each of 

6 cameras.

(B) For comparison, we used manual annotation of the same ChArUco board dataset to train 

a neural network. We then compared tracking errors of the manual annotations, the neural 

network, and OpenCV.

(C) Error in manually annotated keypoints relative to the sub-pixel precision of OpenCV 

detections. Manually annotated keypoints had a mean error of (0.52, −0.75) pixels and 

standard deviation of (2.57, 2.39) pixels.

(D) Lengths between all possible pairs of keypoints were computed and compared to the 

physical lengths. Similarly, all possible angles between triplets of keypoints were computed 

and compared to known physical angles. OpenCV keypoints provided the most reliable 

estimates, followed by neural network predictions, then manual annotations. Note that 

OpenCV generally detected only a small fraction of the keypoints detected by the neural 

network or through manual annotation (19.3% of frames had keypoints detected by OpenCV, 

compared to 78.1% by the neural network and 75% by manual annotations). (E) At this 
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stage, prior to filtering, outlier and missing keypoint detections are apparent. Shown at left 

is an example trace of the tracked 3D position of the base of the mouse hand, projected 

onto the direction of the reach. On the right, we quantified the distribution of errors when 

estimating all joint positions and angles, relative to manual annotations. For the mouse 

dataset, 1 pixel corresponds to approximately 0.09 mm.

(F) Same layout as (A), but for 3D position of the fly hind-leg tibia-tarsus joint, projected 

onto the longitudinal axis of the fruit fly. For the fly dataset, 1 pixel ≈ .0075 mm.

(G) Same layout as (A), but for tracked 3D position of a human wrist, projected onto an 

arbitrary axis. Note that the human (and their wrist) is moving throughout the room. For the 

human dataset, 1 pixel ≈ 4.8 mm.
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Figure 4. 2D filters improve accuracy of 2D pose estimation by taking advantage of the temporal 
structure of animal behavior
(A) An example trace of the x coordinate of the 2D position of a fly’s tibia-tarsus joint 

before and after each step in filtering. Filtering reduces spurious jumps while preserving 

correct keypoint detections. See Figure S2 for a demonstration of the autoencoder filter.

(B) Comparison of error in joint position before and after filtering. The mean difference in 

error for the same tracked points is plotted, along with the 95% confidence interval. Viterbi 

and autoencoder filters significantly improved the estimation of joint position in flies (p < 

0:001, paired t test). The Viterbi filter significantly improved estimation of joint position in 

humans (p < 0:001, paired t test). For the fly dataset, 1 pixel ≈.0075 mm. For the human 

dataset, 1 pixel ≈4.8 mm. The absolute error values are indicated in parentheses above the 0 

tick mark for each dataset.

(C) Comparison of angle estimates before and after filtering. The mean difference is plotted 

as in

(B). Viterbi and autoencoder filters significantly improved the estimation of angles in flies 

and humans (p < 0:001, paired t test).

The results in (B) and (C) are evaluated on a validation dataset withheld from the training 

(1,200 frames for the fly, 8,608 frames for the humans). See Table S1 for filter parameters.
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Figure 5. Spatiotemporal filters further improve 3D pose estimation
See Figure S3 for example angle and segment length traces with different filters. See Figure 

S4 for detailed evaluation of temporal regularization on a synthetic dataset.

(A) An example trace of the tracked 3D position of the fly tibia-tarsus joint, before and after 

filtering. To plot a single illustrative position value, the 3D x-y-z coordinate is projected onto 

the longitudinal axis of the fly. Also included are comparisons with standard 3D filtering 

algorithms RANSAC and a 3D median filter, along with manual annotations. Filtering leads 

to reduction of sudden jumps and keypoint jitters, even compared to 2D filters alone.

(B) An example trace of the derivative of the 3D position of the fly tibia-tarsus joint, before 

and after filtering. To plot a single illustrative derivative value, the 3D x-y-z joint coordinates 

is projected onto the longitudinal axis of the fly. Spatiotemporal regularization produces 

smooth derivative estimates, which are closer to the manual annotations compared to other 

filtering approaches.
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(C) Comparison of error in joint position before and after filtering. The mean difference in 

error for the same tracked points is plotted, along with the 95% confidence interval. The 

absolute error values are indicated in parentheses above the 0 tick mark for each dataset. The 

2D filters are the Viterbi filter followed by the autoencoder for the fly dataset and Viterbi 

filter alone for the human dataset. Spatiotemporal regularization improves the estimation of 

joint position significantly above 2D filters in both datasets (p, 0.001, paired t test). The 3D 

median filter improves pose estimation on the human dataset (p, 0.001, paired t test) but 

not on the fly dataset. RANSAC triangulation does not improve pose estimation for either 

dataset. For the fly dataset, 1 pixel corresponds to 0.0075 mm. For the human dataset, 1 

pixel corresponds to 4.8 mm.

(D) Comparison of error in joint position derivative before and after filtering. The mean 

difference in error for the same tracked points is plotted, along with the 95% confidence 

interval. The absolute error values are indicated in parentheses above the 0 tick mark for 

each dataset. The 2D filters are the Viterbi filter followed by the autoencoder for the fly 

dataset and Viterbi filter alone for the human dataset. For the human dataset, due to the large 

number of labeled points, the confidence intervals are smaller than the size of the points. 

Adding filters significantly improves the estimate of the derivative.
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Figure 6. A web tool for visualizing 3D kinematics tracked with Anipose, taking advantage of the 
Anipose file structure shown in Figure S5
The videos from all views are displayed synchronously, with overlaid projections of 3D 

keypoints from Anipose. To the right of the videos, a dynamic 3D visualization allows the 

user to interact with the 3D keypoints by rotating or zooming in. Above the videos, the user 

can alter the playback speed or jump to different time points in the video. The user can also 

annotate the behavior of the animal for further analysis. Menus at the top allow the user to 

select specific recording dates, experimental trials, or filter trials by a specific behavior.
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Figure 7. 3D tracking of fly walking reveals difference in rotation and flexion angles across legs
3D tracking enables quantification of fly, mouse, and human joint position and angles to 

reveal structure in behavior.

(A–E) 3D tracking of fly walking reveals difference in rotation and flexion angles across 

legs. See Figure S6 for analyses across all angles.

(A) Representative traces of coxa rotation, femur rotation, and femur-tibia flexion angles 

from tethered-walking flies. The median angle value is indicated for each angle as a 

reference point.

(B) Probability distribution functions of coxa rotation, femur rotation, and femur-tibia 

flexion angles from 39 flies (1,480 total seconds of walking). Only walking bouts are 

included. The distribution of femur-tibia flexion angles is broader for the front and rear legs, 

whereas the distribution of femur rotation angles is broader for the middle legs.
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(C) UMAP embedding of coxa rotation, femur rotation, femur-tibia flexion angles across all 

legs, and their derivatives. Axis units are arbitrary. Although each fly has a characteristic 

gait, there is a continuum across most flies, with some flies offset from the rest.

(D) UMAP embedding as in (C), colored by the phase of the step cycle, revealing the match 

between the circular structure of the embedding and the step phase.

(E) UMAP embedding as in (C), colored by front-right leg femur-tibia flexion and femur 

rotation, and middle right leg femur-tibia flexion and femur rotation. Across multiple flies, 

the dynamics of the middle legs are dominated by femur rotation, whereas the dynamics of 

the front legs are dominated by femur-tibia flexion.

(F) Example 3D trajectories of a mouse reaching for a food pellet. The pellet is indicated as 

a black dot.

(G) Mean distance to pellet holder as a function of time across all 4 mice (88 hits, 69 bumps, 

28 misses). Shaded areas are 95% confidence intervals. When reaches are aligned to the 

grasp attempt (0 ms), the hand is farther from the pellet holder on miss trials compared to hit 

or bump trials. Averaging across all mice reveals a clear difference between reach types.

(H) Representative trace of knee flexion from a walking human, tracked with Anipose. Data 

are from the Human 3.6M dataset. The median angle value is indicated at left as a reference 

point.

(I) Probability distribution function of knee flexion angle from 7 humans. Only sessions that 

include walking are included.

(J) UMAP embedding of knee flexion, hip rotation, and hip flexion angles across all 

legs, and their derivatives. Axis units are arbitrary. Although each human subject has a 

characteristic gait, most of the walking patterns map onto a common cylinder manifold.

(K) UMAP embedding as in (E) but colored by knee flexion for each leg. Coloring by knee 

flexion angle reveals the common phase alignment of the circles across subjects. See also 

Figures S6 and S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and analyzed data This paper https://doi.org/10.5061/dryad.nzs7h44s4

Human 3.6M dataset Ionescu et al., 2014 http://vision.imar.ro/human3.6m/description.php

Experimental models: Organisms/strains

Mouse: C57BL/6 mice The Jackson Laboratory JAX: 000664; RRID:IMSR_JAX:000664

D. melanogaster: Berlin K Bloomington RRID:BDSC_8522

Software and algorithms

Anipose This paper https://doi.org/10.5281/zenodo.5224213
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