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The role of age in the spreading of COVID-19 across a social network in Bucharest
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Maria Cristina Ghiţǎ, David-Andrei Bunaciu, Adelina Alexandra Stoica,

and Bianca-Elena Mihǎilǎ
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We analyse officially procured data detailing the COVID-19 transmission in Romania’s capital Bucharest
between 1st August and 31st October 2020. We apply relational hyperevent models on 19,713 individuals
with 13,377 infection ties to determine to what degree the disease spread is affected by age whilst controlling
for other covariate and human-to-human transmission network effects. We find that positive cases are more
likely to nominate alters of similar age as their sources of infection, thus providing evidence for age
homophily. We also show that the relative infection risk is negatively associated with the age of peers,
such that the risk of infection increases as the average age of contacts decreases. Additionally, we find that
adults between the ages 35 and 44 are pivotal in the transmission of the disease to other age groups. Our
results may contribute to better controlling future COVID-19 waves, and they also point to the key age
groups which may be essential for vaccination given their prominent role in the transmission of the virus.

Keywords: Covid-19; age-group transmission; network analysis; relational hyperevent models; Romania.

1. Introduction

The ongoing pandemic of coronavirus disease (COVID-19) unfolded, at the end of December 2019, in
Wuhan, China, and, in only 3 months (as of March 2020), swiftly spread worldwide to 208 countries
and territories [1]. Large-scale non-pharmaceutical interventions (NPIs) have been implemented ever
since, with tremendous social, health and economic costs [2]. Many of the NPIs (closing schools and
workplaces, cancelling public events, restricting private gatherings, limiting internal movement, public
transport and travel, etc.) have aimed to supervise and control people’s locations. Nevertheless, further
research is still needed to inform about the relationship between how people interact and infections [3, 4].

© The authors 2021. Published by Oxford University Press. All rights reserved.
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The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) spreads through direct (inter-
personal) contact (through aerosols or droplets containing the virus) [5, 6]. Inherently, person-to-person
virus transmission is shaped or decisively influenced by human behaviour. Markedly, the spread of close-
contact viruses has been shown to be largely related to how people interact [7, 8] and to how individuals
are embedded in social networks [9–11]. Or, briefly, to how social relationships are organized within
society [12, 13]. In effect, ideas and statistical models from the network science [14] have already been
applied to various topics related to the COVID-19 pandemic, such as the global and local spread of the
virus [1, 15, 16], the exploration of SARS-COV-2 contact tracing data [6, 17, 18], the assessment of
vaccination strategies [19, 20], the analysis of vaccine patents [21], the evaluation of distancing strategies
[22], etc.

As hitherto documented [23–26], human interactions may prove determinant in understanding the
transmission of respiratory close-contact infectious diseases. Thus, our paper addresses the relation-
ship between contact patterns and the spread of COVID-19 infections, by employing a network science
approach. We rely our investigation on two theoretical perspectives [8]. The first is the assortative per-
spective which argues that social relationships are given rise by the compatibility and complementarity
of actors’ attributes [8]. Mixing patterns, either assortative (homophily) [27, 28] or disassortative (het-
erophily) [29], have been deemed salient drivers in the formation of human connections. The second is
the relational perspective which suggests that the disease spread (diffusion) is affected by the structural
features of the social networks (the configurations of the positions occupied by the individuals) [30].
Building on these two perspectives, we look at how the infection spreads throughout networks and assess
the positive role of age in patterning COVID-19 contact transmission. Additionally, we control for net-
work effects as well as for the sex of the embedded actors (both positive cases and their potential sources
of infection). To this aim, we apply a recently proposed family of statistical models—relational hyper-
event models (RHEM) [31–34]—to the real-world data describing the spread of COVID-19 in Bucharest
(Romania), between 1 August and 31 October 2020. RHEM can specify and estimate the relative risk
that a confirmed positive case nominates a set of actors as her/his close contacts (and therefore, possible
origins of infection), as a function of given covariates and of the actors’ embedding into the network of
previous case-contact ties.

Understanding how contact patterns affect the circulation of SARS-COV-2 is critical for devising
sustainable control programs to shield health-care country-level infrastructures. The examination of
transmissibility by accounting for socio-demographic covariates and network factors (configurations
of the transmission networks) avail of comprehending the inner mechanisms of the disease spread.
Currently, the role of human covariates and tie patterns in the SARS-COV-2 circulation [35] remains
unclear, due to the precarity of corresponding real-world data. Evidence on how COVID-19 infections are
transmitted between and within age-groups may inform vaccination strategies: either to prioritize specific
age-groups (for countries with a poor supply of vaccines), or to appraise the aftermath of unsuccessful
vaccination campaigns (when the vaccination goals are not reached).

1.1 Background

The available evidence about the role of age in the SARS-COV-2 transmission is limited, heterogeneous
and inconclusive. For instance, a large-quantitative pre-pandemic study showed that children and adoles-
cents tend to have in their personal networks larger numbers of alters similar in age, that is, 5 to 19-year
olds are more assortative mixing in their contacts [36]. Given this age-homophily effect, children and
adolescents were predicted to have the highest incidence, at least during the initial phase of an epidemic.
A contact tracing study [37] implemented in South Korea during the COVID-19 outbreak showed that the
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contacts of symptomatic young people (aged 10–19) contracted the disease, in households, in 18.6% of
cases (a percent larger than any other age group). Moreover, people aged 70 and 79 were the most likely
to spread SARS-COV-2 outside the households (4.8% of their non-household contacts became infected).
Conversely, it has been argued [38] that, in the USA, as of October 2020, at least 65 of 100 COVID-19
infections originated from individuals aged 20 to 49. Also, this particular age group was deemed to be
the only one to sustain resurgent SARS-COV-2 transmission with reproduction numbers higher than one.
Further, a study on the COVID-19 outbreak in Wuhan, China, claimed that people of 23–44 years had
played a key role in spreading the infection within households and among friends [39].

Regarding the disease spread within the same age-group, available research shows that mitigation of
community spread may be achieved by diminishing mixing in younger adults (individuals aged 18–35)
[35]. Concurrently, evidence available for India [40] marks that enhanced transmission risk in similar-age
pairs is strongest for children 0–14 years and among adults aged ≥65 years. On top of that, infections in
most age groups originated in individuals aged 20–44. Contact survey data [4] collected during the early
stage of the COVID-19 pandemic, in Wuhan, China, revealed that the 0–14 years were less susceptible
to SARS-COV-2 than adults (15–64 years old) while, in contrast, individuals over 65 years were more
susceptible. Comparable results were reported by fitting age-structured mathematical models to data
collected from China, Italy, Japan, Singapore, Canada and South Korea. These models marked that
susceptibility to infection among people under 20 years was approximately half that of adults aged
20 years, whereas clinical symptoms were manifesting in 69% of infected people aged over 70 years
[41]. Instead, a retrospective cohort study, conducted in Shenzhen, China, showed that children (<10
years) were at a similar risk of infection to the general population even if less likely to develop severe
symptoms [42].

These findings should be context-wise interpreted and carefully addressed as changes in the contact
patterns explain changes in disease incidence [43], while some age groups could experience, on average,
milder symptoms if any. We may infer that individuals of different age have a different impact on the
SARS-COV-2 transmission [44]. For example, young people tend to have larger networks (more contacts)
than adults and the elderly. At the same time, the seemingly reduced susceptibility of children as well as
their propensity to show milder symptoms may decrease the probability of them being detected [40].

2. Methods

On 7 March 2020, Romanian authorities were officially confirming the first COVID-19 case in Bucharest
city (the capital of Romania—a European Union member state), that is, a return traveller from Italy who
entered Bucharest on 27 February 2020 [45]. As of 6 July 2021, the number of people tested positive for
COVID-19 in Bucharest was 183,739 (≈ 17% of all 1,081,090 cases reported in Romania) [46]. Bucharest,
located in southern Romania is the largest city (area: 228 km2, a population of 1.83 million, and a density
of 8.026 people/km2) and the most important commercial centre [Gross Domestic Product (GDP) —per
capita in 2019: EUR 20.573, and a total nominal GDP of EUR 52.2 billion—23.9% of Romania]. In this
observational study, we analyse anonymized real world COVID-19 human to human transmission data
procured from the Department of Public Health Bucharest (Ministry of Health, Romania). These data
describe all the infections officially recorded between 1 August and 31 October 2020, in Bucharest. Put it
differently, we analyse the complete set of confirmed cases in Bucharest in that period. The observations
are available for replication [47].

Backward contact tracing is employed by the public health authorities to monitor human-to-human
disease spread, even if the actual directionality of infection, in COVID-19 epidemiological studies, is
difficult to ascertain [18]. Particularly, individuals, officially confirmed as COVID-19 positive cases
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Fig. 1. Human-to-human COVID-19 spread by backward contact tracing. Arrows stem from COVID-19 officially confirmed cases
(red circles) to their potential origin of infection (grey circles).

(the red circles in Fig. 1), are required to nominate the people they considered potential origin of their
infection (the grey nodes in Fig. 1).

We make use of the data provided by the public health authorities to create infection chains (real-
world infection networks)—similar to the ones exhibited in Fig. 1. In these chains, we may notice various
scenarios. First, COVID-19 confirmed cases nominate as a potential origin of infection other COVID-19
confirmed cases (pairs of red circles, in the form positive (referee)→ positive (referral) arcs). Second,
COVID-19 confirmed cases nominate each other as infection sources (pairs of red circles and reciprocated
arrows, in the form of positive↔ positive arcs). Third, COVID-19 confirmed cases nominate potential
infection origins (pairs wherein an arrow stems from a red circle and targets a grey circle, in the form of
positive (referee)→ contact (referral) arcs). Unlike the red circles (COVID-19 positive cases), the people
designated by grey circles are not tested by the medical authorities, but directly placed in quarantine. In
effect, we do not know whether the grey circles are also infected individuals.

Age and sex information are available for the nodes embedded in the transmission chains, irrespective
of their status (either referees or referrals). In our research design, we use the label referee to indicate the
individuals who provided information about their possible sources of infection (the number of nominations
made by the referees is unbounded). Also, we use the term referral to designate the people nominated as
potential origin of infection.

We employ relational hyperevent modelling (RHEM) [31, 32, 34] to estimate the probability of a
source (referee) nominating a set of targets (referrals). Our core objective is to assess age-homophily in
contact-elicitation (by confirmed positive cases) in a statistically valid way. Statistically, this amounts to
specify and estimate the hazard that a possible contact C, taken from a population of actors, is nominated
by a confirmed positive case P (referee) as a function of the age-difference of P and C—along with other
control variables. However, valid statistical analysis has to deal with two types of dependencies in the
given referee-referral data. First, a single positive case P does not only mention one single contact but
possibly a set of contacts {C1, C2, . . ., Ck} of any size. This property of the data naturally invalidates
any assumption of independence of the referee-referral dyads originating from the same positive case.
Second, the actors involved (referees and referrals) are embedded into a—largely unobserved—social
space [48, 49], which shapes the baseline probability that P ‘knows’ or ‘is close to’ a possible contact
C and, also, the baseline probability that two possible contacts C and C’ are close to each other—which
can all have an influence on the hazard that P nominates C and C’.

RHEM can deal with these two types of dependencies in a principled way. First, a single observation
modelled by RHEM is not given by a positive case P and a single nominated contact C, but by the
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entire set of contacts {C1, C2, . . . , Ck} nominated by P. RHEM is a variant of Cox proportional hazard
models (CoxPH) that specifies and estimates the hazard of observing a ‘relational hyperevent’, that is,
an event on a hyperedge (P,{C1, C2, . . . , Ck}), estimating the conditional distribution that {C1, C2, . . . ,
Ck} is the entire set of contacts, nominated by a given positive case P. This conditional distribution can
be a parametric function of covariates of interest—such as the average age-difference between P and the
various contacts C1, . . . , Ck—as well as of other covariates included to control for alternative explanations
of co-reference probabilities. By design, RHEM treats a given hyperedge (P, {C1, C2, . . . , Ck}) as a single
observation—avoiding to assume independence of the implied referee-referral dyads (P,C1), (P,C2), . . . ,
(P,Ck). Secondly, RHEM allows to add further covariates (‘network effects’) that allow to control for
further dependencies in contact-elicitation data. For instance, if some of the C1, . . . , Ck have previously
been tested positive and have nominated P, then this implies that those Ci are ‘close to’ P, so that in turn
P is more likely to reciprocate this nomination, when being interviewed as a positive case. As another
example of a network effect that can be controlled for with RHEM is that if, say, C1 and C2 are among
the list of contacts of a previously interviewed positive case P’, then the probability that another positive
case P also co-nominates C1 and C2 is likely to be higher than the product of their marginal probabilities.
This would amount to an effect predicting partial repetition of contact lists. Below, we define and discuss
these and other effects in more detail.

To estimate RHEM, we compare the observed nomination events (P, {C1, C2, . . . , Ck}) with possible
alternative hyperedges (P, {C’1, C’2, . . . , C’k}), where {C’1, C’2, . . . , C’k} is a set of actors that the
positive case P could have nominated as contact set, but did not. Since the number of possible contact
sets scales exponentially with the number of actors, we estimate RHEM via ‘case-control sampling’
[31, 32, 34]. For each observed nomination event (P, {C1, C2, . . . , Ck}), we draw one thousand alternative
possible contact sets {C’1, C’2, …, C’k} (‘non-events’ or ‘controls’) uniformly at random from all set of
actors of size k. Case-control sampling has been shown to yield reliable estimates for large REM [33]
and for RHEM [31, 32, 34].

We include, in the RHEM models, several covariate and network effects which are visually described
in Fig. 2. All images contain the following elements. A central actor P, displayed in red, is a confirmed
positive case (source, referee). When interviewed for contacts, P can theoretically elicit any set of contacts
{C1, C2, . . .} (targets, referrals) of any size taken from a population of actors. Also, the images display
two alternative possible sets of contacts, {C1, C2, . . .} and {C’1, C’2, . . .}, as light-grey nodes with given
labels. The positive case P is connected to the set of contacts {C1, C2, . . .} via dashed edges pointing to
the right, and P is connected to the set of contacts {C’1, C’2, . . .} via dashed edges pointing to the left. All
other nodes (unlabelled and displayed as dark-grey nodes), as well as all the edges that are displayed as
solid lines represent previous referees, referrals, or the respective referee-referral edges. These previous
referrals are assumed to shape the probability that P elicits the set {C1, C2, . . .} rather than the set {C’1,
C’2, . . .}. Furthermore, the images for each effect (Fig. 2) are always constructed in a way that if the
associated parameter is positive, then P has a preference for eliciting the set of contacts {C1, C2, . . .}
on the right, and if the associated parameter is negative, then P has a preference for eliciting the set of
contacts {C’1, C’2, . . .} on the left.

In terms of covariates effects, for each (possible or observed) contact nomination hyperedge (P, {C1,
C2, . . . , Ck}), we computed assortativity mixing (homophily) scores on both age and sex. Namely, the
average absolute difference (abs_diff_age) between the age of a hyperevent source P (positive case or
referee) and the age of the hyperevent targets C1, . . . , Ck (contacts or referrals). A positive (negative)
parameter associated with abs_diff_age would indicate that positive cases P have a tendency to nominate
contacts C1, . . . , Ck of different (similar) age. Thus, a positive parameter associated with abs_diff_age
would point to age-heterophily, or dis-assortative mixing, and a negative parameter to age-homophily, or
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Fig. 2. Network effects included in the Relational hyperevent models. The images describe contact-elicitation data wherein the red
P nodes are positive (referees) cases, the grey C nodes designate contacts (referrals), while the dark grey unlabelled nodes represent
previous referees or referrals.
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assortative mixing. A similar covariate (abs_diff_sex) was taken for the average absolute difference in
sex between the positive case P and her/his nominated contacts C1, . . . , Ck . Males were coded by 1 and
females by 2, so that abs_diff_sex is the ratio of contacts that have a different sex than P. Additionally, we
also accounted for the average age (avg_age) in the set of contacts as well as for the average sex (avg_sex)
in the contact set of each hyperevent. A positive (negative) parameter associated with avg_age would
point to a tendency to nominate old (young) contacts and a positive (negative) parameter associated with
avg_sex would point to a tendency to nominate females (males).

In Fig. 2.1 and 2.2, for the covariate effects, we display actors as large nodes if they assume a high
value in a given covariate (either high age or sex = female = 2), and we display them as small nodes if
they assume low values in a given covariate (either low age or sex = male = 1). Notably, for the case of
the absolute difference covariate effects (age and sex), we display two variants of graphics that differ only
in the covariate value of the positive case P (Fig. 2.1a,b). Namely, in Fig. 2.1a, P assumes a high covariate
value, and, in Fig. 2.1b, P assumes a low covariate value. For both images, the set of contacts {C1, C2,
C3} takes higher values in the given covariate than the set of contacts {C’1, C’2, C’3}. In the network
exhibited as Fig. 2.1a, the positive case P is, on average, closer (with respect to covariate values) to the
set of contacts {C1, C2, C3} than to the set of contacts {C’1, C’2, C’3}. That is, the absolute difference
of the covariate between P and the set of contacts {C1, C2, C3} is smaller than the absolute difference
of the covariate between P and the set of contacts {C’1, C’2, C’3}. If the absolute difference of covariate
(abs_diff_age or abs_diff_sex) is associated with a positive parameter, then—in the network displayed
as Fig. 2.1a—the set of contacts {C1, C2, C3} would be less likely to be nominated as the set of contacts
of the positive case P. (A positive parameter associated with abs_diff_covar would imply that difference
leads to nominations). In the network presented in Fig. 2.1b, everything is reversed: since P has a low
value in the covariate, P is more different to the set of contacts {C1, C2, C3} than to the set of contacts
{C’1, C’2, C’3}.

In Fig. 2.2(a,b), for the average covariate of contacts effects, it does not matter which value the positive
case P assumes in the given covariate (age or sex). It only matters which values the contacts take. We
nevertheless illustrate this effect with the same images. Specifically, for both Fig. 2.2(a,b) images, the set
of contacts {C1, C2, C3} takes higher values in the given covariate than the set of contacts {C’1, C’2, C’3}.
Thus, in both images, the value of avg_covariate (avg_age or avg_sex) is higher for the set of contacts
{C1, C2, C3} than for the set of contacts {C’1, C’2, C’3}. Thus, if avg_covariate is associated with a
positive parameter then—for both networks, Fig. 2.2(a,b)—the set of contacts {C1, C2, C3} is more likely
to be nominated by P than the set of contacts {C’1, C’2, C’3}. The covariate value of P does not have any
impact for this effect.

Figure 2.3–2.8 illustrated various networks effects. The individual contact popularity effect refers to
how does the risk increase if the contacts {C1, . . . Ck} individually have been more often mentioned as
contacts before. In Fig. 2.3, the set of possible contacts {C1, C2, C3} on the right received in total four
past nominations, leading to an individual contact popularity = 4/3 (the average number of nominations
per actor). The set of possible contacts {C’1, C’2, C’3} on the left received in total two past nominations,
leading to an individual contact popularity = 2/3. If individual contact popularity is associated with
a positive parameter, then the set of contacts {C1, C2, C3} on the right would be more likely to be
nominated as the set of contacts of the positive case P. This effect is very important to account for a
specific property of our data: the set of actors included in our analysis contains only persons that are
‘active’ as a referee or as a referral at least once. Therefore, all actors in our sample are guaranteed to
appear at least once either as a positive case or as a nominated contact and, once they have experienced
this first appearance, their probability to participate in another event decreases sharply. Thus, we actually
expect a negative parameter associated with individual contact popularity for the way the data has been
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constructed. Negative estimates mean a decrease in the relative risk. A negative effect is due to the sample
selection: each actor is guaranteed to appear in at least one event; once they had this event, their probability
to appear in another one decreases.

The joint contact popularity effect refers to how does the risk increase if the contacts {C1, . . . Ck}
pairwise have been more often co-mentioned as contacts before. In Fig. 2.4, among the three unordered
pairs in the set of possible contacts {C1, C2, C3} on the right, two, namely {C1, C2} and {C2, C3},
have been co-nominated before, leading to joint contact popularity = 2/3 (the average number of co-
nominations per pair of actors). Among the three unordered pairs in the set of possible contacts {C’1,
C’2, C’3} on the left, none has been co-nominated before, leading to joint contact popularity= 0. If joint
contact popularity is associated with a positive parameter, then the set of contacts {C1, C2, C3} on the
right would be more likely to be nominated as the set of contacts of the positive case P. Note that both
sets received the same number of previous individual nominations (four each), so that individual contact
popularity is equal to 4/3 for both sets.

The reciprocation effect describes, briefly, the following scenario: if A mention B as a contact then
B is more likely to mention A as a contact—if B is interviewed as a confirmed positive case. In Fig. 2.5,
among the three ties (P, C1), (P, C2) and (P, C3), in the hyperedge (P, {C1, C2, C3}), on the right, two are
characterized by a past nomination in the reverse direction. (Note that both C1 and C2 have elicited P as
a contact in previous interviews.) Thus, the reciprocation is 2/3. Among the three ties (P, C’1), (P, C’2),
and (P, C’3) in the hyperedge (P, {C’1, C’2, C’3}), on the left, none characterized by a past nomination in
the reverse direction. Thus, the reciprocation is 0. If reciprocation is associated with a positive parameter,
then the set of contacts {C1, C2, C3}, on the right, would be more likely to be nominated as the set of
contacts of the positive case P.

The contact activity effect exhibits the following scenario: if an actor A has already appeared as a
positive case (sending out ties) then is there an increase in the likelihood of A appearing in a contact list
of another interviewed confirmed positive case? In Fig. 2.6, the three contacts of the hyperedge {C1, C2,
C3}, on the right, have nominated in total four contacts in the past. Thus, the contact activity equals 4/3,
which is also the average out-degree of these contacts. The three contacts of the hyperedge {C’1, C’2,
C’3}, on the left, have nominated in total one contact in the past. Thus, the contact activity is 1/3, which
is also their average out-degree. If contact activity is associated with a positive parameter, then the set
of contacts {C1, C2, C3}, on the right, would be more likely to be nominated than the set of contacts on
the left. Note that, in contrast to reciprocation, for contact activity it does not matter whether the past
nominations from the contacts targeted the source of the focal hyperedge or not.

The nominations among contacts effect measures the ratio of previous referee-referral ties in the set
of contacts {C1, . . . , Ck}. In Fig. 2.7, all three of the three unordered pairs of contacts {C1, C2, C3},
on the right, have a past nomination tie. Thus, the nominations among contacts is 3/3 = 1. Among the
three unordered pairs of contacts {C’1, C’2, C’3}, on the left, only one, namely {C’1, C’2}, has a past
nomination tie. Thus, in this case the nominations among contacts effect is 1/3. If the effect is associated
with a positive parameter, then the set of contacts on the right would be more likely to be nominated by P
than the set of contacts on the left. The nominations among contacts effect tests whether an interviewed
person is likely to nominate a previous positive case and some of her/his contacts.

The shared referee effect measures previous co-nominations of the positive case P and some of her/his
contacts C1, . . . , Ck, in the contact list of another interviewed positive case P’. In Fig. 2.8, among the three
ties (P, C1), (P, C2) and (P, C3) in the hyperedge (P, {C1, C2, C3}) on the right, two are characterized by a
past joint nomination from a third actor. (Note that both P and C1 have been co-nominated by a common
previous referee, and both P and C3 have been co-nominated by a common previous referee.) Thus, the
shared referee effect equals = 2/3. Among the three ties (P, C’1), (P, C’2) and (P, C’3) in the hyperedge
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(P, {C’1, C’2, C’3}) on the left, only one is characterized by a past co-nomination from a common referee.
Thus, the shared referee effect is 1/3. If shared referee is associated with a positive parameter, then the
set of contacts {C1, C2, C3} on the right would be more likely to be nominated as the set of contacts of
the positive case P.

In general, RHEM explain the ‘relative risk’ of an event on a hyperedge h= (P, {C1, . . . , Ck}),
where P is a person that tested positive and C1 through Ck are k contacts mentioned by P. Relative risk
(also relative hazard, relative intensity or relative event rate) refers to the factor by which an event on
a hyperedge with the given specific explanatory variables is more likely than an event on a ‘average
hyperedge’ (meaning a hyperedge hypothetically taking average values in all explanatory variables). In
this article, we give standardized scores (estimates) for the explanatory variables, leading to the following
exemplary interpretation. For instance, according to the most complex model reported below (‘combined’
model) a hyperedge that takes a value in abs_diff_age (absolute difference in age between the positive
case and her/his contacts) which is by one standard deviation above average has a relative risk that is
multiplied with exp(-0.36) = 0.70, which implies a decrease by 30%. A hyperedge that takes a value in
abs_diff_sex which is by one standard deviation above average, has a relative risk that is multiplied with
exp(0.13)= 1.14, that is, an increase of 14%. In this article, we build three RHEM models: a RHEM purely
with covariate effects (The ‘covariate model’ or Model 1), a RHEM purely based on network effects (the
‘network model’ or Model 2), and a RHEM with both types of effects combined (the ‘combined model’
or Model 3).

3. Results

In this study, we examine the spread of COVID-19 infections in Bucharest (Romania), from 1 August
to 31 October 2020. We analyse real-world human-to-human transmission data. Particularly, we address
contact-elicitation data wherein an infected patient (alternatively, a positive case, a referee) nominates
her/his potential source(s) of infection (contacts, targets and referrals). We officially procured the informa-
tion from local public health authorities. Our data consist of 19,713 unique nodes (individuals) embedded
in 13,377 observed referee—referral (transmission) pairs. In our dataset, some people are only referees
or referrals whereas others may be both positive cases as well as contacts. Namely, a person may have
multiple statuses across different pairs: an individual may be a positive COVID-19 case (a referee) in
some dyad(s), whilst, in other dyad(s) she may be a nominee (a contact or referral). We underscore that
Romanian authorities collected the data in a backward contact tracing fashion: each patient was requested
to nominate the potential source(s) for her/his infection (see Methods section for details).

Figure 3 provides an overall representation of the patterns detected in the disease transmission chains.
These chains were reconstructed through inter-connecting the 13,377 pairs through common nodes (peo-
ple). Figure 3(a) illustrates a referee-referral matrix, with the information arranged by age in the form of a
contour plot. We kept in the visualization only those pairs with complete information on the age variable
(n = 13,298, that is ≈ 99% of the total number of 13,377 observed pairs). For 79 referee–referral pairs,
age data were missing, either for the referee or for the referral. The contour plot marks particular patterns
of transmission (the discoloured diagonals): the main diagonal of the matrix indicates homophily (the age
of the referee and of the referral are very closed if not identical). Deviations above and below the main
diagonal are indicative of heterophily (the age of the referee is higher (lower) than the age of the referral).
The age distributions for the referees and referrals are also available as marginal histograms (dark red and
dark, respectively). The age distributions have the following characteristics. For the referees: the mean
age is 39.97 with S.E.= 0.13 (n = 13,374, SD=14.82, Med=40, Min=0, Max= 97, IQR= 18, MAD=
13.34, skewness= 0.12, kurtosis= 0.61, missing data= 3). For the referrals: the mean age is 33.66 with
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Fig. 3. Visualizations for the overall COVID-19 transmission patterns detected in the empirical data. (a) The contour plot is based
on a referee-referral matrix. Individuals (referees and referrals) are arranged by their age. Colours in the plot illustrate the frequency
of referee–referral nominations by age. Marginal histograms display age distributions for both referees and referrals (dark-red and
red, respectively). (b) The bar plots show the frequency of referee-referral nominations by sex categories (females are indicated by
green while males are indicated by red). Arrows designate who nominates whom as a disease origin. Moreover, it is illustrated the
frequency of cases wherein the referral is female (male), irrespective of the referee’s sex (male, female or unknown). (c) The bar
plots indicate the distribution of various types of pairs in the dataset. We also use three shapes to designate individuals embedded
in the transmission dyads: triangles (referees), circles (referrals), and squares (brokers).

S.E. = 0.18 (n = 13,301, SD=21.02, Med=34, Min=0, Max=95, IQR = 34, MAD=25.20, skewness
= 0.22, kurtosis = −0.70, missing data = 76).

Figure 3(b) shows a bias in favour of sex related dis-assortative mixing (heterophily) in the contact-
elicitation data. Out of 1,811 pairs, wherein covariate information for each node in a pair is available,
1,208 are mixed dyads (≈67%): female→ male (591 nominations) or male→ female (617). Pairs with
full information on sex represent 13.5% of the total 13,377 pairs in the dataset. Overall, females are
referrals in 1,006 cases and referees in 7,045. Further, males are referrals in 805 instances and referees
in 6,332. Additionally, looking only at the dyads for which the sex of the referrals is missing, we unveil
that females were the referees in 6,065 cases, while males in 5,501 situations.

In Fig. 3(c), we report the distribution of various types of pairs in the dataset, given three categories
vertices: referrals (people nominated as origin the infection), referees (COVID-19 confirmed positives),
and brokers (people who appear in more than one pair, and who entail two statuses: both referrals and
referees). There total number of 19,713 unique nodes are distributed across the three vertex categories in
the following way: 13,818 referrals (node-level in-degree centrality spanning from one to four), 6,441
referees (node-level out-degree centrality spanning from 1 to 19), and 454 brokers (node-level degree
centrality spanning from two to eight). We record four types of pairs: referee→ referral (12,270 arcs,
which corresponds to 91.7% of all observed ties), broker → referral (611 arcs i.e. 4.8%), referee →
broker (250 arcs i.e. 1.9%), and broker → broker (246 arcs i.e. 1.8%). Joining the 13,377 pairs into
transmission chains gives rise to a highly fragmented network (the connectedness degree is 0.00013;
which is consonant with other similar network studies [50]). This sheer fragmentation is also visually
illustrated in Fig. 3(c). The referee→ referral pairs account for 92% of all observed dyads. These specific
pairs may reflect: isolated dyads ({i→ j} arcs that appear only once in the dataset), or dyads embedded
in various larger polyadic structures (e.g. star networks in the form {l← k→ j}).

Table 1 illustrates a contact–elicitation matrix that points to the nomination intensity across and within
age groups. The most origins of infections are reported for the 35–44-year-old group (n = 2,312; 17.3%
of all nominations). Nearly half of the total contacts (referrals) include people aged 25 and 54 (n =
6,477; 48.5%). Conversely, with respect to the positive confirmed patients, we note: the largest category
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is aged 35–44 (n = 4,125; 30.8% of all referees), while people between 25 and 54 years amass 9,837
cases (73.5%). These results may suggest that adults were pivotal in the disease circulation within the
investigated time window.

Table 2 reports correlation, covariance and standard deviations. We note that correlation among
explanatory variables is generally small (between±0.2). Table 3 presents parameter estimates of relational
hyperevent models explaining the relative risk that a confirmed positive case nominates a set of actors
as her/his close contacts. Comparing the model fit (AIC; smaller AIC points to better model fit), we
find that the ‘network effects’ (Model 2) improve model fit much more than the ‘covariate effects’ of
age and sex (Model 1). The best-fitting model is the joint model including covariate and network effects
(Model 3). However, the difference in model fit between the covariate-only model (Model 1) and the joint
model (Model 3) is huge while the difference in model fit between the network only model (Model 2)
and the joint model is much smaller. Note however that the differences in parameters (values, signs, and
significance levels) between the joint model and the two sub-models are rather small. Thus, the covariates
and network statistics seem to model orthogonal effects that are hardly influencing each other. Below we
provide a quantitative discussion of all findings.

Age homophily. We find that age difference effect is associated with a significantly negative parameter
(−0.346, in Model 1, and −0.361, in Model 3). Thus, the larger the average difference in age between
the confirmed positive case P and a possible set of contacts {C1, C2, . . .}, the less likely P nominates
{C1, C2, . . .} as her/his set of contacts. This points to an age-homophily effect: positive cases are more
likely to nominate contacts of similar age. Regarding effect size, we find that if the average age difference
between P and {C1, C2, . . .} increases by one standard deviation (=13.7 years), then the relative risk that
P nominates {C1, C2, . . .} as her/his set of contacts gets multiplied by the factor exp(−0.346)=0.708,
that is, the relative risk decreases by more than 29%.

Average age of contacts. We find that the average age of contacts is associated with a significantly
negative parameter (−0.131, in Model 1, and −0.115, in Model 3). Thus, the older the average age of
the possible contacts {C1, C2, . . .}, the less likely a positive case P nominates {C1, C2, . . .} as her/his set
of contacts. From the other point of view, positive cases have a tendency to nominate younger contacts.
If the average age of {C1, C2, . . .} decreases by one standard deviation (=17.1 years), then the relative
risk that {C1, C2, . . .} is nominated as a set of contacts gets multiplied by exp(0.131) = 1.14, that is it
increases by 14%.

Sex homophily. We find that the sex difference effect is associated with a significantly positive param-
eter (0.128, in Model 1, and 0.127, in Model 3). Thus, the larger the average difference in sex between the
confirmed positive case P and a possible set of contacts {C1, C2, . . .}, the more likely P nominates {C1,
C2, . . .} as her/his set of contacts. This points to a sex-heterophily effect: positive cases are more likely
to nominate contacts of the opposite sex. Regarding effect size we find that if the average sex difference
between P and {C1, C2, …} increases by one standard deviation (=0.34; note that this corresponds to a
swap of sex of 34% of the contacts towards the sex opposite to P; for instance, if P is female and one
third of the contacts {C1, C2, . . .} swap their sex from female to male, then the average sex difference
increases by 0.33, about one standard deviation), then the relative risk that P nominates {C1, C2, . . .} as
her/his set of contacts gets multiplied by the factor exp(0.128)=1.14, that is, the relative risk increases
by 14%.

Average sex of contacts. We find that the average sex of contacts effect is associated with a significantly
positive parameter (0.061, in Model 1, and 0.080, in Model 3). Thus, the higher the ratio of females (recall:
male = 1 and female = 2) in the set of possible contacts {C1, C2, . . .}, the more likely a positive case P
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Table 3 Relational hyperevents model estimates

Covariate model (Model 1)

coef exp(coef) S.E.(coef) z Pr(> |z|)
Age difference −0.34639 0.70724 0.01528 −22.672 <2e−16∗∗∗

Average age of contacts −0.13134 0.87692 0.0139 −9.448 <2e−16∗∗∗

Sex difference 0.12819 1.13677 0.0139 9.221 <2e−16∗∗∗

Average sex of contacts 0.06132 1.06324 0.02775 2.210 0.0271∗

n = 7,547,892; number of events = 7,587.
AIC = 104,026.86
Concordance = 0.58 (S.E. = 0.003); Likelihood ratio test = 660.8 (df = 4) p ≤ 2e-16; Wald test =
608.5
(df = 4) p ≤ 2e-16; Score (logrank) test = 614.7 (df = 4) p ≤ 2e-16.

Network model (Model 2)

coef exp(coef) S.E.(coef) z Pr(> |z|)
Individual contact popularity −5.291756 0.005033 0.117836 −44.91 <2e−16∗∗∗

Joint contact popularity 0.040595 1.04143 0.002078 19.54 <2e−16∗∗∗

Reciprocation 0.058597 1.060347 0.002201 26.62 <2e−16∗∗∗

Contact activity −3.387140 0.033805 0.079126 −42.81 <2e−16∗∗∗

Nominations among contacts 0.051087 1.052415 0.00188 27.18 <2e−16∗∗∗

Shared referee 0.044245 1.045238 0.001319 33.53 <2e−16∗∗∗

n = 7,547,892; number of events = 7,587.
AIC = 854.239.
Concordance = 0.797 (S.E. = 0.002); Likelihood ratio test = 22,837 (df = 6) p ≤ 2e-16; Wald test
= 4,342 (df = 6) p ≤ 2e-16; Score (logrank) test = 89,419 (df = 6) p ≤ 2e-16.

Combined model (Model 3)

coef exp(coef) S.E.(coef) z Pr(> |z|)
Age difference −0.360909 0.697043 0.015515 −23.263 <2e−16∗∗∗

Average age of contacts −0.114654 0.891675 0.014062 −8.153 3.54E−16∗∗∗

Sex difference 0.126829 1.135223 0.014319 8.857 <2e−16∗∗∗

Average sex of contacts 0.079576 1.082828 0.028581 2.784 0.00537∗∗

Individual contact popularity −5.299928 0.004992 0.118003 −44.914 <2e−16∗∗∗

Joint contact popularity 0.041241 1.042103 0.00207 19.927 <2e−16∗∗∗

Reciprocation 0.058644 1.060398 0.002219 26.434 <2e−16∗∗∗

Contact activity −3.422744 0.032623 0.079374 −43.122 <2e−16∗∗∗

Nominations among contacts 0.050917 1.052235 0.001932 26.354 <2e−16∗∗∗

Shared referee 0.044550 1.045557 0.001334 33.398 <2e−16∗∗∗

n = 7,547,892; number of events = 7,587.
AIC = 81,181.108.
Concordance = 0.837 (S.E. = 0.002); Likelihood ratio test = 23,519 (df = 10) p ≤ 2e-16; Wald test
= 4,913
(df = 10) p ≤ 2e-16; Score (logrank) test = 90023 (df = 10) p ≤ 2e-16.

Signif. codes: *** p < 0.001, ** p < 0.01, * p < 0.05.
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nominates {C1, C2, . . .} as her/his set of contacts. If the ratio of females in {C1, C2, . . .} increases by one
standard deviation (=0.35, that is, by 35%), then the relative risk that {C1, C2, . . .} is nominated as a set
of contacts gets multiplied by exp(0.061) = 1.06, that is, it increases by 6%.

Next, we will discuss the ‘network effects’, in a more concise manner. The general way to compute
hazard ratios applies to all effects: if variable x is associated with a parameter equal to beta, then an
instance (set of contacts) with x one standard deviation above average has the relative hazard to be
nominated as a set of contacts multiplied by exp(beta). If beta is positive, then exp(beta) is larger than
one, implying an increased hazard; if beta is negative, then exp(beta) is smaller than one, implying a
decreased hazard.

Individual contact popularity. We find that the parameter associated with the individual contact
popularity is significantly (and strongly) negative (−5.29, in Model 2, and−5.30, in Model 3). This implies
that the more often the possible contacts {C1, C2, . . .} have previously been nominated individually by
previous positive cases, the lower the probability that {C1, C2, . . .} is nominated as the set of contacts of
the current positive case. We discussed in the Methods section that this finding is due to an aspect in the
definition of our data: each actor is guaranteed to appear at least once either as a referee or as a referral.
Once an actor has participated in one event (for instance, if the actor has been nominated as a contact),
the probability that the same actor participates in another event decreases sharply. Indeed, only a small
ratio of all actors have degree larger than one.

Joint contact popularity. We find that the parameter associated with joint contact popularity is sig-
nificantly positive (0.04, in Models 2 and 3). This means that the more pairs of actors in a given set
of possible contacts {C1, C2, . . .} have previously been co-nominated by a previous positive case, the
larger the probability that the current positive case nominates {C1, C2, . . .} as her/his set of contacts. This
effect is a typical network effect, revealing unobserved ‘closeness’ of actors: if, say, C1 and C2 have been
co-nominated by some positive case, it is likely that C1 and C2 are ‘socially close’ in some way which,
in turn, increases the probability that C1 and C2 are co-nominated again.

Reciprocation. We find that the parameter associated with reciprocation is significantly positive (0.06,
in Models 2 and 3). This means, the more actors from a possible set of contacts {C1, C2, . . .} have
nominated the current positive case P in a previous interview by health authorities, the larger the probability
that P nominates {C1, C2, . . .} as her/his set of contacts. In the same way as joint contact popularity,
reciprocation reveals an effect that social closeness correlates with contact-elicitation probabilities.

Contact activity. We find that the parameter associated with the contact activity is significantly (and
strongly) negative (-3.39, in Model 2, and -3.42, in Model 3). This implies that the more contacts have
been nominated by the actors from a possible set of contacts {C1, C2, . . .} in previous interviews, the
lower the probability that {C1, C2, . . .} is nominated as the set of contacts of the current positive case. The
interpretation of this finding is similar to individual contact popularity: each actor is guaranteed to appear
at least once either as a referee or as a referral. Once an actor has participated in one event (for instance,
if the actor has been interviewed as a positive case), the probability that the same actor participates in
another event decreases sharply. Indeed, only a small ratio of all actors have degree larger than one.

Nominations among contacts. We find that the parameter associated with ‘nominations among con-
tacts’ is significantly positive (0.05, in Models 2 and 3). This means that the more pairs of actors in a
given set of possible contacts {C1, C2, . . .} are linked by previous contact nominations, in the sense that
one of the actors has nominated the other in a previous interview, the larger the probability that the current
positive case nominates {C1, C2, . . .} as her/his set of contacts. In the same way as joint contact popularity
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and reciprocation, ‘nominations among contacts’ reveals an effect that social closeness correlates with
contact-elicitation probabilities.

Shared referee. We find that the parameter associated with ‘shared referee’ is significantly positive
(0.04, in Model 2, and 0.05, in Model 3). This means that the more actors in a given set of possible contacts
{C1, C2, . . .} have been co-nominated with the current positive case P by some previously interviewed
positive case, the larger the probability that P nominates {C1, C2, . . .} as her/his set of contacts. In the same
way as joint contact popularity, reciprocation and nominations among contacts, shared referee reveals an
effect that social closeness correlates with contact-elicitation probabilities.

4. Discussion

We provide evidence that age is an important variable for predicting and understanding the spread of
the COVID-19 disease. Our results suggest that virus transmission is patterned by age. The relative risk
of infection decreases (by 29%, z = −22.672, p < 0.001) as the average difference between a positive
case and her/his set of contacts increases (age-homophily). Concomitantly, it is noteworthy that the
risk of infection increases (by 14%, z = −9.448, p < 0.001) as the average age of a patient’s contacts
decreases. In other words, infected people have the tendency to nominate younger contacts. These findings
emphasize that peer groups of similar age as well as younger people have a sheer importance in the
COVID-19 spreading. Similar results are also reported for transmission network data collected during
the early outbreak in Japan [50]. We control the age covariate for sex and network effects. We find that
the infected people are more likely to nominate contacts of the opposite sex (sex heterophily) and that the
relative risk of infection increases (by 6%, z = 2.210, p < 0.01) as the ratio of female contacts increases.

We also observe that network effects are strong and allow for understanding the role of structure in
the dynamics of virus transmission. Notably, we get two different kinds of network effects. First, the
two degree statistics (individual contact popularity and contact activity) are found negative due to the
property of the data construction (rather than the underlying virus transmission networks). That is actors
are only included in the network if they participate in at least one event either as a referee or as a referral.
Second, all other network effects are positive and reveal that pairs of actors that are linked by previous
contact-elicitation events in any way or direction are likely to be ‘socially close’ which, in turn, increases
their probability to be linked again in a future contact-elicitation event.

Descriptive statistics on the spread of the virus indicate that people aged 35 – 44 are the most important
group in the diffusion of the disease. Additionally, young and middle-aged people (25–34, 35–44 and
45–54 year-old) account for nearly three quarters of the nominated contacts. Similar work shows, as of
October 2020, in the USA, that adults aged 20–34 and 35–49 were the age groups with sustained SARS-
COV-2 transmission (the majority of infections were reported to originate from these categories) [38].
Also, young adults (20 – 29 year-old) were shown to have contributed most to the community spread
in southern United States, during June- August 2020 (this group accounted for more than 20% of all
cases) [51].

The patterns we observe in the disease transmission may have been sustained by a mixture of local
context related factors: NPIs relaxation (e.g. opening of public spaces such as restaurants, bars, cinema,
gardens and parks etc.), increased domestic mobility and international travelling due to vacations (e.g.
August and September are vacation months in Romania). Available evidence in the literature [39] indicates
households, workplaces and public spaces to facilitate peer infections for people aged 23–44, and 45–64
year-old. We should also retain households as important conduits for conveying intra-family infections
[50]—presumably, in our case, from spouse to spouse (sex heterophily), and from siblings to parents.
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Our results should be regarded in the context of some limitations. Firstly, we build our analysis
on official information collected by public health authorities in a backward contact tracing data fashion.
Notably, this method possesses inherent caveats as it heavily relies on the respondents’ ability to accurately
recollect past information. It has already been illustrated that network cognitions are affected by situation
and circumstance [52, 53]. Additionally, social contact elicitation has been shown to held various reporting
biases, such as masking, the tendency to nominate similar alters, or variation in the volume of the referrals
due to respondents’ the cooperativeness [54]. Secondly, our findings provide only part evidence on the
viral transmission, as we focused on people’s social interactions at a limited time window (three months).
However, our results bring forth the heterogeneity in the circulation of the disease. Moreover, our study
findings generalize to populations with similar age distribution and similar cohabitation behaviour: similar
household size, age distribution in households etc.

COVID-19 pandemic is currently ongoing. Since its onset, valuable knowledge on the disease spread
has cumulated at a rapid pace [6]. Still, many aspects with regard to SARS-COV-2 transmission remain
to be unveiled. In this guise, future work is needed to fully comprehend the way in which the network
structure of real-world contact patterns, the socio-demographic identifiers (e.g. occupation, economic
activity, education, mobility profile, etc.), and the physical contexts (households, schools, universities,
workplaces, etc.) interplay. In Bucharest, young and middle-age adults may be at risk for exposure to
the disease, given their presence in large shares in frontline occupations and exposed economic activities
(retail stores, entertainment, restaurants, bars etc.). Analysing the mixture of interaction patterns and
economic activities may prove useful to understand the virus circulation as well as the efficiency of virus
local campaign. Also, ascertaining the role that different age groups have in the diffusion of the disease
may come as an essential input into assessing the impact of mass vaccination. The scarce current evidence
is geographically limited, heterogeneous in terms of the employed research designs, and rather reflective
of the early stage of the pandemic. Our results may inform epidemic spreading and vaccination models
on social networks, in particular towards a better customization to real-world individual behaviour [55].
Additionally, much work remains to be done in assessing the validity and accuracy of the COVID-19
real world data available for analysis. For instance, the factors determining the efficacy of contact tracing
(either backward or forward) has not been fully understood [18].

In sum, our article contributes to the coalescing literature on the role that age plays in patterning
the circulation of the COVID-19 disease. We also point out to the age groups which may be essential
for vaccination given their role in the transmission. Additionally, our findings may be informative for
authorities in their efforts to better control the current epidemiological context as well as future COVID-19
waves [56, 57].
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