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Abstract The cardiovascular system is significantly affected in coronavirus disease-19 (COVID-19). Microvascular injury,
endothelial dysfunction, and thrombosis resulting from viral infection or indirectly related to the intense systemic
inflammatory and immune responses are characteristic features of severe COVID-19. Pre-existing cardiovascular
disease and viral load are linked to myocardial injury and worse outcomes. The vascular response to cytokine
production and the interaction between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and
angiotensin-converting enzyme 2 receptor may lead to a significant reduction in cardiac contractility and subse-
quent myocardial dysfunction. In addition, a considerable proportion of patients who have been infected with
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SARS-CoV-2 do not fully recover and continue to experience a large number of symptoms and post-acute com-
plications in the absence of a detectable viral infection. This conditions often referred to as ‘post-acute COVID-
19’ may have multiple causes. Viral reservoirs or lingering fragments of viral RNA or proteins contribute to the
condition. Systemic inflammatory response to COVID-19 has the potential to increase myocardial fibrosis which
in turn may impair cardiac remodelling. Here, we summarize the current knowledge of cardiovascular injury and
post-acute sequelae of COVID-19. As the pandemic continues and new variants emerge, we can advance our
knowledge of the underlying mechanisms only by integrating our understanding of the pathophysiology with the
corresponding clinical findings. Identification of new biomarkers of cardiovascular complications, and develop-
ment of effective treatments for COVID-19 infection are of crucial importance.

....................................................................................................................................................................................................

....................................................................................................................................................................................................
Keywords Cardiovascular disease • COVID-19 • SARS-CoV-2 • cytokines • inflammation • Infection • endothelial

dysfunction • microcirculation • thrombosis • Myocardial injury • post-acute COVID-19

Introduction

To date, the coronavirus disease 2019 (COVID-19) pandemic, has af-
fected over 214 million of people and caused over 4.4 million deaths
since December of 2019.1 Initially thought to be an acute respiratory

distress syndrome (ARDS), it has since became clear that COVID-19 is
in fact a multiple organ disease. The disease is characterized by cytokine
storm, resulting in endothelial inflammation/dysfunction, micro- and
macro-vascular thrombosis, which may damage organs other than the
lung. Human studies have offered an alarming view of the risks of severe
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complications in elderly patients and in those with underlying cardiovas-
cular disease or who are at high cardiovascular risk due to one or more
risk factors such as hypertension, diabetes mellitus, hypercholesterolae-
mia, or obesity. Moreover, recent studies revealed that some biological
changes induced by COVID-19 throughout the organs are long-lasting.2

Consistent with this finding, a large number of patients who have been
infected with severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) continue to experience symptoms after the acute phase of the
acute infection, which can evolve over time and persist for months.
While still being defined, these effects are referred to as Post-Acute
Sequelae of SARS-CoV-2 infection or ‘Long COVID’.3 Therefore, the
magnitude of the problem is still unknown. Post-acute COVID-19 is a
matter of major concern for patients affected by cardiovascular disease,
given that the presence of underlying cardiovascular comorbidities in
patients with COVID-19 is associated with high mortality and COVID-
19 can cause cardiovascular disorders, including myocardial injury,
arrhythmias, acute coronary syndrome (ACS), and venous thromboem-
bolism (VTE). Cardiovascular disease remains the leading cause of mor-
bidity and mortality globally and is associated with 17.8 million deaths
annually.4 We cannot predict the impact of post-acute COVID-19 on fu-
ture cardiovascular outcomes. Nevertheless, to meet the urgent need
for effective treatment and preventative strategies, rigorous efforts
should be made to investigate and integrate biological and clinical findings
related to COVID-19 in cardiovascular disease.

In this position paper, we assessed the evidence supporting the mech-
anisms of acute and post-acute cardiovascular injury among patients with
COVID-19 and their clinical features to identify gaps that need to be
addressed in future research.

Inflammation and COVID-19

Severe COVID-19 patients have frequently lymphopenia, hypoalbumi-
naemia, and exhibit higher levels of transaminases, lactate dehydroge-
nase, C-reactive protein (CRP), ferritin, and D-dimer, as well as
markedly higher levels of interleukin (IL)-2R, IL-6, Il-8, IL-10, and tumour
necrosis factor-a (TNF-a). Cytokine production is induced by macro-
phage activation mediated by a disintegrin and metalloproteinase 17
(ADAM17) which is also responsible for the proteolytic cleavage of
angiotensin-converting enzyme 2 (ACE2). In addition, CD14þ CD16þ

monocytes producing high levels of IL-6 are observed in COVID-19
patients, suggesting that monocytes contribute to the cytokine storm.5

Increased activity of the angiotensin (Ang) II/Ang II receptor type 1
(AT1) receptor axis, due to the loss of function of ACE2 in combination
with cytokines-induced hyperinflammation (Figure 1) can trigger systemic
endothelial injury, overexpression of inflammatory mediators in the in-
terstitial space of various organs causing parenchymal injury, hypercoa-
gulability, microvascular thrombosis in the pulmonary and coronary
microcirculation,6,7 myocardial injury, and multiple organ dysfunction in
a positive feedback loop through circulating inflammatory mediators and
organ dysfunction-mediated endothelial activation. Inflammation drives
SARS-CoV-2-related mortality through pulmonary endothelial barrier
dysfunction and left ventricular dysfunction.6 Cardiac microvascular en-
dothelial cells, exert a positive effect on cardiomyocyte contractility
mainly mediated by endothelium-derived nitric oxide (NO). Cytokines
reduce endothelium-derived NO delivery likely through increased cyto-
plasmatic and mitochondrial oxidative stress that results in the scaveng-
ing of NO thus reducing cardiomyocyte contractility and relaxation.8

Pulmonary barrier dysfunction and left ventricular dysfunction may

aggravate each other,9 causing a vicious cycle that results in pulmonary
oedema. Lymphopenia occurs early and it is a prognostic factor, poten-
tially associated with reduction of CD4þT and CD8þT cells. Main mech-
anisms contributing to lymphopenia are thought to be as follows:
(i) direct viral infection of lymphocytes, leading to apoptosis and pyrop-
tosis; (ii) viral mediated bone marrow damage and thymus suppression;
(iii) lymphocyte apoptosis induced by TNF-a, IL-2R, IL-6, and other pro-
inflammatory cytokines; (iv) tissue re-distribution of lymphocytes; and
(v) suppression of lymphocyte proliferation caused by metabolic and
biochemical changes such as hyperlactic acidemia and hyperbilirubinae-
mia.10 This leads to an imbalance of the innate/acquired immune re-
sponse. Persistent immune activation in predisposed patients can lead to
secondary haemophagocytic lymphohistiocytosis, an hyperinflammatory
syndrome characterized by a cytokine storm that induces multi-organ
failure and death similar to the events observed in septic patients.6,11

ACE2 and cardiovascular
manifestations

SARS-CoV-2 is a single-stranded ribonucleic acid (RNA) virus which
shares 79.5% sequence identity with SARS-CoV.12 The outer membrane
structural spike (S) protein, which binds with high affinity to the ACE2
receptor, is inserted into the viral envelope. Following binding, the S pro-
tein is cleaved and thus activated for membrane fusion by the transmem-
brane protease serine 2 (TMPRSS2) in a process known as S protein
priming (Figure 1).13–15 Therefore, SARS-CoV-2 infection requires the
co-expression of ACE2 and TMPRSS2. Spike protein/ACE2 internaliza-
tion promote the up-regulation of ADAM17 and shedding of the extra-
cellular domain of ACE2, increasing membrane ACE2 down-regulation
and reducing surface ACE2 expression.15 The increased ADAM17-
mediated ACE2 shedding exacerbates inflammatory responses by TNF-
a and IL6R initiating the cytokine storm.15

ACE2 is a master regulator of the renin–angiotensin system (RAS).
The activity of the RAS depends on the balance between the ACE/Ang
II/AT1 and ACE2/Ang 1-7/Mas axes. ACE converts Ang I to the active va-
soconstrictor Ang II, whose actions are mediated by AT1 and Ang II re-
ceptor type 2 (AT2). Activation of the ACE/Ang II/AT1 receptor axis,
leads to deleterious effects, including vasoconstriction, inflammation, fi-
brosis, cellular growth and migration, as well as fluid retention. ACE2 is
the main Ang 1-7 forming enzyme and the G-protein coupled Mas is a
functional receptor for Ang 1-7.16 Angiotensin 1-7 binding to Mas indu-
ces several beneficial effects such as vasodilation, inhibition of cell
growth, anti-thrombotic, and anti-arrhythmogenic effects17 (Figure 1).
Given that ACE2 is widely expressed in endothelial cells, cardiofibro-
blasts, cardiomyocytes pulmonary epithelial cells, pulmonary vasculature,
kidney, adipose tissue, liver, gut, and central nervous system (Figure 2),
the loss of ACE2 function following binding of the S protein and
ADAM17-mediated shedding along with cytokine storm, are likely in-
volved in the multiple organ dysfunction including the cardiovascular
manifestations of COVID-19 (Figures 1 and 2). Even though infection of
human cardiomyocytes by SARS-CoV-2 with deleterious effects has
been shown in vitro,18 clinical evidence of direct viral infection of cardio-
myocytes has not been found, and myocarditis related to COVID-19 in-
fection seems rare. As such the interaction between COVID-19 and
ACE2 might affect the cardiovascular system in an indirect manner.19

SARS-CoV-2 entry into cells has been shown to down-regulate ACE2
expression, which can lead to a significant reduction in cardiac contractil-
ity and progression of atherosclerosis.20

Cardiovascular disease and COVID-19 3
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..Underlying cardiometabolic risk
factors associated with worse
outcome in COVID-19

Several reports have consistently demonstrated that pre-existing cardio-
vascular disease and cardiometabolic risk factors such as hypertension,
diabetes, obesity, and/or smoking are major risk factors for increased
COVID-19 severity and mortality.21–24 In a recent comparative risk as-
sessment analysis of over 900 000 patients with COVID-19 from the
USA, nearly 30% of COVID-19 hospitalizations were attributable to
obesity, 26% to hypertension, 21% to diabetes mellitus, and 12% to heart
failure. The study estimated that a 10% reduction in cardiometabolic risk
factors could potentially prevent 11% of COVID-19 hospitalizations.24

Therefore, patient’s awareness of preventive lifestyle measures improves
cardiovascular health at large and may reduce COVID-19 severity risk.

Hypertension or age?
Globally, an estimated 1.13 billion individuals worldwide have hyperten-
sion, and the greatest burden is in individuals aged 60 years and older.25

Early small case series offered an alarming view suggesting that people

living with hypertension were at higher risk of severe COVID-19 and
mortality. Preliminary data showed that the incidence of hypertension
ranged from 32.6% to 34% among confirmed patients with COVID-
19.26,27 Among patients with myocardial injury and elevated cardiac tro-
ponin T levels, 63.5% had hypertension.27 Similar findings were observed
concerning mortality from COVID-19.27 A meta-analysis incorporating
early data of patients with COVID-19, demonstrated that the presence
of hypertension was associated with nearly 2.5-fold higher risk of severe
disease, intensive care unit (ICU) hospitalization, and mortality.28

Altogether, these findings indicate that hypertensive patients have a
higher risk of developing severe COVID-19. However, the mechanisms
that link pre-existing hypertension and COVID-19 are yet to be fully elu-
cidated as hypertension coexists with many other risk factors. One ap-
proach to disentangle the independent relationship between COVID-19
outcomes and exposure to hypertension is to study patients with hyper-
tension while excluding those with other known risk factors of adverse
outcomes. Recent evidence from the UK population-based study
OpenSAFELY involving over 17 million patients was based on this ap-
proach.29 OpenSAFELY quantified a wide range of clinical risk factors for
death from COVID-19, some of which were not previously well charac-
terized. There was no association between hypertension (defined as a

Figure 1 Interplay between angiotensin II, ACE2 (angiotensin-converting enzyme 2), and SARS-CoV-2 binding in the pathogenesis of COVID-19, the in-
flammatory response and cardiovascular protection lost. Left panel: In physiological conditions, ACE2 balances renin–angiotensin system expression.
Increased ACE2 increase the protective axis of ACE2/Angiotensin (Ang)1-7/Mas receptor axis counter-regulates the actions of the ACE/Ang II/angiotensin
receptors 1 (AT1) axis. Right panel: SARS-CoV-2 spike (S) protein has a strong binding affinity to ACE2 which facilitate viral entry into target cells by trans-
membrane protease serine 2 (TMPRSS2) priming. Following binding of ACE2 with S protein, down-regulation of ACE2 is observed. Accumulation of Ang II
increases the activity of AT1 receptors leading to internalization, down-regulation, and degradation of ACE2. In addition, endocytosed SARS-CoV-2 up-regu-
lates the proteolytic cleavage of ACE2 mediated a disintegrin and metalloproteinase 17 (ADAM17), which activity is further increased by activation of AT1

receptors due to the accumulation of Ang II. Viral RNA activates toll-like receptor (TLR) 3, TLR 7, TLR 8. These receptors activate interferon regulatory fac-
tors (IRFs) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) to induce inflammatory cytokines including interferons (INF). Dendritic
cells are able to produce IFN and augment the IFN signal, which also represents a risk for immunopathology. Systemic cytokines release in combination with
cardiovascular risk factor and comorbidities can lead to a cytokine storm, whereas increased activity of Ang II/AT1 receptor axis, due to ACE2 loss of func-
tion, exerts vasoconstrictor, profibrotic, prothrombotic and proinflammatory effects. Figure created with BioRender.com. H2O, water; IL, interleukin; Naþ,
sodium; ROS, reactive oxygen species; SARS-CoV-2, Severe Acute Respiratory Syndrome-Coronavirus 2; TNF-a, tumour necrosis factor alpha.

4 E. Cenko et al.
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recorded diagnosis, or blood pressure >_140/90 mmHg at the last mea-
surement) and COVID-19 mortality (hazard ratio: 0.95, 95% confidence
interval: 0.89–1.01). In contrast, age, cardiovascular disease, diabetes,
obesity, respiratory diseases, history of malignancy kidney, liver, neuro-
logical, and autoimmune diseases were all associated with increased risk
of death. The strongest predictor of mortality was age.

Other recent studies reinforced these observations reporting that age
>60 years, overweight/obesity and, diabetes but neither hypertension nor
anti-hypertensive treatments were associated with adverse prognosis.30,31

Poor blood pressure control is associated with target end-organ damage,
and mean blood pressure increases with age.32 Additionally, age-related
low-grade chronic inflammation with enhanced pro-inflammatory cyto-
kines and chemokines, underlie several cardiovascular diseases including
hypertension, which in turn is associated with senescence of CD8þT cells,
a mainstay of antiviral immunity.33–35 A small study showed that macro-
phages and neutrophils of hypertensive patients with COVID-19, exhibit

higher expression of pro-inflammatory chemokines such as ligands for che-
mokines with two adjacent cysteines (CCL3, CCL4) and the chemokine
receptor CCR1.36 A recent study showed an age-related increase of
ACE2 expression in human kidney and lung tissues and lack of association
between hypertension, RAS blockers, and renal expression of ACE2.30

These findings are in agreement with previous reports suggesting that RAS
blockers use were not associated with higher ACE2 and TMPRSS2 expres-
sion in lung tissues, nor with increased circulating plasma concentrations of
ACE2.37,38 Taken together, these observations may explain the reported
associations between age, hypertension, and severity of COVID-19 infec-
tion. In sum, hypertension is very strongly associated with age and although
many studies adjusted for this, disentangling the effects of each other is dif-
ficult. Age appears to be the strongest predictor for severe disease and
mortality in COVID-19, which may be due to immunosenescence, inflam-
maging,39 exaggerated AT1 pro-inflammatory, pro-thrombotic, and pro-
fibrotic signalling.17

Figure 2 Tissue expression of ACE2 and potential mechanisms involved in systemic inflammatory response and cardiovascular complications of COVID-19.
ACE2 is widely expressed in endothelial cells, arterial smooth muscle cells, renal alveolar epithelial cells adipocytes, and cardiovascular system. Severe Acute
Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) infection cause immune activation, tissue accumulation of T cells, and macrophages leading to myocardial
injury. Cytokines release cause systemic inflammatory response which may cause further impairment in micro and macro-circulation and plaque rapture. Blood
desaturation may further impair microcirculation and myocardial performance. SIRS, systemic inflammatory response system.

Cardiovascular disease and COVID-19 5
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Diabetes mellitus
The estimated global prevalence of type 2 diabetes is 9.3% (463 million
people)40; therefore, it is not surprising that diabetes is a common cardi-
ometabolic risk factors in patients with COVID-19.24,29,41–44 Early data
reported a higher prevalence of diabetes in patients with severe disease
as compared to those with mild to moderate disease (16.2% vs.
5.7%).41,45 Moreover, the unadjusted case fatality rate of COVID-19 was
higher among diabetic patients than non-diabetic patients (7.3% vs.
2.3%).46 As the global COVID-19 pandemic progressed, a similar pattern
of worse prognosis in patients with diabetes was reported across
European and USA studies.24,29,42,47 The OpenSafely29 study showed a
linear relationship between measured glycated haemoglobin (HbA1c)
level of >_58 mmol/mol (>_7.5%), recorded in primary care, and risk of
COVID-19-related mortality, suggesting an association with hypergly-
caemia. Other studies have provided similar results showing that the risk
of COVID-19 related morbidity and mortality is independently associ-
ated to hyperglycaemia.47–49 Another UK population-based study using
the QResearch database (QCOVID, n = 6 083 102) reported 4.74-fold
to 6.29-fold higher risk of age-specific mortality for type 2 diabetes in
men and women, respectively.44 Interestingly both OpenSafely and
QCOVID reported a higher excess of death risk in younger patients
with diabetes compared with older patients with diabetes, hypothesizing
that the effective/biological age of a young patient with diabetes matches
the chronological age of an older patient without diabetes.50 Although
the absolute risk of COVID-19-related death in younger patients with di-
abetes is not as high as that in elderly, these observations along with the
potential modulatory effect of hyperglycaemia on immune and inflamma-
tory responses suggests that the relationship between COVID-19 and
diabetes entails a more complex pathophysiology.

Potential mechanisms thought to increase susceptibility and disease
severity of SARS-CoV-2 in patients with diabetes include: (i) cellular
binding with higher affinity and efficient virus entry, due to glycosylation
of S protein and ACE2.51,52 Circulating levels of furin, a cellular protease
involved in facilitating viral entry by cleaving the S1 and S2 domain of the
S protein and cell-to-cell spread, are elevated in patients with diabe-
tes51,53,54; (ii) expression of ACE2 on pancreatic islets cells may lead to a
direct effect of SARS-CoV-2 causing decreased b-cell insulin reserve.55

Interestingly, insulin administration attenuates ACE2 expression.56 (iii)
Delayed SARS-CoV-2 clearance21; (iv) immunomodulation, cytokine-
mediated dysregulation of glucose metabolism, and hypercoagulability.57

Patients with diabetes are at increased risk of infection due to impaired
innate immunity with reduced neutrophil chemotaxis, phagocytosis, and
intracellular killing of pathogens resulting in an impairment in adaptive im-
munity that is characterized by an initial delay in the activation of Th1 cell-
mediated immunity and a late hyper-inflammatory response. This further
increases insulin resistance and may results in endothelial dysfunction and
injury, thereby ultimately promoting thrombotic microangiopathy.58

Additional mechanisms of adverse outcomes in COVID 19 include the
effects of hyperglycaemia and glycolysis in monocytes, which may promote
viral replication, cytokine production, and subsequent T-cell dysfunction
through mitochondrial reactive oxygen species (ROS) production, and ac-
tivation of hypoxia-inducible factor-1a52; and (v) higher prevalence of car-
diovascular comorbidities that may help to explain the association with
disease severity and adverse prognosis.

Obesity
Obesity and particularly metabolically unhealthy obesity are major con-
tributors to cardiovascular disease, and mortality. Achieving a

metabolically healthy weight is a risk modifier associated with improved
cardiac and vascular function.59,60

Epidemiological data show a J-shaped relationship between body mass
index (BMI), COVID-19 severity and mortality, with lower risks at BMI
thresholds near normal weights.61–66 Interestingly, this relationship was
more pronounced among younger patients (<65 years old).62,67,68 In
COVID-19 patients from New York City, those aged under 60 years
with a BMI ranging from 30 to 34 kg/m2 had a 2-fold increase in the prob-
ability of ICU admission compared to patients with a BMI <30 kg/m2.
This likelihood increased to 3.6-fold in patients with a BMI >_35 kg/m2.68

Likewise, a BMI >35 kg/m2 increased the risk of invasive mechanical ven-
tilation 7-fold and was associated with lower survival rates.69 In the
OpenSafely study, adjusted mortality rates increased with increasing BMI
ranging from 1.05 for BMI <34.9 kg/m2 to 1.92 for BMI >_40 kg/m2 when
compared with non-obese patients.70 Thus, the relationship between
obesity and severe COVID-19 and whether obesity could shift this in-
creased risk into younger age groups is still a matter of concern given the
high burden of obesity. Some studies addressed the question of why
COVID-19 is deadlier in people with obesity, even if they are young.
These studies noted that fat distribution and an impaired adipose tissue
function, rather than total fat mass and BMI are related with COVID-19
complications at the individual level especially in younger patients.

In one small study of patients with COVID-19, 10 cm2 of increase in
visceral adipose tissue area, measured by computed tomography (CT),
was associated with a 1.36-fold increase in risk for ICU hospitalization.71

In contrast, BMI and total adipose tissue area showed weak association
with COVID-19 severity.71

A combination of physiological and social factors likely drives the grim
numbers of obesity-related COVID-19 risk. The biology of obesity
includes impaired immunity, chronic inflammation, and increased risk of
thrombosis, all of which can worsen COVID-19 outcomes. The devas-
tating impact of obesity, particularly in younger people may have further
explanations. A recent study found an increased epicardial adipose tissue
attenuation index in the epicardial coronary arteries, which may reflect
inflammation within the fat depot, with increasing COVID-19 severity.72

Of note, epicardial adipose tissue attenuation was similar to that ob-
served in many patients with coronary artery disease despite most of
COVID 19 patients having no prior history of coronary artery disease
and no coronary artery calcification.72 In a recent multicentre study of
119 patients with COVID-19 increasing epicardial adipose tissue volume
and attenuation were associated with increasing burden of COVID-19
pneumonia, clinical deterioration, or death.73

The physical pathologies that render people with obesity vulnerable
to severe COVID-19 are multiple. Adipose tissue is among the tissues
with the highest expression of ACE2 receptors.74 It is also an important
source of cytokines, known as adipokines, which in turn are involved in
the regulation of glucose level, lipid metabolism, blood pressure (e.g.
through angiotensinogen, angiotensin-II, ACE2 receptors), inflammation
(e.g. through modulation of TNF-a, IL-6, macrophage chemo attractant
protein-1), thrombosis, and oxidative stress.59 Moreover, prior studies
have shown that adipose tissue may act as a virus reservoir.75 In particu-
lar, coronaviruses can infect bone marrow-derived macrophages and
replicate in them.76 Therefore, abnormal adipose tissue distribution,
composition and function, rather than total body fat, may play an impor-
tant role in COVID-19 infection and related complications, amplifying
the inflammatory response in a positive feedback loop.59 Accumulation
and inflammation of perivascular, pericardial and epicardial fat surround-
ing the heart and connecting vessels, may increase local ACE2 expres-
sion and associate with an increased leptin/adiponectin ratio, which, in

6 E. Cenko et al.
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turn, enhances the effects of some pro-inflammatory cytokines with lipo-
toxicity, such as TNF-a and IL-6.

Pro-inflammatory cytokines increase oxidative stress and decrease
glucose utilization exerting detrimental effects on endothelial function.
They also increase myocardial inflammation and impair myocardial ener-
getics59 which may result in negative inotropy and myocardial dysfunc-
tion.77 Ultimately, pro-inflammatory cytokines triggered by
abnormalities in perivascular, pericardial and epicardial fat may aggravate
hypoxia and increase arrhythmias.6,78 Other issues aggravate these
physio-pathological problems. Obesity may alter the balance between
pro and anti-thrombotic mechanisms and may be complicated by higher
rates of thromboembolic events including pulmonary embolism.59,79 Yet
larger studies are needed to support the hypothesis that visceral, peri-
vascular, pericardial, and epicardial obesity plays an essential role in
COVID-19 myocardial injury.

Smoking
Smoking remains a leading risk for early death and disability with 6.4
million deaths per year attributable to smoking worldwide.80

Smoking is an independent risk factor for atherosclerotic cardiovas-
cular disease and a factor positively associated with respiratory dis-
eases, impaired immune system and consequently increased
incidence of infectious diseases.60 Smoking has been shown to up-
regulate ACE2 expression especially in the lower respiratory tract
which might make current smokers vulnerable to infection by
COVID 19 compared with former/never smokers.81,82

However, data on this issue are controversial. Several early observa-
tional studies41,83,84 and subsequent meta-analyses85–87 based on these
reports found an inverse relationship between smoking and severe
COVID-19 leading to the misconception that current smoking is of ben-
efit during COVID 19 infection. In contrast, other reports linked current
smoking with severe clinical course of COVID-19 and need of ICU
care.88,89 Among of 8910 hospitalized patients with COVID-19 current
smokers accounted for 5.5% of the study population. A 1.79-fold in-
crease in inhospital mortality was observed in current smokers as com-
pared with former/never smokers.90 The same may also be the case for
waterpipe, electronic cigarettes or ‘heat-not-burn’ IQOS users.82 Of
note, the prevalence of smokers was higher amongst those patients with
myocardial injury as assessed by increased cardiac troponin T levels
compared with non-smokers (13.5% vs. 8.1%).27 In sum, further studies
are needed to clarify the reasons behind the reported low prevalence of
current smokers among hospitalized patients with COVID-19. The effect
of current smoking on SARS-CoV-2 infection is a delicate and complex
topic that should be addressed rigorously before delivering messages
that could be misinterpreted.

Mechanism of disease in relation
with the cardiovascular system

Endothelial injury and thrombosis
The prothrombotic and procoagulant state of COVID-19 entails a cru-
cial role in the clinical manifestations of this disease. Viral infection with
COVID 19 injures endothelial cells, which respond to the insult by acti-
vating the coagulation system.

Endothelial cell dysfunction induces the expression of tissue factor
(TF) (through IL-1, TNF-a, and IL-6-mediated mechanisms), releases von
Willebrand factor (vWF) from the Weibel-Palade bodies, and enhances

surface expression of selectin class of leucocyte adhesion molecules
such as P-selectin and E-selectin, overall promoting thrombus formation
and leucocyte recruitment (i.e. thrombo-inflammation; Figure 3).91,92

Virus engagement with ACE2 endothelial receptor may also reduce an-
giotensin II conversion to angiotensin 1-7. Angiotensin II not only pro-
motes thrombus formation but induces plasminogen-activator inhibitor-
type 1 (PAI-1) production hampering fibrinolysis and thrombus dissolu-
tion.93 On the other hand, platelets are able to sense the viral infection
and become activated through pattern recognition- [toll-like-receptors
(TLR)], immunoglobulin Fc- and complement receptors. Activated plate-
lets facilitate pathogen clearance by forming platelet aggregates and
microthrombi, and by promoting the formation of neutrophil extracellu-
lar traps (NETs), web-like structures of decondensed chromatin contain-
ing DNA, histones, and granular components, inducing the so-called
NETosis.94,95 NETs provide a scaffold and stimulus for thrombus forma-
tion by different mechanisms including: (i) the delivery of active TF,
(ii) activation of the intrinsic (contact) coagulation pathway through elec-
trostatic interactions between the histones and platelet phospholipids,
(iii) induction of platelet activation through histone interaction with
platelet TLR, and (iv) blockade of the endogenous anticoagulant anti-
thrombin III and TF pathway inhibitor (TFPI) through activated serine
proteases.94 Severe inflammation is also associated with deregulation of
the coagulation and fibrinolytic systems by affecting key components in-
volved in the atherothrombotic process such as TF, antithrombin-III, and
protein C.

Recent insights on prothrombotic state in
COVID-19
Many studies have provided essential insights into the prothrombotic
state in COVID-19. Clinical studies demonstrated significantly elevated
markers of endothelial and platelet activation such as VWF, PAI-1, solu-
ble thrombomodulin, soluble P-selectin and soluble CD40 ligand, as well
as proinflammatory cytokines, components of NETs including cell-free
DNA, nucleosomes, myeloperoxidase-DNA, TFPI, complement 5a, and
membrane attack component (C5b-9) in severe COVID-19 patients sug-
gesting ‘endotheliopathy’ and thrombo-inflammation as the main con-
tributors of COVID-19 related severity and mortality.95–98 Furthermore,
the cytokine storm induces coagulation disorders favouring the appear-
ance of VTE or disseminated intravascular coagulation (DIC) leading to
an increase in Factor VIII clotting activity, widespread thrombin forma-
tion and consequent elevated D-dimer levels, associated also with a re-
duced platelet count (Figure 3). In this regard, IL-6 levels have been
shown to correlate with a procoagulant profile.99 Thrombocytopenia,
which is secondary to excessive platelet consumption in the injured tis-
sue or a result of immune-mediated haematopoietic stem cell damage,
was associated with a 3-fold increased risk of severe COVID-19.100 Of
note, in patients with SARS a negative correlation was reported between
platelet count and circulating levels of the T-cell immunosuppressor sol-
uble vascular cell adhesion molecule-1.101 Additionally, evidence sug-
gests that ACE2 is highly expressed in cardiac pericytes which, when
exposed to COVID 19, may lead to endothelial destabilization due to
their firm interactions with endothelial cells.74 The interaction between
angiopoietin ligands (ANGPT1/2) and Tie receptor (TIE2) appears to be
responsible for the endothelial dysfunction that ensues, resulting in re-
duced endothelial cell survival and increased vascular permeability.
Presence of viral elements within the endothelial cells as well as accumu-
lation of inflammatory cells, with evidence of endothelial and inflamma-
tory cell death (lymphocytic endotheliitis) were observed in

Cardiovascular disease and COVID-19 7
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..histopathology specimens of patients with COVID-19.102–104 A recent
study suggested that the S protein can exert endothelial cell damage
manifested by decreased mitochondrial function and eNOS activity,
leading to increased redox stress and ultimately impaired NO bioavail-
ability and ACE2 down-regulation. Of note, the endothelium-dependent
vasodilation induced by acetylcholine was impaired in isolated pulmo-
nary arteries of hamsters, but not the endothelium-independent vasodi-
lation induced by sodium nitroprusside.105 It is important to note that
endothelial inflammation–endotheliitis affects many vascular beds, result-
ing in global microcirculatory dysfunction. Recently, soluble thrombo-
modulin has been suggested as a surrogate marker of endotheliopathy in
COVID-19 and seems to provide prognostic information.97 However,
this marker still needs further validation.

In summary, multiple pathogenic mechanisms seem to predispose
COVID-19 patients to endotheliopathy and thrombosis. Future studies
are clearly warranted to fill the current knowledge gaps and identify
mechanism of short- and long-term effects of SARS-CoV-2 on endothe-
lial function and novel prognostic endothelial biomarkers.

Myocardial injury
The Fourth Universal Definition of Myocardial Infarction defines myocar-
dial injury (acute or chronic) as at least one cardiac troponin (cTn) value
above the 99th percentile upper reference limit (URL).106 Recent
reports indicate that myocardial injury, manifested by elevated levels of
circulating cTn, electrocardiographic or imaging criteria is frequent
among patients with COVID-19. Still there is much confusion about the
pathophysiological entities underlying this injury. Here, we summarize
few key points about myocardial injury and COVID-19.

Myocardial injury is common and impairs
prognosis
The exact frequency of myocardial injury in patients with COVID-19 is
difficult to ascertain due to variations in cTn assays, thresholds, studied
populations, and clinical conditions. Myocardial injury has been demon-
strated in 7–40% of patients with COVID-19 depending on the geo-
graphic areas, with a higher prevalence among those patients requiring
intensive care.88,107–112 Mortality is approximately 22% among patients
with cTn above the URL and 61.5% for those with cTn levels >10 times
the URL.107,110,111,113

Mechanisms of elevated troponin in COVID-19 are likely to be multi-
factorial including sepsis-related cardiomyopathy triggered by the sys-
temic hyperinflammatory state, coronary thrombotic and plaque
rupture events, microvascular injury due to DIC and thrombosis, sup-
ply–demand mismatch, ARDS related hypoxia, and direct viral cardio-
toxicity.114,115 Whether the hypercoagulable state and systemic
inflammation observed in COVID-19 are unique features causing myo-
cardial injury should be further investigated.

Clinical classification of acute myocardial
injury
Following careful clinical evaluation and understanding of the clinical con-
text in which cTn measurements were obtained, patients with cTn
increases should be classified as having (i) Type 1 acute myocardial infarc-
tion (MI), (ii) Type 2 acute MI, or (iii) acute non-ischaemic myocardial
injury.

Myocardial infarction
Type 1 MI: Immune response, acute infections, as well as local and sys-
temic inflammation resulting in especially those of the respiratory tract
are associated with an increased risk of ACS.116 Observational studies
on prior virus epidemics support the concept of an association between
viral infections affecting the respiratory tract and MI, as is the case of in-
fluenza A infections.117 In agreement with such prior observations, a re-
cent systematic review with meta-analysis of self-controlled case series
based on five independent studies found an increased risk of MI during
the first week following influenza infection.118

As discussed above, a massive systemic inflammatory reaction associ-
ated with severe pneumonia as in COVID-19 may lead to an increased
propensity for plaque disruption,116 and thrombus formation119 leading
to type 1 MI.106 Histopathologic examination of autopsy specimens has
evidenced that patients dying of acute systemic infections have consis-
tently higher content of macrophages and T cells in the coronary adven-
titia and periadventitial fat than non-infected deceased patients,
establishing a link between acute systemic infections and local increase
of inflammatory cells in coronary arteries.116 In addition, patients with
ACS have higher inflammatory activity across the coronary tree than
those patients with chronic coronary syndrome. Arterial segments pre-
senting culprit lesions are enriched in infiltrating inflammatory cells, such
as macrophages, T cells, and neutrophils, when compared with other
areas of the coronary bed.

Inflammatory cells may contribute to plaque instability by express-
ing active molecules including, cytokines, proteases, coagulation fac-
tors, oxygen radicals, and vasoactive molecules. In this respect,
experimental studies in mice have demonstrated that infection with
the influenza A virus associates with higher immune cell influx, in-
creased production of inflammatory cytokines, and active metallo-
proteinases in the atherosclerotic plaque, which may account for a
higher atherosclerotic plaque vulnerability.120 Evidence of concomi-
tant COVID-19 in ACS patients has been reported.121–126 Higher
troponin levels, D-dimer, and CRP, higher rates of multivessel throm-
bosis, stent thrombosis and higher thrombus burden have been
reported in MI patients with COVID-19 as compared with non-
infected.125 Additionally, MI patients with COVID-19 showed signifi-
cantly higher rates of coronary no-reflow (myocardial blush grade 0
or 1) and lower left ventricular function after revascularization, de-
spite similar ischaemic times, suggesting impaired myocardial perfu-
sion at tissue level likely due to microvascular thrombi.125 Thus, MI
patients with COVID-19 represent a high-risk group of patients with
unique characteristics resulting in increased mortality risk.122–126 Yet,
these reports are limited to a few small retrospective observational
studies of ST-segment elevation myocardial infarction patients with a
scarcity of data on non-ST elevation-acute coronary syndrome.121–

126 As such these reports are unable to capture the real magnitude of
the problem. Reasons behind this lack of data could be: (i) a decrease
in health care–seeking behaviour in asymptomatic/suspected
COVID-19 patients, as suggested by concerning reports of an in-
crease in out-of-hospital cardiac arrests (OHCA) and sudden death
that could have been secondary to MI127; (ii) difficult differential diag-
nosis as non-localized chest pain maybe present also in acute
COVID-19 due to the underlying hypoxaemia and tachycardia, which
in turn may also induce electrocardiographic changes suggestive of
myocardial ischaemia.33 On the other hand, dyspnoea may be the
only symptom of ACS which in turn in asymptomatic COVID-19
patients could be attributed to the underlying pneumonia; (iii) due to

8 E. Cenko et al.
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appropriate concerns regarding the safety of health care workers,
COVID-19 positive patients with symptoms and electrocardio-
graphic evidence of acute myocardial injury, were less likely to un-
dergo invasive coronary angiography.126

Type 2 acute MI: Studies report that patients with COVID-19 often
have chronic cardiovascular conditions such as hypertension, cardiomy-
opathy, coronary artery disease, or heart failure. All these conditions can
be explanations for chronic stable increases >99th percentile URL in
Type 2 MI for a number of reasons. First, systemic inflammation is associ-
ated with marked haemodynamic changes including sympathetic
activation-mediated tachycardia, which results in increased myocardial
oxygen requirements.128,129 Second, the direct effects of pathogens and/
or their indirect effects through inflammatory cytokines and chemokines
promote ROS which are associated with mitochondrial dysfunction in-
cluding mitochondrial uncoupling, leading to increased mitochondrial ox-
ygen utilization and hence myocardial oxygen demand.130,131

Furthermore, acute respiratory infections can cause ARDS that can re-
sult in hypoxia and consequent lowering of arterial oxygen content,
thereby potentially further limiting myocardial oxygen delivery.128

As with other coronaviruses, COVID-19 can elicit an intense release
of multiple cytokines and chemokines that can lead not only to vascular

inflammation but also to abnormal regulation of vascular tone leading to
coronary vasospasm. These abnormalities, in turn, can cause cardiac per-
fusion abnormalities and even MI.

Cardiogenic shock in those patients may also be precipitated by a
myocardial demand-supply mismatch. Increased cardiometabolic de-
mand associated with the systemic infection or sepsis coupled with hyp-
oxia caused by acute respiratory illness can impair myocardial oxygen
demand-supply relationship and lead to additional myocardial injury.

Acute non-ischaemic myocardial injury
Emerging reports suggest that acute non-ischaemic myocardial injury is
likely the predominant reason for cTn increases. Common cardiac aeti-
ologies include myocarditis, Tako-Tsubo syndrome, and acute heart fail-
ure due to either systolic or diastolic dysfunction.106 Primary non-
cardiac conditions, such as pulmonary embolism, critical illness, and sep-
sis, probably cause myocardial injury as well.106,111 Myocarditis and myo-
pericarditis are causes of acute non-ischaemic myocardial injury that
warrant particular concern in COVID-19. Depression of myocardial
function can result in increased left ventricular diastolic filling pressures,
and in combination with systemic vasodilation can cause lowering of

Figure 3 Mechanisms of endothelial activation/dysfunction and immunothrombosis in COVID-19. SARS-CoV-2 activates the endothelium, either directly
by interacting with angiotensin-converting enzyme (ACE) 2 receptor or indirectly by triggering hyperinflammation. Inflammatory cytokines induce the activa-
tion of tissue factor (TF) and exocytosis of Weibel Palade bodies (WPB) from endothelial cells, enhancing expression of P-selectin and E-selectin which in
turn recruits’ neutrophils and monocytes/macrophages. Monocytes/macrophages activate and deliver through their microvesicles, TF to the sites of SARS-
CoV-2 exposure, initiating the TF pathway activation (or extrinsic pathway). Neutrophils release neutrophil extracellular traps (NETs), which capture
SARS-CoV-2, promote thrombus formation activation of factor XII (contact or intrinsic pathway of coagulation cascade), and promote platelet recruitment
by binding von Willebrand factor (vWF). The NETs propagate coagulation by inactivating endogens anticoagulants such as tissue factor pathway inhibitor
(TFPI) and antithrombin III (ATII). Concomitantly, thrombomodulin is shed from endothelial cells, which further promotes a procoagulant and pro-inflamma-
tory milieu. Spike (S) protein binding to ACE2 endothelial receptor reduce angiotensin (Ang) II conversion to Ang 1-7. Accumulation of Ang II leads to plas-
minogen-activator inhibitor-type 1 (PAI-1) production inhibiting fibrinolysis and thrombus dissolution. Figure created with BioRender.com. IL, interleukin;
TNF-a, tumour necrosis factor alpha; TLR, toll-like receptors.

Cardiovascular disease and COVID-19 9
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diastolic arterial blood pressure, thereby further reducing effective coro-
nary driving pressure. These haemodynamic changes affect particularly
the left ventricular subendocardial layers, that are most dependent on
perfusion during diastole and hence most vulnerable to ischaemia.132

Accordingly, COVID-19 studies have shown marked increases in N-ter-
minal pro-B-type natriuretic peptides (NT-pro-BNP) in patients with
myocardial injury, with studies reporting mean NT-pro-BNP concentra-
tions of 72 pg/mL in patients who recovered compared with 800 pg/mL
in those who died.26 Another cause for acute non-ischaemic myocardial
injury is pulmonary embolism. In a study of 184 ICU patients with
COVID-19 pneumonia, pulmonary embolism was the most frequent
thrombotic complication (81%). These data have led to the recommen-
dation to use prophylactic anticoagulation in the absence of randomized
evidence.7 Another potential mechanism leading to acute non-ischaemic
myocardial injury is direct injury by COVID 19 through ACE2 receptors,
which are present in the myocardium and are functional receptors for
COVID 19. Patients with heart failure have a higher expression of ACE2,
which may explain their increased risk for myocardial injury following
COVID-19.

Acute myocarditis
To date, a few cases-series of ‘COVID-19-related myocarditis’ with di-
verse clinical presentations, have been published.133–136 Patients with an
exuberant immune response can manifest acute myocarditis with pro-
found myocardial injury or cardiogenic shock.128,134 However, it is worth
remembering that the available findings are more consistent with ‘clini-
cally suspected myocarditis’ or possible Tako-Tsubo syndrome.133,137 A
molecular analysis showed the absence of the SARS-CoV-2 genome in
the myocardium of a patient diagnosed with COVID-19 and endomyo-
cardial biopsy-proven lymphocytic myocarditis, indicating that the identi-
fication of SARS-CoV-2 in the respiratory tract is insufficient to prove
that clinically suspected myocarditis is caused by SARS-CoV-2.133

Furthermore, the epidemiological features of COVID-19 do not fit well
with the ‘classical’ biopsy-proven myocarditis. According to the current
ESC guidelines, the diagnosis of viral myocarditis is a diagnosis of exclu-
sion made with certainty only in the case when a viral genome is proven
in endomyocardial specimens along with the histological findings of ac-
tive myocarditis.137 SARS-CoV-2 infection of induced pluripotent stem
cell-derived cardiomyocytes has been shown in vitro18 and SARS-CoV-2
genome has been identified in endomyocardial biopsies of patients with
suspected myocarditis.135 However, there is no direct evidence of
SARS-CoV-2 within cardiomyocytes as virus presence has been docu-
mented in interstitial cells within cardiac tissue but not in cardiomyo-
cytes, suggesting that viral genome presence was due to infected
macrophage migration.138

Recently, rare and self-limiting cases of myocarditis with temporal as-
sociation to immunization with an mRNA-based COVID-19 vaccine
have been reported, especially in young men (mean age 25 years
old).139,140 Data from the Israeli Ministry of Health suggest a crude inci-
dence rate of approximately 24 cases per million following a second
dose.139,140 Still, the true incidence of this adverse event is unknown at
this time. Although the specific mechanisms are unclear an immune-
mediated mechanism is likely.141

In summary, to date, there is scarce evidence supporting direct myo-
cardial injury through COVID 19 infection. Given the risks of COVID-
19, including the risk of myocardial injury from COVID-19 infection, con-
cerns about rare or even extremely rare adverse events following immu-
nization should not undermine confidence in the value of vaccination.

Thromboembolism in patients with
COVID-19
Coagulation abnormalities including arterial and especially VTE are rec-
ognised features of severe COVID-19 infection, manifesting in deep ve-
nous thrombosis, pulmonary embolism, and DIC. As discussed above,
inflammation, endothelial activation, increased platelet reactivity,
NETosis, alterations in coagulation factors, and stasis predispose to both
arterial and venous thrombosis. In the setting of COVID-19 several stud-
ies have shown that the hyperinflammatory state may lead to pulmonary
microthrombosis and pulmonary intravascular coagulopathy. Acquired
antiphospholipid antibodies have been identified in 45–90% of COVID-
19 patients, but the exact mechanism of antibody formation and its asso-
ciated thrombogenicity remain unclear.142

Whilst all hospitalized patients are at risk of VTE, those with ARDS,
severe sepsis and/or on ICU are at much higher risk, due to both
patient-specific factors (including age, obesity, sepsis, hypoxia, due to
concomitant respiratory or heart failure) and ICU-related factors (seda-
tion, immobilization, vasopressors or central venous catheters).
Coagulopathy is reflective of more severe disease and adverse prognosis,
with DIC reported in 71% of COVID-19 patients who died compared to
only 0.6% of survivors.119 Furthermore, fibrin-platelet microthrombi de-
position in the pulmonary vasculature is apparent at autopsy in COVID-
19 patients.143 Those presenting with myocardial injury appear to have
elevated D-dimer, fibrinogen, low antithrombin levels, prothrombin time
(PT), and activated partial thromboplastin time (APTT) compared to
those without cardiac involvement.107

In recent meta-analyses, hospitalized patients have an overall esti-
mated incidence of COVID-19 related VTE ranging from 15% to 21%.
This is four-fold higher in critically ill patients admitted to the ICU com-
pared with non-ICU settings (23–31% vs. 7–9%).144–146 Studies have also
shown that age and coagulopathy, defined as spontaneous prolongation
of PT > 3 s or APTT > 5 s, are associated with thrombotic complications
and higher mortality.7,147 Furthermore, the true incidence of VTE may
be underappreciated as it is often challenging to detect it in ICU patients.
Moreover, pulmonary embolism may be under-diagnosed since respira-
tory deterioration is a prominent feature of the concomitant ARDS. The
increased risk of thromboembolism that is known to be associated with
COVID-19 can be appreciated also in other clinical conditions.148,149

The overall incidence of ischaemic stroke and MI is reported to be nearly
4% across studies.7,146 In a single-centre case series, 20 patients with
COVID-19 developed acute limb ischaemia over a 3-month period.149 In
a multicentre case-series of 209 critical COVID-19 patients, 9.6% devel-
oped atypical severe arterial thrombotic events.148 Of note, thrombosis
occurred mainly in non-atherosclerotic vessels148 and successful revas-
cularization was lower than expected probably due to the immuno-
thrombosis model.149

In order to mitigate the prothrombotic state associated with COVID-
19, guideline and consensus statements recommends standard thrombo-
prophylaxis with low-molecular weight heparin (LMWH), unfractio-
nated heparin, or fondaparinux over oral anticoagulants, in the absence
of contraindications, in all acutely hospitalized patients with COVID-
19.33,150,151 Unfractionated heparin and LMWH have anti-inflammatory
effects being able to down-regulate TNF-a induced inflammatory
responses and partially inhibit IL-6, and IL-8 release.152,153 Some studies
have reported that heparin bind to the S protein of SARS-CoV-2, thus
potentially blocking cellular invasion.154,155 Fibrinolytic therapy with tis-
sue plasminogen activator (tPA) in refractory COVID-19 acute lung in-
jury and ARDS has been reported to be associated with improved

10 E. Cenko et al.
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oxygenation, ventilation, and haemodynamic status,156 which supports
that fibrin deposition in the airspaces and lung parenchyma, along with
fibrin-platelet microthrombi in the pulmonary microvasculature contrib-
utes to ARDS and right heart failure.102,104,143 However, optimal throm-
boprophylaxis including regimen, intensity, and duration have yet to be
established. Several other consensus statements, guidelines and reviews
have also made similar recommendations for thromboprophylaxis in
COVID-19 especially in hospitalized patients.150 Of note, the role of di-
rect oral anticoagulants is still unproven. Nevertheless, they are increas-
ingly adopted. Similarly, the role of fibrinolytic therapy for critically ill
patients remains to be established. Results of ongoing randomized clini-
cal trials will help to clarify these uncertainties.157

Acute heart failure: the right ventricle in
COVID-19
A growing number of studies show evidence of heart failure in COVID-
19 patients even without pre-existent cardiovascular diseases.26 Cardiac
involvement in patients infected with SARS-CoV-2 may manifest as acute
COVID-19 cardiovascular syndrome (ACovCS) that among other pre-
sentations also encompasses the whole spectrum of acute heart failure
symptoms.158 Among hospitalized patients with COVID-19 the
reported rates of acute heart failure varied from 23% to 33%.84,108 As
previously mentioned acute heart failure may be due to negative inotro-
pic effects of cytokines and pro-inflammatory ACE/angiotensin II, or
myocardial injury.

However, in the setting of COVID-19 the right ventricle is at higher
risk of failure due to its physiological relationship with the pulmonary cir-
culation. Right ventricular (RV) dysfunction and failure may contribute to
the rapid haemodynamic deterioration, arrhythmias, and sudden death
seen in patients with COVID-19. Early post-mortem studies from severe
COVID-19 patients showed evidence of RV dilatation.104,159 As the pan-
demic progressed, larger echocardiographic studies demonstrated that
COVID-19 patients had RV dilation (12 to 15%), RV dysfunction (16–
35%), and elevated pulmonary artery systolic pressure, even in the ab-
sence of known cardiomyopathy.160–165 In these patient’s adverse RV
remodelling was associated with over two-fold increase in mortality
risk.161,165 Additionally, many severe COVID-19 patients require positive
pressure ventilation, which in turn affects preload, afterload and ventric-
ular compliance and may further contribute to RV failure.

In summary, these observations highlight the clinical implications of RV
dysfunction assessments and the possibility to risk-stratify COVID-19
patients based on this assessment.166–168

Arrhythmic manifestations
Arrhythmias are a common complication in patients with COVID-19.
Early case-series of hospitalized patients reported rates ranged from 8–
17% and 44–60% in ICU setting and fatal cases, respectively.169–173 In a
recent international large survey of over 4500 patients, arrhythmias oc-
curred in 18% of cases, with atrial fibrillation/flutter being the most com-
mon disorder in COVID-19.174 Atrial fibrillation/flutter, left bundle
branch block, electrocardiogram (ECG) signs suggesting acute right ven-
tricular pressure overload (e.g. right bundle branch block or S1Q3T3
pattern), premature ventricular contractions, and ST-segment deviation
have been all associated with elevated troponin levels and mortality, in
COVID-19 pateints.175 Life-threatening arrhythmias (ventricular tachy-
cardia/ventricular fibrillation) can occur in 4–6% of hospitalized COVID-
19 patients and are more common in those with elevated cardiac

troponins27,174 thus the diagnostic workup for cardiac injury should be
always accompanied by concurrent rhythm monitoring.176

Although the exact nature of these arrhythmias is currently unknown,
there are several mechanisms by which arrhythmias may occur in
COVID-19. Five pathophysiological conditions align with the clinical
course of COVID-19 and may predispose to arrhythmias: (i) pre-existing
pro-arrhythmic conditions (structural heart disease, ion channel disor-
ders)177; (ii) direct cardiotropic effects of the SARS-CoV-2 virus or
hyperinflammation response it evokes. Cytokines such as, IL 2, IL-6, and
IL-8 as well as TNF-a may cause heart rhythm disorders.178,179

Cytokines may favour the development of long QT syndrome (LQTS)
by affecting the function of the cardiomyocyte Kþ and Ca2þ ion channels
(inflammatory cardiac channelopathies).180 IL-6 enhances the L-type
Ca2þ current and inhibits the rapidly activating repolarizing Kþ current
by targeting the human Ether-à-go-go-Related Gene (hERG) thus pro-
longing ventricular action potential duration.180 In addition,
inflammation-associated tachycardia resulting either from increased sym-
pathetic activation of b-adrenergic receptors,181 or direct activation of
cardiac pacemaker cells by cytokines,182 may precipitate life-threatening
arrhythmias, especially in patients with underlying heart disease. Beta-
blockers were associated with a reduced risk of death in critically ill
patients with COVID-19183; however, a protective effect needs to be
confirmed in prospective studies. Ongoing studies will also determine if
selected immune proteins may qualify as biomarkers for an increased
arrhythmogenic risk or immunomodulating therapy; (iii) cardiorespira-
tory instability requiring critical care and positive pressure ventila-
tion.176,184 Arrhythmias may indicate worsening of the patient’s
underlying condition. Electrolyte abnormalities due to rapidly worsening
renal function may act as potential triggers and should be closely con-
trolled. Nevertheless, whether the incidence of arrhythmias is higher in
COVID-19 than in other conditions of cardiorespiratory distress is cur-
rently unknown; (iv) medical therapy with QT-prolonging drugs. Several
explorative treatments for COVID-19 such as hydroxychloroquine and
azithromycin, may induce QT-prolonging culminating in torsades de
pointes.185 A baseline ECG is warranted, if patients are receiving antiar-
rhythmic or psychotropics therapy. More importantly, QT-prolonging
drugs, should be reconsidered if QTc >500 ms or QTc increase by >_60
ms.33,176 (v) finally, residual myocardial dysfunction and arrhythmic risk
following COVID-19 with cardiac involvement. In analogy to myocardi-
tis, patients with reduced left ventricular ejection fraction, persistent
ECG changes or cardiovascular magnetic resonance (CMR) evidence of
fibrosis may qualify for long-term follow-up for potential arrhythmic
complications post COVID-19.186 In this regard, digital health and re-
mote monitoring has been accelerated by the pandemic, providing an
opportunity to enhance the use of remote services in everyday medical
practice worldwide.176

Cardiac arrest
Cardiac arrest, either in or out of hospital, is common in critically ill
patients with COVID-19 and is associated with poor survival, particularly
among women and men aged 80 or older.127,187 Initial experience from a
tertiary teaching hospital in Wuhan, China, has demonstrated a very
poor survival after in hospital cardiac arrest (IHCA).188 Only 4 out of
136 patients with IHCA survived for 30 days and only 1 with a favourable
neurological outcome even though 93% of the patients were monitored
and resuscitation was initiated in less than 1 min in 89%. A recent study
from Sweden included 3027 people who suffered a cardiac arrest
(OHCA 64.3% and IHCA 35.7%). COVID-19 patients, had a 3.4-fold and
2.3-fold increased risk of 30-day mortality after an OHCA and IHCA,
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respectively, compared with non-infected cases.127 Of note this study
showed that witnessed IHCA were less common in COVID-19 cases, as
were in-hospital ECG monitoring, shockable rhythm and defibrilla-
tions,127 highlighting the need for rhythm monitoring which is potentially
life-saving.176 Respiratory failure and prothrombotic events that have
been extensively described in patients with COVID-19 are probably ma-
jor contributors to in-hospital cardiac arrest in this setting. Although
there is no direct evidence that SARS-CoV-2 directly causes cardiac ar-
rest, cytokine storm could contribute to multi-organ dysfunction and
cardiac arrest. Some previous observations may strengthen such hypoth-
esis. Thus, cardiac arrest and subsequent resuscitation is often followed
by the so called ‘post cardiac arrest syndrome’ (PCAS).189 A dominating
feature of the PCAS is a systemic inflammatory response syndrome with
high levels of cytokines circulating in the blood associated with endothe-
lial activation and endothelial injury.190,191 Adding COVID-19 to PCAS
the systemic inflammatory response may be more pronounced. Further
in a recent phase II trial, blocking of IL-6 signalling pathway with tocilizu-
mab, reduced systemic inflammation after cardiac arrest and showed an
apparent cardioprotective effect.192 The same reasoning applies to
LQTS and Torsades de Pointes.174,180

Finally, in high prevalence areas it reasonable to encourage compres-
sion only resuscitation and public access defibrillation of adults with
OHCA for lay people, as it has already been implemented in many first
responder programmes in Europe.193,194

Sex differences of cardiovascular
injury in COVID-19 and potential
mechanism of sexual dimorphism

Robust sex-specific risk estimates for confirmed infection and prelimi-
nary case fatality for COVID19 are still lacking, with available data likely
biased by incomplete outcome data and differences in testing policies
within and between countries. Growing evidence in USA and western
European countries documented a greater susceptibility to SARS-COV-
2 infection among women compared with men at least in those aged up
to 50 years. In contrast, men across all ages are 20% more likely than
women to be hospitalized with COVID-19, to require intensive care and
are reported to have a 1.74-fold increased risk of mortality compared
with women.195,196 Similarly, hyperinflammation and myocardial injury
are more pronounced in men.197 On the opposite, COVID-19-related
endotheliopathy and thrombosis were not found in clinical studies so
far.197 The reasons behind this increased risk are not completely under-
stood. A possible explanation of the observed effect on mortality after
infection with SARS-COV-2 is that comorbidities, such as hypertension,
cardiovascular disease, chronic lung diseases, and tobacco smoking are
more common among men than women.197 Alternatively, the finding of
increased COVID-19 infection among young women and the higher risk
of severe disease and death among men in all age groups suggests a po-
tential role for sex differences in biology and pathophysiology in
COVID-19 infection. Yet, several studies have hypothesized that sex dif-
ferences in COVID-19 may result from an interplay between preexisting
comorbidities and sex-based biological factors, including sex chromo-
somes, sex hormones, and genomic and epigenetic differences, underly-
ing viral entry and the immune response, which in turn also modulate
cardiovascular disease. Some of these observations require further
discussion.

i. Androgen signalling up-regulate ACE2 and TMPRSS2 expression in pul-
monary and prostate tissues.198 Androgen-deprivation therapy/andro-
gen receptor antagonists have shown to reduce the SARS-CoV-2 S-
mediated cellular entry.198 Similarly, oestrogen can up-regulate the ex-
pression of ACE2 in human atrial tissue and has shown immune modulat-
ing activity.195,199 In a pilot trial, progesterone therapy reduced the need
for supplemental oxygen and hospitalization. Therefore, the effects of
oestrogen on ACE2 expression may have paradoxical effects, aiding
COVID-19 viral infection, yet conversely limiting viral pathogenicity.200

These insights could, at least partially, account for the better outcome
and the lower myocardial injury and death rate in women compared
with their male counterparts.

ii. Furthermore, the gene encoding ACE2 is located on the X chromosome
and is regulated by oestrogens.201 Inactivation silences transcription
from one of the two X chromosomes in women (XX) and avoids redun-
dant gene expression compared with men (XY). However, the silencing
is not complete but about 10% of the genes escape the inactivation.201

Thus, XX cells over-express genes encoding ACE2 in women.201 Studies
are mandatory to evaluate the role of inactivation of transcription of X
genes, and of their regulators, which might represent a major challenge
to understand the sex-specific pathogenic determinants of COVID-19
disease progression.

iii. In addition, it is known that innate and acquired immune responses are
more intense and stronger in women than in men. This can provide
women with a more effective tool to fight infective pathogens, favouring
viral clearance. There are a variety of X-linked genes, such as IL-13, IL-4,
IL-10, XIST, TLR7, FOXP3, which may underlie sexually dimorphic
responses that contribute to stronger cellular, and humoral immune
responses which also enhances the susceptibility of women to autoim-
mune diseases in women compared with men.201 For example, recogni-
tion of viral RNA by TLR 7 is enhanced in women compared with men
leading to a more robust, type I IFN secretion and response. Women
show higher neutrophil and macrophage phagocytic capacity and IL-10
production, higher B-cell numbers, and antibody production and higher
number of CD4þ T cells and activated T cells and T-cell proliferation
than men.202

iv. Sex is known to be associated with longevity. Immune-inflammatory
responses play a key role in successful ageing. While men are usually
physically stronger, women live longer. The variation in sex hormones
levels over the course of life may partially contributes to sex differences
in immune profiles and disease susceptibility to infection at different
ages.195 Aging induces a decline in the proportion of naı̈ve T cells and en-
hanced monocyte and cytotoxic cell functions that is more prominent in
men, and a male-specific B cells decline after age 65 years old.202,203 In
addition, a trend of age-related decrease was observed in the production
of some cytokines. In particular, the rate of decline in IL-10 is greater in
men than in women. Because IL-10 acts as an immune-inflammatory sup-
pressor,204 this relatively lesser production can be consistent with the
fact that the age-related decline of various immunological parameters is
less pronounced in women than in men.202,203

In sum, unless the effects of biological sex are studied, we will continue
to have gaps in the knowledge, which may result in missed opportunities
for a better health care system response to the pandemic of COVID-19.
Having greater awareness of the roles that sex may play, may guide person-
alized preventive measures and therapeutic options in women and men.

Therapy and clinical trials: where
are we with treatments?

The urgent need for effective treatments has resulted in the implementa-
tion of potential therapies lacking strong scientific evidence. There are
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thousands of clinical trials investigating treatments and preventative
measures for COVID-19. We summarize the most important features.

Remdesivir
Following the results of the Adaptive COVID-19 Treatment Trial
(ACTT)-1 and 2 supportive trials GS-US-540-5774 and GS-US-540-
5773, The European Medicines Agency (EMA), approved a conditional
marketing authorization remdesivir for the treatment of COVID-19 in
adults with pneumonia who require supplemental oxygen.205–207 The
ACTT-1 which had the most robust study design, provided the most
convincing evidence reporting a shorter time to recovery in the remdesi-
vir group when compared with the placebo group (10 vs. 5 days), no dif-
ferences in mortality risk were observed. Yet, on November 2020, the
WHO issued a conditional recommendation against the use of remdesi-
vir in hospitalized patients, regardless of disease severity, as there is cur-
rently no evidence that remdesivir improves survival and other
outcomes in these patients.208 Interim results from the WHO Solidarity
trial suggest that remdesivir has little or no effect on mortality in patients
who are hospitalised with COVID-19.209 Larger randomized controlled
trials (RCTs) are needed to approve or refute treatments that uninten-
tionally may be damaging for the patients.

Corticosteroids
The Randomised Evaluation of COVID-19 Therapy (RECOVERY) trial, a
multicentre, randomized, open-label trial in hospitalized patients with
COVID-19, showed that the mortality from COVID-19 was lower in
patients who were randomized to receive dexamethasone than among
those who received the standard of care.210,211 However, in the sub-
group of participants who did not require supplemental oxygen at enrol-
ment, no survival benefit was observed for dexamethasone. Thus, WHO
has recommended dexamethasone plus remdesivir or dexamethasone
alone only for hospitalized patients with severe or critical COVID-
19.208,211 If dexamethasone is not available, alternative glucocorticoids
such as prednisone, methylprednisolone, or hydrocortisone, may be
used instead.208,211

Recently, the Steroids in COVID-19 (STOIC), a phase 2, open-label,
randomised controlled trial, showed that early administration of inhaled
budesonide when compared with usual care, reduced the likelihood of
needing urgent medical care and reduced time to recovery in adult’s out-
patients with mild COVID-19.212 However, STOIC data are insufficient
and cannot exclude the possibility of harm from the use of inhaled corti-
costeroids, such as budesonide or ciclesonide, in outpatients with mild
COVID-19 who have normal oxygen levels. As such EMA advise against
the use of inhaled corticosteroids in this population.213 Therefore, more
robust evidence from clinical trials is still needed, to establish the benefits
of inhaled corticosteroids in outpatients with COVID-19.

Chloroquine/hydroxychloroquine,
azithromycin, lopinavir/ritonavir
In the early phase of the pandemic hydroxychloroquine and chloroquine
were widely used for COVID-19 patients. These two drugs have been
used for decades in therapy and control of malaria and autoimmune dis-
eases. Small early trials that evaluated hydroxychloroquine demon-
strated no clinical benefits.208,214,215 The subsequent large multicentre
RECOVERY trial showed that the 28-day mortality rates of hospitalized
patients with COVID-19 in the hydroxychloroquine treatment group
were even higher than those in the usual-care group (62.9% vs.
59.6%).214 Furthermore, combined use of hydroxychloroquine and the

antibiotic azithromycin may prolong the QT-interval resulting in an in-
creased risk of sudden death, and other adverse events.13 Following a re-
view of emerging data from the RECOVERY trial, there was also no
beneficial effect of lopinavir/ritonavir on 28-day mortality in patients hos-
pitalised with COVID-19 compared to usual care alone.216 These data
were confirmed by the Interim WHO Solidarity Trial.209 This trial con-
cluded that remdesivir, hydroxychloroquine, lopinavir, and interferon
regimens had little or no effect on COVID-19 mortality, initiation of ven-
tilation, and duration of hospital stay.209 These disappointing results high-
light the question whether it is appropriate to use any drug on COVID-
19 patients before large-scale RCTs are completed.

Inhospital immunomodulatory therapies
The intense hyperinflammatory response to viral infections, led in the
early stages of the pandemic to the drug repurposing of several
agents able to modulate the immune response, including IL-1 (ana-
kinra) or IL-6 (sarilumab, siltuximab, tocilizumab) inhibitors.5 Recent
trials of these immunomodulatory therapies showed conflicting
results.217–221 Tocilizumab intervention was frequently associated
with improved outcomes and reduced mortality, whereas evidence
for the efficacy of anakinra, siltuximab, or sarilumab in COVID-19 is
currently insufficient217–221 An important concern on IL blockade in
patients with COVID-19 is the risk of mid and long-term adverse
events from secondary infections which is still under investigation.
Further research is needed to identify participant and disease charac-
teristics where immunomodulatory therapy is likely to be of maximal
benefit, perhaps exploring the relationship of the effects of such
drugs with baseline inflammatory biomarkers such as IL-1, IL-6 and
CRP and myocardial healing.

Neutralizing monoclonal antibodies for
high risk COVID-19 outpatients
Data suggesting that persistent SARS-CoV-2 replication portends sever-
ity of COVID-19 led to the development of treatments with the aim to
prevent the progression of COVID-19 from the beginning of infection. In
three trials early treatment with neutralizing monoclonal antibodies
(mAb) REGN-COV2 (combination of casirivimab and imdevimab) or a
combination of bamlanivimab and etesevimab significantly reduced
SARS-CoV-2 viral load, COVID-19-related hospitalization and death
compared to placebo in outpatients with recently diagnosed COVID-19
without need of supplemental oxygen.222–224 No benefit and possible
worse clinical outcomes were shown in hospitalized patients requiring
high flow oxygen or mechanical ventilation, most likely because inflam-
mation and thrombosis, rather than viral replication, play a greater role
in later stages of the disease.222–224

The EMA granted a conditional marketing authorization and FDA ap-
proved these neutralizing mAbs with an emergency use authorization in
mild to moderate COVID-19 patients aged 12 years and older that do
not require supplemental oxygen for COVID-19 and who are at high
risk of progressing to severe COVID-19.225–228

SARS-CoV-2 mAbs have the potential to be used for both prevention
and treatment of infection, as they are designed to block viral attachment
and entry into human cells, thus neutralizing the virus. Bamlanivimab/ete-
sevimab and casirivimab/imdevimab are recombinant, neutralizing human
IgG1 mAb which are unmodified in the Fc regions. The mAbs bind to dif-
ferent sites on the receptor binding domain of the spike protein of
SARS-CoV-2, blocking the binding of the virus to the ACE2 host cell sur-
face receptor.229 Several factors still limit the successful contribution of
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approved mAbs to the control of the COVID-19 outbreak including the
need for very-large-scale manufacturing and the need to rapidly shift to
modalities of administration not requiring hospital settings.

Serine protease inhibitor therapy
Camostat mesylate and nafamostat mesylate are clinically proven inhibi-
tors of TMPRSS2, used for the treatment of pancreatitis and DIC.
Recently, both compounds have been identified as a promising antiviral
therapy for COVID-19.230 Animal and in vitro human cell studies have
shown that nafamostat mesylate, camostat mesylate, and its active me-
tabolite 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA), blocks
TMPRSS2 thus inhibiting viral protein S priming and hence virus-cell
membrane fusion.14,198,230 Moreover, animal studies have shown that
camostat mesylate may reduce transforming growth factor-b production
and associated fibrosis.231 Nevertheless in a recent small multicentre
RCT, 200 mg camostat mesylate failed to show clinical improvement,
progression to ICU admission or mortality when compared with placebo
in hospitalized patients with COVID-19.232 Ongoing clinical trials will
help to assess whether camostat mesylate or nafamostat mesylate ad-
ministered in higher doses or during the very early phase of COVID-19
might be effective in reducing disease progression.

Cell-based therapy in COVID-19
Mesenchymal stem cells (MSCs) and cardiosphere-derived cells
(CDCs), have been widely studied for clinical application in regenera-
tive medicine and for their anti-inflammatory, immunomodulatory,
anti-fibrotic and regenerative properties.233 MSCs can be isolated
and grown from multiple human tissues, including the human umbili-
cal cord (hUC).233 CDCs are intrinsic cardiac stem cells, with a dis-
tinctive antigenic profile (CD105þ, CD45-, CD90low) and contain a
small minority of c-kitþ cells putative cardiac progenitors.233,234 It has
been hypothesized that MSCs and CDCs could reduce inflammation,
ARDS and attenuate scar formation and fibrosis after myocardial in-
jury in COVID-19.234–237 Furthermore, because they express low
levels of ACE2 and TMPRSS2, MSCs and CDCs are thought to be re-
sistant to SARS-CoV-2 infection.236,238

Data supporting the use of intravenous hUC-MSCs in patients with
COVID-19 are limited to small pilot open-label uncontrolled trials.235–

237 These studies reported improvement of inflammatory biomarkers
such as CRP and cytokines,235–237 improved survival237 as well as a po-
tential to reduce fibrosis associated with post-acute COVID-19.236,237 It
should be noted, however, that results did not reach statistical signifi-
cance. Data supporting intravenous allogeneic CDCs (known as CAP-
1002) are limited to a single compassionate-use cohort of 6 severe
COVID-19 patients pre-treated with tocilizumab.234 The study reported
a good safety and tolerability profile of CAP-1002, followed by improve-
ment in clinical status, pro-inflammatory biomarkers, cardiac troponin
and D-dimer levels in most patients during hospitalization.234

Interpretation of these studies is further limited lack of randomiza-
tion,234–236 small sample size,234–237 and shift in eligibility criteria from
enrolling solely patients on invasive mechanical ventilation to including
those on non-invasive ventilation.237 Moreover, a concern on cell-based
therapy is the safety profile at long-term follow-up.

To date, no MSCs or CDCs products are approved for the treatment
of COVID-19. Multiple ongoing trials, including the Intravenous Infusion
of CAP-1002 in Patients With COVID-19 (INSPIRE) trial will help to as-
sess the role of cell-based therapy for the treatment of COVID-19.

Post-acute sequelae of COVID-19

A large proportion of patients who have been infected from SARS-CoV-
2 do not fully recover in the months after hospital discharge and con-
tinue experiencing debilitating symptoms such as fatigue, dyspnoea, chest
pain, palpitations, thromboembolic events, myalgia, anxiety, depression
and impaired quality of life.2 These symptoms, often referred to as ‘Long
COVID’ or ‘Post-acute COVID-19 syndrome’, can persist for months in
the absence of detectable viral infection and vary in form and severity.
Recent data have shown that over 13% of infected individuals are likely
to report symptoms of post-acute COVID-19 that persist over 4 weeks,
4.5% over 8 weeks, and 2.3% of individuals report symptoms over
12 weeks.239 These post-acute effects of COVID-19 are a matter of sig-
nificant concern, as they potentially affect millions of people worldwide,
increasing healthcare costs and disability.

The first major challenge in treatment of post-acute COVID-19 is
establishing a universally accepted definition still need to be established.
Recently, the NIH has proposed the term ‘Post-Acute Sequelae of
SARS-CoV-2 infection (PASC)’ to collectively refer to these effects.3

Recent studies have suggested to include two categories to define the
syndrome: (i) subacute or persistent symptomatic COVID-19, which
includes signs and symptoms lasting from 4 to 12 weeks beyond acute in-
fection and attributable to COVID-19; and (ii) chronic or post-COVID-
19 syndrome, which includes signs and symptoms persisting or present
beyond 12 weeks of the onset of acute COVID-19 and not attributable
to alternative diagnoses.2,240–243

Reports on 2- to 6-month outcomes from hospital discharge showed
that fatigue/muscle weakness (50–63%), cough (15%), dyspnoea/exer-
tional dyspnoea (23–43%), arthralgias (27%), chest pain (22%), ongoing
palpitations/arrhythmias (5%), loss of memory (34%), anxiety/depression
(23%), concentration difficulties (28%), and sleep disorders (26–31%)
were the most common patient-reported symptoms.244–248 Two recent
large cohort studies showed that 14–30% of COVID-19 patients devel-
oped clinical sequelae that required medical care or hospital admission
during the 4 months after the acute phase of the diseases.244,249

As the definition of long COVID or PASC is developing, the underly-
ing causes of post-acute COVID-19 symptoms are poorly understood.
Various mechanisms might be involved such as cellular injury due to di-
rect viral invasion, systemic hyperinflammation, a procoagulant state
leading to post-inflammatory cardiac and pulmonary fibrosis, impairment
of pulmonary diffusion capacity, cardiac dysfunction, partially dissolved in
situ thrombotic microangiopathy or emboli with flow limitation, and
post-acute thromboembolism.243,250,251 Time course progression and
most frequent symptoms and complications of post-acute COVID-19
syndrome are summarized in Figure 4.

Potential mechanisms of post-acute
COVID-19
Post-acute COVID-19 may very well have multiple causes. For example,
autoantibodies may have a role. Perhaps viral reservoirs or lingering frag-
ments of viral RNA or proteins contribute to the condition. Systemic in-
flammatory response to COVID-19, involving IL-1, IL-6, and TNF-a have
the potential to increase myocardial fibrosis in cardiac remodelling.252,253

Emerging evidence suggest that post-acute COVID-19 symptoms could
be caused also by inappropriate sinus tachycardia (IST) and postural or-
thostatic tachycardia syndrome (PoTS).254,255 Autonomic dysfunction af-
ter viral infection, resulting in IST and PoTS, has previously been
reported in SARS-CoV-1 infection.256 These are likely the result of
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..increased catecholaminergic state and inflammatory cytokines such as
IL-1, Il-6, TNF-a and autoantibodies that target cardiac Ca2þ, Kþ or Naþ

channels leading to arrhythmogenic effects in the absence of evident
changes in the myocardium.180 In summary, the exact cause of post-
acute COVID-19 is currently unknown and it will take substantial efforts
to uncover mechanisms invoked. This may require a multidisciplinary ap-
proach considering the multiple targets being affected by COVID-19.
Below we will report early approaches to this issue.

Cardiac sequelae and complications
There is a bidirectional relationship between COVID-19 and the heart.
Patients living with cardiovascular diseases are at higher risk of severe
COVID-19 and death. On the other hand, myocardial oedema, fibrosis
and related complications are observed in patients recovering from
COVID-19.257 CMR data suggest that cardiac involvement is present in
approximately 80% of patients and ongoing myocardial inflammation in
60% of patients, at a median time interval of 71 days since COVID-19 di-
agnosis, even in asymptomatic patients.258 Of note, when compared
with healthy controls, patients who have recovered from COVID-19
have lower left ventricular ejection fraction, higher left ventricular vol-
umes, late gadolinium enhancement (LGE) reflecting irreversible previ-
ous myocardial injury (necroptosis, fibrosis), and pericardial
enhancement indicating pericardial inflammation. Additionally, these
patients show raised native T1 signal suggesting expansion of the intersti-
tial space due to fibrosis and native T2 signal suggesting myocardial oe-
dema or necrosis. These findings correlate with higher levels of high-
sensitivity troponin.114 In addition, active lymphocytic inflammation was

observed in a subgroup of patients who underwent endomyocardial bi-
opsy.258 Similar results were reported in other small studies of patients
who recovered from COVID-19259–261 It should be noted that up to
12% of these patients had a history of coronary revascularization or
MI.261 In contrast, another study did not show evidence of myocarditis,
although CMR signs of subtle changes in myocardial structure and func-
tion and resolving pericardial inflammation were present in 30% of
cases.262

Taken together, these observations support the hypothesis that ab-
normalities of myocardial tissue identified by CMR are common during
COVID-19 recovery. These observations of myocardial fibrosis are wor-
risome, as resulting heart failure can lead to cardiac arrhythmias.

Yet, a raised T1 signal on CMR is not specific for oedema or acute
myocardial inflammation, as it is observed in diffuse fibrosis or infiltration.
Likewise, LGE reflects previous myocardial injury of any age.263

Furthermore, the differentiation of ischaemic or non-ischaemic LGE in
high-risk patients may reflect events prior to SARS-CoV-2 infection. For
example, it is well known that 15% to 33% of patients with at least one
cardiovascular risk factor have silent ischaemia, and potentially may have
ischaemic LGE.264,265

Imaging abnormalities and risk of future
cardiac events
The relationship between imaging abnormalities and risk of future car-
diac events are a matter of future research. A systematic evaluation of
myocardial fibrosis (imaging/histology) may guide post-acute follow-up
in COVID-19 patients with cardiac involvement and is clearly warranted.

Figure 4 Post-acute sequelae of SARS-CoV-2 infection. As for the current literature, post-acute sequelae of SARS-CoV-2 infection may be defined as per-
sistent signs and symptoms or long-term complications beyond 4 weeks from symptoms onset. The most frequent symptoms and complications are summa-
rized in the figure. Figure created with BioRender.com.

Cardiovascular disease and COVID-19 15



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
In addition, innovative biomarkers for cardiovascular disease are also
warranted. In this regard circulating RNAs biomarkers represent a valu-
able tool due to their biological relevance, dynamic regulation in re-
sponse to disease, tissue-specificity, and accessibility. For instance, a
recent study showed that has-miR-Chr8:96, a human microRNA, was
able to distinguish patients with myocarditis from those with MI with a
sensitivity and specificity of over 90%.266

Post-acute pulmonary manifestations and
risk future of cardiac events
Cohort studies have shown that at 6-month follow-up chest CT, residual
ground-glass opacification and progression of fibrotic-like changes were
present in one third of patients.243,250 Additionally, impaired pulmonary
diffusion capacity was the most common physiological finding occurring
more frequently in those patients with fibrosis-like changes, suggesting
unresolved microvascular injury.243,250,251

Some investigators have proposed a combined physiological approach
to follow-up imaging to determine tissue perfusion, such as novel CT
perfusion methods and combinations of standard methods of ventila-
tion/perfusion (VQ) single-photon emission computed tomography with
CT pulmonary angiogram, with the potential to inform the underlying
pathophysiology of prolonged symptoms and therapeutic strategies.

Given the patterns of in situ thrombotic microangiopathy and vascular
endotheliitis the impact of residual thrombus burden and potential hae-
modynamic sequelae such as chronic thromboembolic embolism,
chronic pulmonary hypertension and adverse RV remodelling in
COVID-19 remain a topic of future research.267

Post-acute thromboembolic events
Most investigations have focused on the risk of thromboembolic events
during the acute COVID-19 phase, while a few have focused on the
post-acute phase of the disease. Current evidence shows conflicting
results. In one study, 45-day post-discharge cumulative risk of VTE was
0.2%.268 In another cohort, rates of VTE post-discharge were reported
to be 4.8 per 1000 discharges and were not significantly different from
post-discharge VTE associated with other acute diseases in 2019.269 In a
single-centre study, the cumulative incidence of thrombosis (including,
pulmonary embolism, intracardiac thrombus, and ischaemic stroke) at
day 30 post-discharge was 2.5%.270 Similar results were reported in an-
other cohort.271

As described above the COVID-19 related thrombosis suggests an
immunothrombotic pathophysiology either directly by interacting with
ACE2 receptor or indirectly by triggering hyperinflammation (Figure 3).
Similarly, the risk of post-acute COVID-19 thrombotic events may be
linked to the duration and the severity of hyperinflammation.
Unfortunately, lack of data on the duration of the hyperinflammatory
state after the acute phase, and lack of large prospective cohorts and ran-
domized controlled trials, limits our ability to risk stratify post-acute
thromboembolic events, highlighting the need to answer the unsettled
question of extended post-discharge thromboprophylaxis.

Metabolic sequelae of COVID-19 and
diabetes
The relationship between COVID-19 and diabetes is complex and bidi-
rectional. Patients with diabetes are at increased risk of severe COVID-
19 and mortality. In turn, COVID-19 disrupts glucose metabolism which
is a known feature of systemic infections. New-onset diabetes and se-
vere complications of pre-existing diabetes such as insulin resistance,

diabetic ketoacidosis, hyperosmolarity, microvascular and macrovascular
complications have been described in patients with COVID-19.272–275

Similarly, during the SARS-CoV-1 outbreak, acute diabetes was fre-
quently reported in patients with no history of diabetes or steroid
use.276 ACE-2 and TMPRSS2 are expressed in pancreatic b cells,277 but
whether this is sufficient to trigger new-onset diabetes in COVID-19 is
uncertain.278 One study showed that SARS-CoV-2 infects and replicates
in human pancreatic islet cultures inducing morphological, transcriptional
and functional changes, including reduced numbers of insulin-secretory
granules in b cells and impaired glucose-stimulated insulin secretion.277

This investigation also described detection of the N protein of the virus
in pancreatic exocrine and homeobox protein NKX6.1-positive b cells, a
transcription factor that plays a critical role in pancreatic b cell function
and proliferation, in postmortem examinations. Another proposed
mechanism include increased insulin resistance due to cytokinemia such
as IL-6 and TNF-a, an oxidative stress storm, glycation of ACE2 recep-
tors, activation of the Ang II–ACE2–MasR axis due to binding of ACE2
receptor of b-cells and vascular endothelial cell/pericyte cells promoting
fibrosis through islet amyloid polypeptide and collagen types I and III de-
position.274 These observations support the hypothesis of the potential
diabetogenic effect of SARS-CoV-2 infection and are of particular con-
cern given that diabetes promotes atherosclerosis and ischaemic heart
disease.

Yet, there are several questions that remain unanswered: (i) What is
the exact risk of new-onset diabetes in COVID-19? (ii) Does COVID-19
worsen the natural history of the disease in patients with pre-existing di-
abetes? (iii) Does COVID-19 increase long-term predisposition to dia-
betic ketoacidosis? and (iv) Can COVID-19-associated diabetes be
reversed after the acute phase?

Conclusions and future directions

Given that we have only known about the SARS-CoV-2 for only one and
a half year, it is actually quite remarkable how much we have learned
about its epidemiology and pathophysiology. As we increase our under-
standing of the disease there is growing consensus that COVID-19 is a
macro- and micro-vascular disease and as such the cardiovascular system
is largely affected. While, both clinical and basic research has been very
responsive to tackle the challenge, most questions, however, remain
unsolved, as our understanding of the pathophysiology of the disease is
still under evolving and needs to be addressed and expanded in future
research efforts. The most pressing questions are:

i. What causes elderly patients, men and those with cardiometabolic risk
factors to be at higher risk of severe—COVID-19? Observations suggest
the importance of a ‘metabolic disease exposome’,279 including dietary
lifestyle, glycaemic disorders, obesity, and sedentariness, among other
potential disease severity modifiers such as systemic hypertension and
aging, leading to chronic low grade inflammation, which may aggravate
COVID-19-induced acute organ failure. Therefore, it is essential to pre-
cisely identify the factors underlying the severity and the clinical presen-
tation of the disease, especially when considering the risk of COVID-19
epidemics.280 Aging has also a significant effect on the response to phar-
macological interventions. It may be necessary to design trials that focus
exclusively on elderly. Finally, ageing is associated to oxidative stress and
immune-senescence impairing therefore the answer of the immune sys-
tem against the viral insult. The study population of an RCT should ideally
reflect the population that is at the highest risk of the disease and that is
most difficult to treat in clinical practice.

16 E. Cenko et al.
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..ii. How can we better address failure of the microcirculation in COVID-19
and personalize potential therapeutic approaches? Persistence of SARS-
CoV-2 and viral RNA may act as potential viral reservoirs. They tend to
induce an inflammatory response, stimulating endothelial dysfunction, ac-
celerated atherosclerosis, hypercoagulability, and microvascular throm-
bosis. Thus, novel and prognostic biomarkers, combined with genetic
differences and functional testing are required. To tackle the challenge, a
large international interdisciplinary network of clinical and non-clinical
scientists is needed. Initial examples of such cooperation is the EU-
CardioRNA COST Action CA17129 which would try to identify RNA
biomarkers combined with artificial intelligence.5,281

iii. What will be the impact of myocardial injury on long-term functional sta-
tus, quality of life and risk for arrhythmias? What makes some people
more vulnerable than others? What are the biological mechanisms un-
derlying this? Exercise intolerance, for example, is a condition that a car-
diologist in this group of post-acute COVID patients faces. The
diagnostic and prognostic role of pulmonary and myocardial fibrosis in
COVID-19 remains to be established. The systematic follow-up of
COVID-19 patients with a deep and complete clinical and biological phe-
notype will enable the identification of individuals at risk in order to pro-
vide personalized care and with the aim of preventing further
vulnerability for-and exposure to long-term sequela.

iv. Are SARS-CoV-2 infected persons without symptoms at a similar and
proportional increased long-term risk of PASC compared with those
with symptoms? Approximately 25% of individuals who had COVID-19
still have physical symptoms one month after they became ill, and about
10% have symptoms that persist after 12 weeks. COVID-19 is a ‘new dis-
ease’ that pushes the research community and the world more generally
into ‘uncharted territories’. We should commit to set up a network of
scientists and laboratories around Europe taking a multidisciplinary
approach.

Authors’ contributions

E.C. and D.T. conceived and designed the manuscript, drafted the manu-
script, and revised it for important intellectual content. L.B., R.B., M.J.C.,
G.D.L., C.d.W., D.D., M.D., D.J.D., E.C.E., D.A.G., C.H., F.R.H., K.H.,
O.M., D.M., E.O., T.P. D.T.Z., Z.V.P, M.V., and G.V. made substantial con-
tributions to the conception and design of the manuscript, drafted the
manuscript, and revised it for important intellectual content. All authors
approved the final version of the manuscript.

Conflict of interest: None declared.

References
1. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/ (29 August

2021, date last accessed).
2. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, Cook JR,

Nordvig AS, Shalev D, Sehrawat TS, Ahluwalia N, Bikdeli B, Dietz D, Der-
Nigoghossian C, Liyanage-Don N, Rosner GF, Bernstein EJ, Mohan S, Beckley AA,
Seres DS, Choueiri TK, Uriel N, Ausiello JC, Accili D, Freedberg DE, Baldwin M,
Schwartz A, Brodie D, Garcia CK, Elkind MSV, Connors JM, Bilezikian JP, Landry
DW, Wan EY. Post-acute COVID-19 syndrome. Nat Med 2021;27:601–615.

3. NIH launches new initiative to study “Long COVID”. https://www.nih.gov/about-
nih/who-we-are/nih-director/statements/nih-launches-new-initiative-study-long-
covid (15 April 2021, date last accessed).

4. Group W. World Health Organization cardiovascular disease risk charts: revised
models to estimate risk in 21 global regions. Lancet Glob Health 2019;7:
e1332–e1345.

5. Badimon L, Robinson EL, Jusic A, Carpusca I, de Windt LJ, Emanueli C, Ferdinandy
P, Gu W, Gyongyosi M, Hackl M, Karaduzovic-Hadziabdic K, Lustrek M, Martelli F,
Nham E, Potocnjak I, Satagopam V, Schneider R, Thum T, Devaux Y.
Cardiovascular RNA markers and artificial intelligence may improve COVID-19 out-
come: position paper from the EU-CardioRNA cost action CA17129. Cardiovasc
Res 2021;117:1823–1840.

6. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across
Speciality Collaboration UK. COVID-19: consider cytokine storm syndromes and
immunosuppression. Lancet 2020;395:1033–1034.

7. Klok FA, Kruip M, van der Meer NJM, Arbous MS, Gommers D, Kant KM, Kaptein
FHJ, van Paassen J, Stals MAM, Huisman MV, Endeman H. Incidence of thrombotic
complications in critically ill ICU patients with COVID-19. Thromb Res 2020;191:
145–147.

8. Juni RP, Kuster DWD, Goebel M, Helmes M, Musters RJP, van der Velden J,
Koolwijk P, Paulus WJ, van Hinsbergh VWM. Cardiac microvascular endothelial en-
hancement of cardiomyocyte function is impaired by inflammation and restored by
empagliflozin. JACC Basic Transl Sci 2019;4:575–591.

9. Santos TM, Franci D, Gontijo-Coutinho CM, Ozahata TM, de Araújo Guerra
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