
Ehsan Ullah received her PhD degree in Computer Science from Tufts University and is currently working at Qatar Computing Research Institute.
Mona Yousofshahi received her PhD degree in Computer Science from Tufts University and is currently working in the medical device industry.
Soha Hassoun is Professor and past Chair of the Department of Computer Science at Tufts University.
Submitted: 4 May 2019; Received (in revised form): 4 July 2019

© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

1875

Briefings in Bioinformatics, 21(6), 2020, 1875–1885

doi: 10.1093/bib/bbz094
Advance Access Publication Date: 19 November 2019
Review article

Towards scaling elementary flux mode computation
Ehsan Ullah, Mona Yosafshahi and Soha Hassoun

Corresponding author: Ehsan Ullah, Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar. Tel.: +974-44545737; E-mail:
eullah@hbku.edu.qa

Abstract

While elementary flux mode (EFM) analysis is now recognized as a cornerstone computational technique for cellular
pathway analysis and engineering, EFM application to genome-scale models remains computationally prohibitive. This
article provides a review of aspects of EFM computation that elucidates bottlenecks in scaling EFM computation. First,
algorithms for computing EFMs are reviewed. Next, the impact of redundant constraints, sensitivity to constraint ordering
and network compression are evaluated. Then, the advantages and limitations of recent parallelization and GPU-based
efforts are highlighted. The article then reviews alternative pathway analysis approaches that aim to reduce the EFM
solution space. Despite advances in EFM computation, our review concludes that continued scaling of EFM computation is
necessary to apply EFM to genome-scale models. Further, our review concludes that pathway analysis methods that target
specific pathway properties can provide powerful alternatives to EFM analysis.

Key words: elementary flux modes; elementary flux mode analysis; pathway analysis; parallel computing; scalability.;

Introduction

Advances in understanding and engineering of living cells
have shown promise in the production of commercially useful
biomolecules, including polyesters [1], building blocks for indus-
trial polymers [2], biofuels [3] and therapeutic natural products
derived from isoprenoids [4–7], polyketides [8, 9] and non-
ribosomal peptides [7]. Advancing the design and engineering
of biological systems will lead to reduced development cost,
time and effort, which in turn will enable new discoveries that
have a positive impact on human health and the environment.
Computational tools can play a critical role in expediting the
design process by exploring design options and validating design
choices before performing lab experiments [3, 4, 10].

One powerful and important computational approach is
elementary flux mode (EFM) analysis. EFM analysis decomposes
a metabolic network into pathways that have three proper-
ties: thermodynamic feasibility, quasi steady-state operation
and independence of other pathways [11]. Thermodynamic

feasibility imposes that each irreversible reaction proceeds to
have a non-negative flux rate. Quasi steady-state operation
ensures that metabolites internal to the network are neither
accumulated nor depleted. Mutual independence of other
pathways, together with the other two properties, guarantees
that the EFM decomposition is unique. Several applications have
benefitted from EFM analysis. Example applications include
validation of metabolic model construction [12], analyzing and
understanding metabolic network including robustness and
cellular regulation [13–17], analyzing competitive microbial
strategies [18], increasing product yield [19, 20] and assessing
plant fitness and agricultural productivity [21].

The biggest challenge in EFM analysis is its scalability to allow
for the analysis of genome-scale models. From a computational
complexity perspective, the lack of scaling is understandable. A
problem is considered scalable if it has a runtime that scales
linearly (or sublinearly), or even polynomially, with the size
of the input problem (e.g. number of reactions or number of
metabolites when analyzing metabolic networks) in the worst

https://academic.oup.com/

1876 Ullah et al.

Figure 1. A graphical representation of pathways in 3-dimensional ux space.

Each axis corresponds to a reaction ux. A pathway is geometrically represented

as a ray. The dark lines are the extreme rays (correspond to EFMs) of a convex

cone.

case scenario. The problem of computing EFMs does not exhibit
such behavior. Enumerating EFMs is equivalent to edge or vertex
enumeration for a pointed-bounded-polytope. The complexity of
enumerating vertices of polytopes is a famous and long-standing
open question [22]. Acuna et al. showed that vertex enumeration
of any (possibly unbounded) polyhedron cannot be achieved in
polynomial total time unless P = NP [23]. This article provides a
detailed review on computing and scaling EFM computation.

EFMs and pointed polyhedra
A flux mode is a steady-state flux pattern in which flux propor-
tions are fixed while their absolute magnitudes are indetermi-
nate [24]. Given an m×n stoichiometric matrix, S, representing m
metabolites and n reactions, and an n-vector v of reaction fluxes,
three conditions must be met to label v as an ‘elementary flux
mode’ or ‘elementary pathway’:
EFM Condition 1: The network reactions proceed in a direction
dictated by thermodynamic feasibility. The flux in a reaction is
greater than or equal to zero if the reaction is irreversible. This
condition can be expressed as vi ≥ 0 for all irreversible reactions.
EFM Condition 2: The network is in quasi steady-state condition
with no accumulation or depletion of internal metabolites in the
network. Mathematically, this condition can be expressed as S ·
v = 0, where the rows of S include only metabolites internal to
the network.
EFM Condition 3: Each elementary mode v must be independent
from other elementary modes in the network. In other words,
there is no other vector y (y �= v and y �= 0 and y fulfills C1 and
C2) such that the set of reactions participating in v is strictly a
proper subset of the reactions in y.

Each EFM is minimal. That is, the removal of any reaction
from any of the EFMs will cause it to violate one of the conditions
above. Extreme pathways (EPs) are a subset of the EFMS, but are
more restrictive [25–27]. An EP cannot be expressed as a convex
combination of any other pathway fulfilling the above condi-
tions [26]. Importantly, every steady-state flux distribution in the

network can be represented as a linear (convex) combination of
EFMs or EPs.

Gagneur and Klamt [28] suggested that by splitting the
reversible reactions into irreversible reaction pairs, the feasible
steady-state flux space is defined by a pointed convex cone
(Figure 1) that has extreme rays passing through origin and
the cone lies in the positive quadrants. The feasible steady-
state flux space is bounded by hyper-planes defined by steady-
state constraints. The irreversibility of reactions enforces the
flux cone to be in the positive quadrant. Further, genetic
independence condition makes extreme rays of the cone
equivalent to EFMs. Therefore, algorithms from computational
geometry (based on double-description method) have been
used to compute EFMs. Additionally, pivotal algorithms such as
reverse search algorithm can be used to enumerate extreme rays
of the convex polyhedral. Without loss of generality, we assume
in the rest of this review that reversible reactions are split into
irreversible reaction pairs, and that the updated networks have
only irreversible reactions.

Algorithms for computing EFMs
The double-description method

The double-description method has been rediscovered under
different names such as Motzkin elimination [29], Chernokova’s
algorithm [30] and beneath-and-beyond methods [31]. Mathe-
matically, the feasible steady-state flux space of a network with
m internal metabolites and n reactions can be represented as

P = {v ∈ R
n : S · v = 0 and v ≥ 0}

where S is the stoichiometric matrix of the network and v
represents a steady-state flux. The double-description method
provides an alternative representation of the flux space by trans-
forming the representative matrix of the network A to an equiv-
alent representative matrix R. Given a representative matrix A of
the network, the steady-state flux space can be described as

P = {v = R · λ ∀ λ > 0}

where R represents set of EFMs. Based on the choice of the
initial representative matrix A, there are two approaches used
for computing EFMs, the canonical basis approach and the null-
space approach.

The two approaches are summarized in Table 1. The first
step of both approaches is network reconfiguration, in which
reversible reactions are split into irreversible reaction pairs. The
second step is the initialization of the A and R matrices. The
next step consists of iterative constraint processing. For the
double-description method, each row of matrix A represents
a constraint. In each iteration, rays (intermediate EFMs, each
vector representing a ray of the convex cone) are divided into
three groups J+, J- and J0, based on the current constraint. The
constraint is satisfied by combining rays from J+ and J-. Only
extreme rays (independent vectors) are generated by performing
adjacency test on the rays to be combined. Two adjacency tests
(algebraic and combinatorial) are well-known tests [32]. If the
rays are adjacent, a new ray is generated using Gaussian Com-
bination by satisfying the current constraint. After processing
the current constraint, matrix R is updated. After all constraints
are processed, a post-processing step removes futile two-cycles
that result from reconfiguration of the network. A two-cycle is a

Towards scaling elementary flux mode computation 1877

Table 1. Comparison of the canonical basis and the null-space approaches (adapted from [26])

Steps Canonical basis approach Null-space approach

Reconfiguration S ← [S − Srev] S ← [S − Srev]

Initialization A ← S A ← null(S)
R ← In R ← A

Constraint processing For each unprocessed row Ai of A For each unprocessed row Ai of A
J+ ← {j ∈ J : Ai · r j > 0} J+ ← {j ∈ J : r j > 0}
J0 ← {j ∈ J : Ai · r j = 0} J0 ← {j ∈ J : r j = 0}
J- ← {j ∈ J : Ai · r j < 0} J- ← {j ∈ J : r j < 0}
R′ ← {r j : j ∈ J0} R′ ← {r j : j ∈ J0 ∪ J+}
for (j+, j-) ∈ J+ × J- for (j+, j-) ∈ J+ × J-

Adjacency test If r j+ and r j- adjacent in R If r j+ and r j- adjacent in R
Gaussian combinations R′ ← R′∪{(Ai ·rj+)rj- −(Ai ·rj-)rj+ } R′ ← R′ ∪ {ri

j+ r j- − ri
j- r j+ }

R ← R′ R ← R′
Post-processing R ← R \ {futile two-cycles} R ← R \ {futile two-cycles}
Back-configuration R ← back-configuration of R R ← back-configuration of R

cycle consisting of a reversible reaction broken into forward and
reverse irreversible reaction pair. In the last step, the network
configuration is restored resulting in EFMs in R.

The canonical basis approach

In the canonical basis approach, the stoichiometric matrix is
used as the network representative matrix A. Each row in A
corresponds to an internal metabolite and the corresponding
constraint needed to balance the metabolite. The equivalent
representation matrix R is initialized with the identity matrix
of size equal to the number of reactions, where each flux vec-
tor r in R corresponds to a reaction in the network. The net
production or consumption of the ith metabolite in jth flux vec-
tor r j is represented by Ai · r j. A positive value indicates net
production. A negative value represents a net consumption.
A zero value represents a balance in production, with no net
consumption or production of the metabolite. A metabolite with
balanced production is referred to as a balanced metabolite. In
each iteration of the algorithm, flux vectors are grouped into
three groups: J+ (flux vectors producing the metabolite), J- (f lux
vectors consuming the metabolite) and J0 (flux vectors for which
the metabolite is balanced). The internal metabolite is balanced
by combining flux vectors r j+ and r j- (Gaussian combination)
to generate flux vectors containing the balanced metabolite.
The Gaussian combination ensures that no reaction operates
in the reverse direction thus resulting in thermodynamically
feasible flux vectors except futile two-cycles (eliminated in a
post processing step). Only adjacent flux vectors are combined
to generate independent flux vectors.

Schuster and Hilgetag [11] introduced the double-description
method to compute EFMs. The algorithm, originally referred to
as Schuster’s Algorithm, was adapted from the Mavrovouniotis’
approach for synthesis of balanced pathways in biochemical
networks [33]. Later, Schuster’s algorithm was called the Canon-
ical basis approach [26]. Schuster’s algorithm was a matrix-
based implementation. Schuster et al. claimed that graph based
approaches are not viable for computation of EFMs. However,
Ullah et al. [34, 35] recently showed that graph based approach
can be a viable alternative for computing EFMs. A distinct and
important advantage of graph-based approaches is using knowl-
edge about the network topology to minimize the intermediate
number of flux vector combinations generated in each step of
the iterative algorithm. As discussed later, constraint ordering
directly impacts algorithm performance.

The null-space approach

The null-space approach was proposed by Wagner [36] as an
alternative to the Canonical basis approach. In this approach, the
double-description method uses the null space of S as the initial
representative matrix A, and also as the initial value for R. The
null space is defined as

null(S) = {v ∈ R
n : S · v = 0}.

Each row in null(S) corresponds to a reaction and each column
represents a balanced flux vector. Each row entry specifies how
the corresponding reaction should proceed within each flux
vector under steady-state constraints. The relative activity of
ith reaction in jth flux vector is represented by ri

j. A positive
value indicates the reaction operating in the forward direction,
a negative value indicates the reaction operating in the reverse
direction and zero value represents the reaction is not active,
indicating that the reaction is not present in the pathway rep-
resented by the flux vector. In each iteration of the algorithm,
the flux vectors are grouped into three groups: J+ (flux vectors
with the thermodynamic feasible reaction), J- (f lux vectors with
the thermodynamic infeasible reaction) and J0 (flux vectors for
which the reaction is not active). The thermodynamic feasibility
of the reaction is satisfied by combining flux vectors r j+ and
r j- (Gaussian combination). The Gaussian combination step
combines two balanced flux vectors resulting in balanced flux
vectors. Only adjacent flux vectors are combined to generate
independent flux vectors.

Comparison of the canonical basis and the null-space approach

There are several differences between the canonical basis
approach and the null-space approach.

1. The canonical basis approach uses the S matrix for constraint
processing and the null-space uses null space of the S matrix.

2. The equivalent representative matrix R is initialized with
identity matrix in the canonical basis approach and to the
null space of S in the null-space approach.

3. Each constraint in the canonical basis approach corresponds
to a mass balance constraint for an internal metabolite
whereas each constraint in the null-space approach cor-
responds to the thermodynamic feasibility constraint of
reactions.

1878 Ullah et al.

4. The number of constraints in the canonical basis approach
is equal to the number of internal metabolites whereas it is
equal to the number of reactions in the null-space approach.
If R is represented in reduced row echelon form, the first k
constraints are automatically satisfied where k is the rank of
S.

5. In the canonical basis approach, flux vectors J0 are passed
to the next iteration without processing. In the null-space
approach, flux vectors J0 and J+ are passed to the next iter-
ation without processing.

Klamt and Stelling [26] suggested that runtime of the Null-
Space approach is less than that of the canonical basis approach
due to lesser number of constraints processed in the null-space
approach. In both approaches, the runtime is dependent on the
number of combinations generated, which is highly dependent
on network topology and the order in which constraints are
processed. We explore the runtimes further when comparing
various implementations in the Performance Evaluation section.

Pivotal methods

Another class of algorithms used for the enumeration of extreme
rays or vertices is based on pivotal methods, similar to the
simplex algorithm [37]. The simplex algorithm finds the optimal
solution in a convex polyhedral by traversing through vertices of
the convex polyhedral defined by the constraints. For a bounded
convex polyhedral, the optimum solution is always guaranteed
to lie on one of the vertices. The simplex algorithm starts with an
initial solution (a vertex of the convex polyhedral) and traverses
through vertices that have lower value of a cost function defining
the objective of optimization. All the possible paths taken by the
simplex algorithm can be represented by a directed graph that
leads to the vertex corresponding to the optimal solution. Avis
and Fukuda [38] proposed a reverse search algorithm for vertex
enumeration. The reverse search algorithm is pivotal, running
the simplex algorithm in the opposite direction. The reverse
search algorithm starts with the optimal solution vertex and
explores the whole graph enumerating all the vertices visited.

Reverse search algorithms pose two problems: the non-
uniqueness of the starting optimal solution vertex, and
degeneracy. The degeneracy problem occurs if same vertex is
visited through different traversal paths, as the same vertex
may be defined by different sets of constraints. These problems
are addressed by lexicographic reverse search algorithm (lrs)
proposed by Avis [39], where the cost function is defined such
that the optimal solution is unique; therefore, the reverse search
graph can be represented by a tree with a single starting point
for the search. Degeneracy is addressed by using a lexicographic
pivot selection rule.

Pivotal methods such as lrs are known to have slower perfor-
mance when compared to other methods for the enumeration
of extreme rays. However, pivotal methods are parallelizable and
claimed to be useful when solving extremely large problems [40].

Computational complexity
Identifying EFMs is a computationally challenging problem.
Computing EFMs is equivalent to vertex/ray enumeration of
convex polyhedral. The complexity of vertex/ray enumeration
is a long-standing open problem [22, 41]. Runtime complexity of
vertex/ray enumeration problem cannot be expressed in terms
of the problem size such as number of constraints (metabolites

in metabolic network) and dimensionality of space (number
of reactions in the network) due to the combinatorial nature
of the problem. No algorithm is shown to have a scaling
in proportion to the number of rays or vertices [42, 43]. All
algorithms exhibit in the worst-case super-linear behavior in the
size of the rays/vertices [41]. For the lrs algorithm, the runtime for
computing a single vertex/ray is O(nm); therefore, the runtime for
enumeration is dependent on the total number of vertices/rays.
Avis et al. showed that the runtime and space requirements
to solve the non-homogeneous version of the ray enumeration
problem are proportional to the number of extreme rays [44]. The
complexity of EFM computation is dependent on the number
of EFMs in the network. Acuna et al. proved that computation
of EFMs is not possible in polynomial runtime unless P = NP
[23]. From these complexity results, it should be clear that
any implementation has limited scalability when running on
a single, unthreaded compute node, and will run indefinitely
with suitably large test cases. However, improving the runtime
of the various algorithms through innovative techniques such
as constraint reordering, compression and redundancy removal
may lead to substantial speedups.

Performance evaluation and enhancement
In this section, we focus on several practical issues for speeding
EFM compuation. We review how the number of generated can-
didate EFMs differs between the null-space and the canonical
approaches, and how constraint-ordering heuristics can play a
critical role in performance improvement for the canonical basis
approach. Further, we evaluate the use of redundancy removal
and network compression to expedite computing EFMs.

We compare four state-of-the-art tools: MetaTool [45], a
MATLAB implementation of the matrix-based canonical basis
approach; gEFM, which implements in C++ the canonical
basis approach using a graph based approach [35]; EFMTool,
implemented in Java for the null-space approach [46]; a C++
implementation of lrs algorithm [47].

We use three different variations of the Escherichia coli model
derived from the central carbon metabolism [20]. The first test
case, E. coli is the original central carbon metabolism model.
The second test case, E. coli (irrev), restricts the directionality
of all reactions to the directionality specified by the default
reaction listing, thus allowing us to assess the impact of reaction
reversibility. The third test case, E. coli (gluc), is restricted to only
use glucose as the carbon source. The statistics of the test cases
are listed in Table 2.

Compression techniques are common for reducing the size
of biochemical networks [28, 45, 48]. We use compression
methods provided by EFMTool [46]. The dead-end metabolite
removal method eliminates internal metabolites that are
either only produced or only consumed. Reactions associated
with such metabolites are also eliminated. The coupled-
zero compression method removes all reactions that always
carry zero flux at steady state. The coupled-contradicting
compression method removes negatively coupled reactions.
The unique-flows compression method removes metabolites
that are produced by only one reaction and consumed by only
one other reaction by combining the producing and consuming
reactions. The coupled-combine compression method removes
all flux-coupled reactions, ones for which their relative flux is
always constant, except one representative reaction. The flux
values for the removed reactions can be computed based on the
retained reaction for all the compression techniques. Table 2

Towards scaling elementary flux mode computation 1879

Table 2. Model statistics, without and with compression

Uncompressed Compressed
Model Reactions Metabolites Reactions Metabolites EFMs

(Reversible) (Internal) (Reversible) (Internal)

E. coli 70 (19) 68 (52) 44 (12) 26 (26) 429,276
E. coli (irrev) 70 (0) 68 (52) 26 (0) 12 (12) 840
E. coli (gluc) 60 (19) 63 (47) 39 (12) 26 (26) 33,220

Figure 2. Cumulative combinations and comparisons performed in different algorithmic iterations of EFM-Tool and gEFM. Each iteration corresponds to a constraint.

Cumulative combinations and comparisons for EFMTool are less than that of gEFM.

lists all the statistics for the compressed models obtained by
applying all the techniques in the order described above.

While these examples do not capture the complexity of a
genome-scale model, they provide a comparative point for evalu-
ating the issues discussed in this section. We have benchmarked
the tools disabling multi-threading. All experiments were per-
formed on a 2.83 GHz Intel Xeon E5440 CPU with 6 MB cache
running Red Hat Linux.

Cumulative and total number of candidate rays

In the null-space approach, the number of iterations corre-
sponds to the number of constraints on the steady-state opera-
tion derived after computing the null-space kernel, and is equal
to n−k [48], where k is the size of the null-space kernel matrix and
is bounded by m. For the canonical basis approach, the number
of iterations corresponds to the number of mass balance con-
straints, or the number of internal metabolites m. The difference
in the number of processed constraints and the ordering of con-
straint processing affects the cumulative number of candidates
generated and the cumulative number of comparisons.

We illustrate this issue for compressed E. coli (gluc) model
in Figure 2. The x-axis corresponds to the iteration number.
We show the cumulative number of combinations generated
and cumulative number of comparisons performed in each
iteration. Combinations correspond to rays generated by
combining existing rays (positive J+ and negative J- rays) after
satisfying a constraint. The number of combinations Nc is equal
to |J+| × |J-|.

In each iteration of the EFMTool, combinations are generated
by satisfying thermodynamic constraints and combinations are
compared to the existing rays (positive J+, negative J- and zero

rays J0). The number of comparisons performed N′
c is equal to

Nc × (|J+| + |J-| + |J0|).
Similarly, in each iteration of gEFM, combinations are gen-

erated by satisfying mass balance constraint and combinations
are compared to the existing rays resulting in the number of
comparisons equal to N′

c.
The results indicate that for a model with 26 metabolites and

39 reactions the total number of combinations generated is of
the order of millions and the number of comparisons performed
is of the order of billions. For the given test case, the number
of iterations for the null-space approach is less than that of
the canonical basis approach. Moreover, the total number of
combinations generated and the total number of comparisons
performed is greater for the canonical basis approach when
compared to the null-space approach. These results confirm the
efficiency of the null-space approach over the canonical basis
approach [48].

Sensitivity to constraint ordering

A challenging issue when implementing the double-description
method is its sensitivity to constraint ordering. Several
researchers who utilized the null-space approach noted
this limitation, and the issue was addressed by sorting the
constraints using different heuristics [28, 46, 49]. To illustrate the
severity of this issue, we ran MetaTool [28, 50] using 10 random
orderings of constraints, and recorded the cumulative number of
candidate EFMs. The minimum number of cumulative number of
elementary modes provides 24,083,196 fewer (20%) candidates
over the current implementation with a total of 120,242,940
candidates. We performed the same experiment for gEFM. None
of the 10 runs that randomly processed metabolites finished
within a 15-min period, while the original ordering finished

1880 Ullah et al.

Table 3. Runtime (in seconds) for tools on the uncompressed models, with and without redundancy removal

Original
Redundancy

removed
Model Meta Tool EFMTool gEFM lrs Meta Tool EFMTool gEFM lrs

E. coli <0.01 13,129.94 1464.60 26,400.50 <0.01 20,149.87 10,315.00 87,906.96
E. coli (irrev) 0.84 0.57 <0.01 177.22 1.80 1.16 <0.01 4.95
E. coli (gluc) 976.03 38.74 2.52 14,364.22 <0.01 122.64 14.75 5230.30

in 2.57 s. This observation is critical, indicating that exploiting
knowledge about network topology is central to addressing the
development of EFM computing techniques.

Impact of removing redundant constraints

We evaluate the impact of removing redundant constraints on
the performance of all tools. Constraints covered by other con-
straints are redundant. Redundant constraints can be removed
by solving a linear program, as recommended for lrs [47]. The
results are reported in Table 3. Constraint redundancy removal
consistently benefits lrs because it removes degeneracy. Over-
whelmingly, the other three tools suffer. In methods other than
lrs, redundant constraints play a significant role in eliminating
candidate solutions and therefore these methods underperform
after redundancy removal. This type of redundancy removal has
not been evaluated in the context of EFM computation before,
and settles in the negative the unanswered question posed by
Gagneur and Klamt of whether using linear algebraic redun-
dancy will benefit current implementations [28].

Impact of compression

We apply the four algorithms to the models compressed using
all established compression techniques, and the models com-
pressed using each compression technique independently. In
dead-end compression, all dead-end metabolites are removed
along with reactions connected to the dead-end metabolites. In
coupled-zero compression, all the reaction carrying zero flux
are removed. The reactions are identified by computing the
null space of the network and reactions corresponding to the
rows containing all zeros are coupled zero reactions. In coupled
contradicting compression, reverse coupled reactions (reaction
group that always operate in the opposite direction with respect
to a reference reaction with a fixed flux ratio) are identified
and only the reference reactions are kept in the network. Fluxes
of the removed reactions are computed by scaling the flux of
reference reactions. In coupled combine compression, forward
coupled reactions (reaction group that always operate in the
same direction with respect to a reference reaction with a fixed
flux ratio) are identified and only reference reactions are kept
in the network. Fluxes of the removed reactions are computed
by scaling the flux of reference reactions. In unique flows com-
pression, reactions carrying a unique flow are collapsed to a
single reaction. Unique flows compression reduces the number
of reactions and metabolites the most. A speedup is expected
by each compression technique (if it reduces the network size)
but in some cases the compression may increase the runtime.
A possible cause can be the change in ordering of reactions
and metabolites that can lead to a different order of constraint
processing if the tool does not order the constraints as a prepro-
cessing step such as lrs.

The results are shown in Table 4. The first column lists the
model name. The second column lists the tool used. The third
column reports the runtime in seconds for each model using
each tool. The fourth column, labeled ‘all’, reports the speed up
of the tool on the model compressed using all possible tech-
niques in reference to the runtime of the uncompressed model.
The rest of the columns report the speedups relative to the
uncompressed model for each of compression techniques. An
entry with a value less than one indicates a slowdown whereas
an entry greater than one indicates a speed up. Using all com-
pression techniques together consistently speeds all cases. lrs
is greatly improved using all network compression, an approach
that has not been previously evaluated as a pre-processing step
to lrs. The three other tools also benefit from all compression;
however, EFMTool benefits more so than MetaTool and gEFM.

Overcoming scalability challenges using more
powerful computation
Since 1965, integrated circuit complexity has doubled approxi-
mately every 18 months in accordance to Moore’s law [51], allow-
ing for faster computers with more memory. In particular, the
availability of specialized hardware enabling multi-threading,
parallel computing and graphics-processing units (GPUs) has
enabled the scalability of many algorithms. As described earlier,
generating candidate rays and testing them for dependency
is the major bottleneck in the double-description method. We
explore in this section how these hardware advances have
improved the computation FEMs using double-description
algorithms.

Earlier parallelization efforts for EFM computation are based
on the canonical approach [52, 53]. Samatova et al. claimed to
be the first out-of-core implementation of the algorithm for
computation of EPs. The authors divided the generation of new
candidate rays and dependency testing into small jobs that can
be distributed to different processors or different computers. The
algorithm was implemented on 20 SUN SPARC workstations. Lee
et al. implemented the same algorithm using message passing
interface. The algorithm was implemented on a Linux cluster
of 2.4 GHz Intel Pentium-4 CPUs using Myrinet interconnection
among the dual-CPU nodes. The two approaches showed for a
metabolic subsystem of E. coli (66 metabolites and 118 reactions)
super-linear speedups with the number of processors used.

Klamt et al. [54] proposed a divide-and-conquer approach for
splitting EFMs into disjoint subsets across a subset of reactions.
Conceptually, the computation can be divided by selecting a
particular reaction, and allowing two computations to proceed
based on presence or absence of the reaction. Each computation
is further divided based on assuming that another reaction is
present or absent. Load balancing is required to ensure simi-
lar runtimes across the compute-nodes as there is no a priori
way of guaranteeing equal division of labor. Communication
among the nodes was necessary to merge the EFMs and elim-

Towards scaling elementary flux mode computation 1881

Table 4. Speedup for different compression techniques. Only the runtime (seconds) for no compression is reported

Model Tools No compression All Dead-end Coupled Coupled Coupled Unique
zero contradicting combine flows

MetaTool <0.01 - - - - - -
E. coli EFMTool 13,129.94 249.88 1.51 1.52 1.57 116.36 313.79

gEFM 1464.60 1.27 1.32 1.33 1.33 1.62 1.62
lrs 26,400.50 23.62 0.83 0.83 0.82 8.92 13.63

MetaTool 0.84 0.99 0.06 0.15 0.07 0.18 1.12
E. coli EFMTool 0.57 3.45 1.80 1.23 1.22 2.89 3.47
(irrev) gEFM - - - - - - -

lrs 177.22 904.17 7.60 5.27 7.60 2.15 496.41
MetaTool 976.03 1.52 0.51 0.53 0.53 3.80 1.26

E. coli EFMTool 38.74 21.32 1.94 1.91 1.97 12.56 21.05
(gluc) gEFM 2.52 1.16 0.94 0.94 0.94 1.14 1.16

lrs 14,364.22 19.14 1.22 1.20 1.22 15.34 19.08

Table 5. Impact of multithreading for EFMtool

Model Runtime (s) Speedup
1 thread 8 threads

E. coli 13,129.94 3709.69 3.5
E. coli (irrev) 0.57 0.16 3.6
E. coli (gluc) 38.74 10.91 5.1

inate duplicated elementary modes computed locally on each
compute node. The authors computed the sub-tasks on a 2.4
GHz Pentium 4 processor for E. coli central metabolism and the
results indicated that the runtime did not scale well with the
number of processors. It was observed that there was an optimal
number of processors for the two test cases used to evaluate the
performance.

Terzer [50] presented a multithreaded implementation of
the null-space approach (EFMTool) using bit pattern trees for
dependency testing. A bit pattern tree is created for the set of
positive, negative and non-participating sets rays. For creation of
new candidate rays, the positive and negative bit pattern trees
are recursively combined. For the parallel implementation, the
trees are traversed up to a certain level (level 6 is used in their
implementation) and a job is created to traverse the rest of the
levels in the trees. Threads equal to the number of cores/proces-
sors are used for the parallel computation. Each thread removes
a job from the job queue and creates new rays and checks the
dependency. After completing a job, threads keep on dequeuing
jobs till all the jobs are processed. Semaphores are used for
handling concurrency of the threads. This is a more fine-grained
partitioning of the computation compared to the divide-and-
conquer approach presented by Klamt [54]. Multithreading has
a significant impact on the performance improvement, up to
five times for eight parallel threads as shown in Table 5. The
performance is evaluated on 2.83 GHz Intel Xeon E5440 CPU
running Red Hat Linux.

Jevremovic et al. [55] developed a distributed memory parallel
implementation of the null-space algorithm to enable handling
the computational aspect of genome-scale metabolic networks.
The algorithm assumes a parallel environment consisting of a
set number of compute-nodes, each with their own memory. The
compute-nodes communicate via messages. The authors tested
their algorithm on the Blue Gene/P and Intel Xeon (Clovertown)
parallel platform, attaining the computation of more than 13
million EFMs for the Saccharomyces cerevisiae strain, which con-

tains 62 metabolites and 80 reactions, of which 31 reactions are
reversible.

GPUs are specialized processors that were used for efficient
graphics processing. GPUs were designed to support thousands
of parallel threads that perform the same operation on different
data. GPUs have shown significant improvements in various
scientific applications. The primary advantage of using GPUs for
a critical part of the computation is to parallelize the compu-
tation to achieve performance improvement. Khalid et al. [56]
exploited the power of concurrent threads in GPUs by using a
hybrid approach of using CPUs and GPUs. Khalid et al. generated
new candidate rays using GCC 4.4.3 and CUDA 5.0 on Ubuntu SMP
12.04 for Tesla 2050 GPU (Fermi architecture). The implementa-
tion is 6x faster than the serial implementation and 1.8x faster
than the multithreaded implementation for their five test cases
on Intel Xeon E5620 CPU.

Although all scaling approaches have shown performance
improvement, each has some disadvantages. Out-of-core
computation requires load balancing, where partitioned com-
putation must be distributed over available cores / processors.
Synchronization of completed jobs is also required. Moreover,
this approach is limited by the number of available cores /
processors. Parallel computing suffers the same issues as that of
out-of-core computation along with communication overheads.
The communication overheads in distributed computing can be
reduced by assigning big balanced jobs to the computing nodes.
Although GPUs offer a huge number of concurrent threads,
double-description implementations are difficult to speedup
due to high thread divergence and synchronization overheads.
Moreover, implementation of advanced data structure is
a challenge for GPU implementation. The advantages and
disadvantages of different parallel approaches are summarized
in Table 6.

Alternative pathway analysis approaches
EFM analysis utilizes only structural information (stoichiometry)
of the network, which results in many identified EFMs that are
infeasible, as they do not consider factors such as thermody-
namic considerations, regulatory mechanisms and physiological
concentrations of metabolites. Gerstl et al. [57] proposed ther-
modynamic elementary flux mode analysis (tEFMA) that veri-
fies thermodynamic feasibility of EFMs. In tEFMA, intermediate
EFMs are checked for thermodynamic feasibility using network
embedded thermodynamic (NET) analysis [58]. NET analysis is

1882 Ullah et al.

Table 6. Summary of scaling techniques

Scaling approach Pros Cons

Out-of-Core • Concurrent computations • Load balancing
Computation • In-memory calculations • Synchronization overhead

• Limited by number of processor cores
Parallel • Concurrent computations • Inefficient for longer iteration steps
Computing • Unlimited nodes • Out-of-memory computation

• Load balancing
• Synchronization overhead
• Communication overhead

Graphical • Huge number of concurrent threads • High thread divergence
Processing • In-memory (GPU memory) calculations • Data structures cannot be used
Units (GPUs) • Low data transfer overhead compared to distributed computing • Synchronization overhead

formulated as a linear optimization problem that checks for
the thermodynamic feasibility of all the reactions in an EFM
(or intermediate EFM) in the context of whole EFM (or inter-
mediate EFM). The optimization problem is not computationally
expensive as it deals with the number of reactions equal to the
length of EFM. All infeasible EFMs are immediately discarded
thus reducing the number of combinations in each iteration
of the algorithm. Gerstl et al. used this approach on an E. coli
network (76 metabolites and 163 reactions). On glucose minimal
medium, only 19% EFMs were feasible. Iterative application of
thermodynamic constraints reduced the runtime and memory
requirement by half.

Jungreuthmayer et al. [59] used transcriptional regulatory
rules to discard infeasible EFMs. Transcriptional regulatory net-
works are often modeled as Boolean rule set. Boolean rules
encode genes that represent activation or repression of a reac-
tion. Expression of a gene ensures that only those EFMs are
feasible in which activated reactions are present and repressed
reactions are absent. The regulatory rules are applied as addi-
tional constraints in each iteration of EFM computation and
infeasible intermediate EFMs are discarded. Jungreuthmayer et
al. used this approach on an E. coli network (218 metabolites
and 230 reactions). The actual number of EFMs for the network
was 92.4 million with a computation time of 54.5 h. For four
regulatory rules used by Jungreuthmayer, the number of EFMs
was reduced to 0.45 million. Iterative application of the rules
reduced the runtime by a factor of 132 and memory requirement
by a factor of 146.

In an effort to avoid enumeration of all the EFMs, Kaleta
et al. [60] proposed a method to identify balanced pathways in
sub-networks in the context of the entire network. Kaleta et al.
introduced the concept of flux patterns that define balanced
pathways in a sub-network of a bigger network operating at
steady-state. The flux values of the reactions in the sub-network
are considered to be non-negative while considering the flux val-
ues of rest of the reactions in the network to be zero. Specifically,
a flux pattern s in a sub-network of reactions 1 ≤ i ≤ k satisfies
the following conditions:

v ≥ 0

S·v = 0

∀i ∈s : vi > 0

∀j ∈ {1 . . . k} \ s : vj = 0.

Elementary flux patterns (EFP) can be identified by removing
the flux pattern that can be expressed as combination of other

flux patterns. Kaleta et al. showed that each EFP can correspond
to at least one EFM in the complete network. EFPs can be used
to determine the composition of minimal media required for the
production of a compound of interest, determine the robustness
of metabolic networks and analyze host–pathogen interactions.
Flux patterns were used to specify minimum cut sets (MCS),
irreducible sets of reactions whose removal hinders the activity
of a target flux pattern [61]. Importantly, computing MCS in a
primal network is equivalent to computing EFMs in the dual
network [62]. Thus, techniques for computing EFMs can be used
to compute MCS, e.g. [63, 64].

EFPs are identified by iteratively solving a mixed-integer
linear program (MILP). Constraints of the MILP are updated in
each iteration such that no flux pattern is identified that is a
combination of already found flux pattern. The computational
complexity of the algorithm is polynomial in the size of the
entire system and exponential in the size of the sub-network.
Although identification of EFPs is not computationally expensive
compared to computation of EFMs, Marashi et al. identified three
shortcomings of EFPs [65].

1. Flux values are ignored in EFPs; therefore, they cannot replace
applications of EFMs where exact flux values are required.

2. Different EFMs can be represented using the same EFP due to
absence of flux values.

3. Although each EFP can be mapped to at least one EFM, EFPs
do not necessarily cover all EFMs.

Marashi et al. addressed the shortcomings by introducing the
concept of Projected Cone Elementary Modes (ProCEMs). Pro-
CEMs are projections of EFMs onto a lower dimensional subspace
defined by the reactions of the sub-network. ProCEMs are com-
puted by projecting the flux cone using the block elimination
method [66] and then using the double-description method on
the projected cone to compute extreme rays. The extreme rays
of the projected cone represent ProCEMs.

Larhlimi and Bockmayr [67] represented metabolic networks
in terms of minimal metabolic behaviors (MMB). MMBs have
properties similar to EFMs and EPs such as set minimality and
uniqueness. MMB representation uses an outer description of
the flux cone based on sets of non-negativity constraints. MMBs
represent faces of the flux cone encapsulated by EFMs. A single
MMB can involve more than one EFM. Thus, the number of MMBs
in a network is less than the number of EMFs in the network.
Rezola et al. [68] proposed an optimization-based method for
computing a convex basis of EFMs based on MMBs.

Barrett et al. [69] used Monte Carlo sampling and principal
component analysis to obtain reactions that account for all

Towards scaling elementary flux mode computation 1883

range of flux states in the metabolic network. The sampling
algorithm generates physiologically unrealistic inefficient flux
distributions corresponding to high substrate uptake rates and
very low growth rates. To overcome this problem, biasing in the
sampling was introduced to generate flux distributions with
growth rates of at least 90% of the maximum achievable growth
rate. The analysis was applied to a reconstructed integrated
transcriptional regulatory and metabolic network of E. coli [70],
revealing that the top seven principle components are repre-
sentative of the regulation of gene product activity by post-
translational mechanisms [69].

Croes et al. [71] used shortest path algorithm to identify
metabolic routes in biochemical networks. Blum et al. [72] devel-
oped MetaRoute, a search algorithm that identifies all the path-
ways between a given substrate and product. Ullah et al. [73] used
graph traversal to identify flux limiting reactions in biochemical
networks.

Further, Gerstl et al. [74] introduced the concept of flux tope
(FT). FT is a pointed subcone of the flux cone generated by
fixing the directions of all reversible reactions. Since FT is a full-
dimensional cone, every FT contains a full pathway. FT anal-
ysis enables the determination of feasibility for combinations
of reaction directions. FT enumeration is performed efficiently
using reverse search [38] and EFMs can be computed for each FT
without increasing the dimensions of the flux space.

Enumeration of all the EFMs makes EFM analysis a powerful
tool; however, not all pathways are of interest. Limiting the EFM
search to those EFMs or pathways with desirable properties is a
promising alternate approach to identify all EFMs. Kaleta et al.
[75] coupled optimization framework with a genetic algorithm
(EFMEvolver) to explore the solution space and determine spe-
cific EFMs of interest. de Figueiredo [76] developed an integer
linear programming framework to efficiently determine the k-
shortest EFMs in large-scale metabolic networks. Pey et al. [77]
used linear programming-based tree search method (TreeEFM)
to enumerate a subset of EFMs. Pey and Planes [78] incorporated
linear constraints in a linear programming framework to enu-
merate EFMs of interest. Arabzadeh et al. [79] selected reactions
based on connectivity to metabolites/reactions of interest to
compute a subset of EFMs. The integration of ‘omics’ data with
EFM computing is another promising direction for focusing EFM
analysis on flux modes of interest [80]. In general, limiting the
EFM solution space has the advantage of significantly speeding
the identification of the relevant EFMs.

Conclusion
EFM analysis is a powerful technique for a number of applica-
tions in the fields of metabolic engineering and systems biology.
We reviewed two approaches based on the double-description
method, namely the canonical and null-space approaches, and
the pivotal method. Algorithms used for EFM computation have
polynomial runtime in terms of the number of EFMs but the
runtime complexity of the algorithms in terms of the network
size is still an open problem. In general, the null-space approach
outperforms the canonical approach as the former generates a
smaller number of flux vector combinations and requires fewer
comparison operations than the latter. Pivotal methods such
as lrs underperformed those based on the double-description
method. We reviewed several performance enhancement meth-
ods. Network compression consistently benefits all methods,
including the lrs method where compression benefits were not
previously evaluated. All double-description method algorithms
are sensitive to constraint ordering. Importantly, knowledge

about the network structure allows for a more robust ordering
heuristic, as demonstrated for graph-based implementation.
Removal of redundant constraints was beneficial to lrs. However,
the removal of redundant constraints did not benefit any of the
double-description algorithms.

Despite advances, identifying EFMs for genome scale models
remains a computational challenge when using single-core com-
puting. Threading improves performance but synchronization
between threads is necessary and may limit expected linear
scalability. Out-of-core computation and distributed comput-
ing have been proven to scale super-linearly with the number
of processors used. An attempt has been made to use GPUs
for generating combinations but so far GPUs have not been
used for dependency testing, the most computationally inten-
sive step in EFM computation. Despite out-of-core computation,
distributed computing and GPUs have improved performance
of EFM computation, scaling of EFM computation for genome-
scale models and making it accessible to researchers remains
an open challenge. Further, more targeted pathway analysis
methods can provide powerful alternatives to EFM computing.
Despite advance basic algorithms and computational scaling
using GPUs, threading and distributed computing, identifying
EFMs for genome scale models and making it accessible to
researchers remains an open challenge.

Key Points
• Algorithms for computing EFMs are based on either the

double-description method or pivotal methods.
• Constraint ordering and network compression can be

utilized as preprocessing steps to improve EFM comput-
ing.

• Removal of redundant constraints does not seem to
benefit double-description based methods.

• Parallel computing techniques promise to speed com-
puting EFMs.

• Instead of the costly enumeration of all EFMs, there
are many alternative pathway analysis approaches that
aim to identify EFMs or pathways having specific prop-
erties.

Acknowledgments

We would like to thank Dr Shuchin Aeron, Tufts University,
for his help and support.

Funding

Research reported in this publication was supported by the
National Science Foundation under grant 1909536. It was
also supported by the National Institute Of General Medical
Sciences of the National Institutes of Health under Award
Number R01GM132391. The content is solely the responsi-
bility of the authors and does not necessarily represent the
official views of the National Institutes of Health.

References
1. Aldor IS, Keasling JD. Process design for microbial plastic

factories: metabolic engineering of polyhydroxyalkanoates.
Curr Opin Biotechnol 2003;14(5):475–83.

1884 Ullah et al.

2. Nakamura CE, Whited GM. Metabolic engineering for the
microbial production of 1,3-propanediol. Curr Opin Biotechnol
2003;14(5):454–9.

3. Steen EJ, Kang Y, Bokinsky G, et al. Microbial production of
fatty-acid-derived fuels and chemicals from plant biomass.
Nature 2010;463(7280):559–62.

4. Chang MC, Keasling JD. Production of isoprenoid phar-
maceuticals by engineered microbes. Nat Chem Biol 2006;
2(12):674–81.

5. Martin VJ, Pitera DJ, Withers ST, et al. Engineering a meval-
onate pathway in Escherichia coli for production of ter-
penoids. Nat Biotechnol 2003;21(7):796–802.

6. Pitera DJ, Paddon CJ, Newman JD, et al. Balancing a heterolo-
gous mevalonate pathway for improved isoprenoid produc-
tion in Escherichia coli. Metab Eng 2007;9(2):193–207.

7. Watts KT, Mijts BN, Schmidt-Dannert C. Current and emerg-
ing approaches for natural product biosynthesis in microbial
cells. Adv Synth Catal 2005;347(7–8):927–40.

8. Menzella HG, Reid R, Carney JR, et al. Combinatorial polyke-
tide biosynthesis by de novo design and rearrangement
of modular polyketide synthase genes. Nat Biotechnol 2005;
23(9):1171–6.

9. Pfeifer BA, Admiraal SJ, Gramajo H, et al. Biosynthesis of
complex polyketides in a metabolically engineered strain of
E. coli. Science 2001;291(5509):1790–2.

10. Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for
synthesis of branched-chain higher alcohols as biofuels.
Nature 2008;451(7174):86–9.

11. Schuster S, Hilgetag C. On elementary flux modes in bio-
chemical reaction systems at steady state. J Biol Syst 1994;
2, 02:165–82.

12. Acuna V, Chierichetti F, Lacroix V, et al. Modes and cuts in
metabolic networks: complexity and algorithms. Biosystems
2009;95(1):51–60.

13. Burgard AP, Nikolaev EV, Schilling CH, et al. Flux coupling
analysis of genome-scale metabolic network reconstruc-
tions. Genome Res 2004;14(2):301–12.

14. Papin JA, Price ND, Edwards JS, et al. The genome-scale
metabolic extreme pathway structure in haemophilus
influenzae shows significant network redundancy. J Theor
Biol 2002;215(1):67–82.

15. Schuster S, Klamt S, Weckwerth W, et al. Use of network anal-
ysis of metabolic systems in bioengineering. Bioproc Biosyst
Eng 2002;24(6):363–72.

16. Stelling J, Klamt S, Bettenbrock K, et al. Metabolic network
structure determines key aspects of functionality and regu-
lation. Nature 2002;420(6912):190–3.

17. Vijayasankaran N, Carlson R, Srienc F. Metabolic
pathway structures for recombinant protein synthesis
in Escherichia coli. Appl Microbiol Biotechnol 2005;68(6):
737–46.

18. Carlson RP. Decomposition of complex microbial behaviors
into resource-based stress responses. Bioinformatics 2009;
25(1):90–7.

19. Carlson R, Srienc F. Fundamental Escherichia coli biochem-
ical pathways for biomass and energy production: cre-
ation of overall flux states. Biotechnol Bioeng 2004;86(2):
149–62.

20. Trinh CT, Unrean P, Srienc F. Minimal Escherichia coli cell for
the most efficient production of ethanol from hexoses and
pentoses. Appl Environ Microbiol 2008;74(12):3634–43.

21. Schwender J, Goffman F, Ohlrogge JB, et al. Rubisco without
the calvin cycle improves the carbon efficiency of develop-
ing green seeds. Nature 2004;432(7018):779–82.

22. Dyer ME, Proll LG. An algorithm for determining all extreme
points of a convex polytope. Mathematical Programming 1977;
12(1):81–96.

23. Acuna V, Marchetti-Spaccamela A, Sagot MF, et al. A note
on the complexity of finding and enumerating elementary
modes. Biosystems 2010;99(3):210–4.

24. Schuster S, Hilgetag C, Woods JH, et al. Reaction
routes in biochemical reaction systems: algebraic
properties, validated calculation procedure and example
from nucleotide metabolism. J Math Biol 2002;45(2):
153–81.

25. Jevremovic D, Trinh CT, Srienc F, et al. On algebraic properties
of extreme pathways in metabolic networks. J Comput Biol
2010; 17(2):107–19.

26. Klamt S, Stelling J. Two approaches for metabolic pathway
analysis? Trends Biotechnol 2003;21(2):64–9.

27. Schilling CH, Letscher D, Palsson BO. Theory for the sys-
temic definition of metabolic pathways and their use in
interpreting metabolic function from a pathway-oriented
perspective. J Theor Biol 2000;203(3):229–48.

28. Gagneur J, Klamt S. Computation of elementary modes:
a unifying framework and the new binary approach. BMC
Bioinform 2004;5:175.

29. Motzkin TS. The double description method, in contribu-
tions to the theory of games ii. Ann Math Stud 1953;28.

30. Chernikova N. Algorithm for finding a general formula for
the non-negative solutions of a system of linear inequalities.
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 1965;
5(2):334–7.

31. Seidel R. A convex hull algorithm optimal for point sets in
even dimensions. PhD thesis, 1981.

32. Zolotykh NY. New modification of the double description
method for constructing the skeleton of a polyhedral cone.
Comput Math Mathe Phys 2012;52(1):146–56.

33. Mavrovouniotis ML, Stephanopoulos G. Computer-aided
synthesis of biochemical pathways. Biotechnol Bioeng 1990;
36(11):1119–32.

34. Ullah E, Hopkins C, Aeron S, et al. Decomposing biochemical
networks into elementary flux modes using graph traversal.
In: Proceedings of the International Conference on Bioinformatics,
Computational Biology and Biomedical Informatics. 2013, 211.
ACM.

35. Ullah E, Aeron S, Hassoun S. gefm: an algorithm for comput-
ing elementary flux modes using graph traversal. IEEE/ACM
Trans Comput Biol Bioinform 2016;13(1):122–34.

36. Wagner C. Nullspace approach to determine the elementary
modes of chemical reaction systems. J Phys Chem B 2004;
108(7):2425–31.

37. Dantzig GB, Orden A, Wolfe P. The generalized simplex
method for minimizing a linear form under linear inequality
restraints. Pacific J Math 1955;5(2):183–95.

38. Avis D, Fukuda K. Reverse search for enumeration. Discrete
Appl Math 1996;65(1–3):21–46.

39. Avis D. Polytopes-Combinatorics and Computation, 2000.
40. Avis D, Fukuda K. A pivoting algorithm for convex hulls and

vertex enumeration of arrangements and polyhedra. Discrete
Comput Geom 1992;8(3):295–313.

41. Khachiyan L, Boros E, Borys K, et al. Generating All Vertices of
a Polyhedron Is Hard. Springer, 2009, 1–17.

42. Bremner D. Incremental convex hull algorithms are
not output sensitive. Discrete Comput Geom 1999;21(1):
57–68.

43. Avis D, Bremner D, Seidel R. How good are convex hull
algorithms? Comput Geom 1997;7(5–6):265–301.

Towards scaling elementary flux mode computation 1885

44. Avis D, Fukuda K. A pivoting algorithm for convex hulls
and vertex enumeration of arrangements and polyhedra. Res
Reports Inform Sci Series B (Oper Res) 1990;237:1–23.

45. Pfeiffer T, Sanchez-Valdenebro I, Nuno JC, et al. Metatool:
for studying metabolic networks. Bioinformatics 1999;15(3):
251–7.

46. Terzer M, Stelling J. Large-scale computation of elemen-
tary flux modes with bit pattern trees. Bioinformatics
2008;24(19):2229–35.

47. Avis D. lrslib ver 4.2. http://cgm.cs.mcgill.ca/~avis/C/lrs.
html, 2009. Accessed: 2014.

48. Urbanczik R, Wagner C. An improved algorithm for stoichio-
metric network analysis: theory and applications. Bioinfor-
matics 2005;21(7):1203–10.

49. Fukuda K, Prodon A. Double Description Method Revisited.
Springer, 1996, 91–111.

50. Terzer M. Large scale methods to enumerate extreme rays
and elementary modes. PhD thesis, 2009.

51. Mack CA. Fifty years of moore’s law. IEEE T Semiconduct M
2011;24(2):202–7.

52. Lee L-Q, Varner J, Ko K. Parallel extreme pathway com-
putation for metabolic networks. In: Proceedings. 2004 IEEE
Computational Systems Bioinformatics Conference, 2004. 2004;
636–9. CSB, IEEE.

53. Samatova NF, Geist A, Ostrouchov G, et al. Parallel out-of-
core algorithm for genome-scale enumeration of metabolic
systemic pathways. In: ipdps, 2002.

54. Klamt S, Gagneur J, Kamp Av. Algorithmic approaches for
computing elementary modes in large biochemical reaction
networks. Syst Biol (Stevenage) 2005;152(4):249–55.

55. Jevremovic D, Boley D, Sosa CP. Divide-and-conquer
approach to the parallel computation of elementary
flux modes in metabolic networks. In: 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops
and Phd Forum. 2011, 502–11. IEEE.

56. Khalid F, Nikoloski Z, Tröger P, et al. Heterogeneous combina-
torial candidate generation. In: European Conference on Parallel
Processing. 2013, 751–62. Springer.

57. Gerstl MP, Jungreuthmayer C, Zanghellini J. tefma: comput-
ing thermodynamically feasible elementary flux modes in
metabolic networks. Bioinformatics 2015;31(13):2232–4.

58. Kummel A, Panke S, Heinemann M. Putative regulatory sites
unraveled by network-embedded thermodynamic analysis
of metabolome data. Mol Syst Biol 2006;(2):2006, 0034.

59. Jungreuthmayer C, Ruckerbauer DE, Gerstl MP, et al. Avoid-
ing the enumeration of infeasible elementary flux modes
by including transcriptional regulatory rules in the enu-
meration process saves computational costs. PLoS One
2015;10(6):e0129840.

60. Kaleta C, Fd FL, Schuster S. Can the whole be less than
the sum of its parts? pathway analysis in genome-scale
metabolic networks using elementary flux patterns. Genome
Res 2009;19(10):1872–83.

61. Klamt S. Generalized concept of minimal cut sets in bio-
chemical networks. Biosystems 2006;83(2-3):233–47.

62. Ballerstein K, Kamp Av, Klamt S, et al. Minimal cut sets in a
metabolic network are elementary modes in a dual network.
Bioinformatics 2011;28(3):381–387.

63. Tobalina L, Pey J, Planes FJ. Direct calculation of minimal cut
sets involving a specific reaction knock-out. Bioinformatics
2016;32(13):2001–2007.

64. Röhl A, Riou T, Bockmayr A. Computing irreversible minimal
cut sets in genome-scale metabolic networks via flux cone
projection. Bioinformatics 2018;12.

65. Marashi SA, David L, Bockmayr A. Analysis of metabolic
subnetworks by flux cone projection. Algorithms Mol Biol
2012;7(1):17.

66. Balas E, Pulleyblank W. The perfectly matchable sub-
graph polytope of a bipartite graph. Networks 1983;13(4):
496–516.

67. Larhlimi A, Bockmayr A. A new constraint-based description
of the steady-state flux cone of metabolic networks. Discrete
Applied Mathematics 2009;157(10):2257–2266.

68. Rezola A, de Figueiredo LF, Brock M, et al. Exploring metabolic
pathways in genome-scale networks via generating flux
modes. Bioinformatics 2010;27(4):534–540.

69. Barrett C.L, Herrgard M. J, Palsson B. Decomposing com-
plex reaction networks using random sampling, principal
component analysis and basis rotation. BMC Syst Biol 2009;
3:30.

70. Covert MW, Knight EM, Reed JL, et al. Integrating high-
throughput and computational data elucidates bacterial
networks. Nature 2004;429(6987):92–6.

71. Couche F, Wodak SJ, et al. Metabolic pathfinding: inferring
relevant pathways in biochemical networks. Nucleic Acids Res
2005;33 (Web Server issue):W326–30.

72. Blum T, Kohlbacher O. Metaroute: fast search for relevant
metabolic routes for interactive network navigation and
visualization. Bioinformatics 2008;24(18):2108–9 .

73. Ullah E, Walker M, Lee K, et al. Prepropath: An uncertainty-
aware algorithm for identifying predictable profitable path-
ways in biochemical networks. IEEE/ACM Trans Comput Biol
Bioinform 2015;12(6):1405–15.

74. Gerstl MP, Müller S, Regensburger G, et al. Flux tope anal-
ysis: studying the coordination of reaction directions in
metabolic networks. Bioinformatics 2018;35(2):266–273.

75. Kaleta C, de Figueiredo LF, Behre J, et al. EFMEvolver: Com-
puting elementary flux modes in genome-scale metabolic
networks. In: German conference on bioinformatics 2009. 200.
Gesellschaft für Informatik eV.

76. de Figueiredo LF, Podhorski A, Rubio A, et al. Computing the
shortest elementary flux modes in genome-scale metabolic
networks. Bioinformatics 2009;25(23):3158–3165.

77. Pey J, Villar JA, Tobalina L, et al. TreeEFM: calculating elemen-
tary flux modes using linear optimization in a tree-based
algorithm. Bioinformatics. 2014;31(6):897–904.

78. Pey J, Planes FJ. Direct calculation of elementary flux
modes satisfying several biological constraints in genome-
scale metabolic networks. Bioinformatics 2014;30(15):
2197–2203.

79. Arabzadeh M, Zamani MS, Sedighi M, et al. Agraph-based
approach to analyze flux-balanced pathways in metabolic
networks. Biosystems 2018;165:40–51.

80. Rezola A, Pey J, Tobalina L, et al. Advances in network-
based metabolic pathway analysis and gene expression data
integration. Briefings in bioinformatics 2014;16(2):265–279.

http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://cgm.cs.mcgill.ca/~avis/C/lrs.html

	Towards scaling elementary flux mode computation
	Introduction
	EFMs and pointed polyhedra
	Algorithms for computing EFMs
	The double-description method
	Pivotal methods

	Computational complexity
	Performance evaluation and enhancement
	Cumulative and total number of candidate rays
	Sensitivity to constraint ordering
	Impact of removing redundant constraints
	Impact of compression

	Overcoming scalability challenges using more powerful computation
	Alternative pathway analysis approaches
	Conclusion
	Key Points

