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Abstract

We develop a viscoelastic generalization of the elastic Eshelby inclusion solution, where the

inclusion and surrounding matrix are two different viscoelastic solids and the inclusion’s

eigenstrain is a time-periodic oscillatory input. The solution exploits the Correspondence Principle

of Linear Viscoelasticity and a Discrete Fourier Transform to efficiently capture the steady-state

oscillatory behavior of the 3-D mechanical fields. The approach is illustrated here in the context of

the recently-developed in vitro Cell-in-Gel system, where an isolated live cardiomyocyte (the

inclusion) is paced to contract periodically within a soft hydrogel (the matrix), for the purpose of

studying the effect of mechanical load on biochemical signals that regulate contractility. The

addition of viscoelasticity improves the fidelity of our previous elastic Eshelby inclusion analysis

of the Cell-in-Gel system by accounting for the time-varying fields and the resulting hysteresis and

dissipated mechanical energy. This mathematical model is used to study the parametric

sensitivities of the relative stiffness of the inclusion, the inclusion’s aspect ratio (slenderness), and

the cross-link density of the hydrogel matrix.
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1. Introduction

One of the most seminal boundary value problems in linear elasticity is the classical Eshelby

inclusion problem (Eshelby, 1957; 1959). The inclusion, embedded in an infinite elastic

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
*Corresponding author. URL:https://aero.engin.umich.edu/people/john-shaw/ (J.A. Shaw).

Supplementary material
Supplementary material associated with this article can be found, in the online version, at 10.1016/j.ijengsci.2021.103489

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

HHS Public Access
Author manuscript
Int J Eng Sci. Author manuscript; available in PMC 2021 October 08.

Published in final edited form as:
Int J Eng Sci. 2021 August 01; 165: . doi:10.1016/j.ijengsci.2021.103489.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://aero.engin.umich.edu/people/john-shaw/


matrix, is assumed to undergo an eigenstrain (spontaneous inelastic strain) that generates a

residual stress field in the inclusion and the matrix. In the context of 3-D linear elasticity,

Eshelby provided the exact solution for the mechanical fields inside and outside the

inclusion. Interestingly, if the inclusion shape is an ellipsoid, Eshelby showed that the stress

and strain fields within the inclusion are uniform. (The stress in the matrix is still very

nonuniform, decaying away from the inclusion asymptotically to zero). Practical

applications of the Eshelby inclusion analysis have been numerous, either (1) to analyze

solids that undergo actual eigenstrains due to elasto-plasticity, thermal expansion, or phase

changes, or (2) more often, to calculate effective (homogenized) elastic properties of

particle- or fiber-reinforced composites by exploiting the eigenstrain as a mathematical

artifice (Hori & Nemat-Nasser, 1993; Mura, 1991; Tandon & Weng, 1984; Withers, Stobbs,

& Pedersen, 1989). This paper takes the former view where the eigenstrain in the inclusion

is an actual inelastic strain, but of biochemical origin.

Our work is motivated by the need for a computational tool for our recently-developed in

vitro Cell-in-Gel system that is being used to experimentally study the mechano-chemo-

transduction (MCT) mechanisms in single cardiac muscle cells (Jian et al., 2014). In the

Cell-in-Gel system, freshly isolated live cardiomyocytes (typically adult mouse or rabbit

heart cells) are embedded in a constraining hydrogel and then electrically stimulated to

undergo excitation-Ca2+ signaling-contractions. The hydrogel is a 3-D polymer matrix that

imposes mechanical resistance during cardiomyocyte contraction, and this is immersed in a

physiological solution to keep the cardiomyocytes alive. While it is extremely difficult to

mimic the exact in vivo conditions in the whole heart, the Cell-in-Gel system enables us to

study the impact of mechanical stresses on a single cardiomyocyte in a controlled way.

Independently, other researchers developed an alternative method to apply mechanical load

to a single cardiomyocyte, consisting of uniaxial stretching of cardiomyocytes by MyoTak-

coated micro-rods attached to a load transducer while monitoring reactive oxygen species

production and Ca2+ signals (Prosser, Khairallah, Ziman, Ward, & Lederer, 2013). Until

both of these advancements, excitation-contraction experiments on a single cardiac cell

could only be studied load-free. In Cell-in-Gel experiments, normal and overload conditions

can be simulated by using hydrogels of various cross-link densities to systematically vary

the mechanical resistance (afterload) during cardiomyocyte contraction. These ongoing

experiments are being used to study MCT signaling of the cell and how it autoregulates

contractility in the presence of afterload (Chen-Izu & Izu, 2017; Izu et al., 2020). Although

the mechanical strains during cell contractions can be measured by optical microscopy and

various ionic currents can be measured by the patch-clamp-in-Gel method (Shimkunas et al.,

2021), the mechanical stresses in the cell cannot be directly measured. In the Cell-in-Gel

system, these must be inferred by analysis.

Our first attempt to quantify the cell stress in the Cell-in-Gel system was a direct application

of the Eshelby inclusion solution. Cell-in-Gel experiments were analyzed by treating the gel

as a purely elastic matrix and the cell as an elastic inclusion that undergoes an eigenstrain to

simulate contraction (Shaw, Izu, & Chen-Izu, 2013). While useful insights were gained, we

recognized that neither the cell nor the hydrogel (both of which are quite soft and viscous)

are purely elastic objects.
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To improve the accuracy of the analysis, we seek to account for the viscoelasticity of the

constituents in this work. The Correspondence Principle of Linear Viscoelasticity (CPLV)

was first used to extend the Eshelby solution in Hashin (1965). It was, however, used for a

very different purpose, i.e. to estimate the effective mechanical properties of synthetic

particulate composites. The CPLV is also used here, but the focus is to quantify the explicit

mechanical fields subject to an arbitrary time-varying periodic eigenstrain.

Many of the assumptions in Shaw et al. (2013) are adopted herein, and their advantages and

limitations warrant mentioning. The eigenstrain of the inclusion is interpreted here as the

muscle cell’s contractility, and the analysis treats the cell as an isotropic continuum object.

Neglecting the details of the internal structure of the myocyte means that the average stress

and strain of the cell are calculated in a homogenized (spatially-averaged) sense. The

cardiomyocyte is approximated as an ellipsoid, since it is a rather versatile geometry that can

capture a range of geometries, from oblate-spheroids to prolate-ellipsoids to fiber-like

geometries. Certainly, the brick-like shape of an actual cardiomyocyte is more irregular than

an ellipsoid, but even in the viscoelastic case, the internal cell stress and strain fields are

uniform so these correspond to the spatially-averaged values we seek. Also, the

homogenized properties of the cell may be anisotropic, but no such data currently exists to

our knowledge. Accounting for the cell’s anisotropy, if it turns out to be significant, would

not be difficult to implement. Finally, one may argue that the strains observed in a typical

myocyte (10–20%) are too large to use in a linear analysis. We choose not to use nonlinear

elasticity theory, since for our purposes the advantages of the linear theory outweigh its

disadvantages. The CPLV, which can only be used in a linear theory, leads to a very efficient

computational tool. The kinematic error is about the same order as the strain (10–20%

error), which is acceptable considering the geometry approximation (ellipsoid), the

homogenization assumptions, and the uncertainties and variability in the viscoelastic

characterization of the hydrogels and cardiomyocytes. In other words, the linear theory is

acceptable, since the strains are “moderate” but not too large. In any event, the Cell-in-Gel

data provides a convenient opportunity to illustrate the viscoelastic Eshelby inclusion model.

This paper begins with an overview of the Cell-in-Gel experiments in The Cell-in-Gel

system, followed by a brief review of linear viscoelasticity theory and the mechanical

characterization of both gel and cell materials in Materials characterization. In Eshelby

analysis, the boundary value problem is defined in the context of the elastic Eshelby

inclusion problem. Its analytical solution is leveraged to solve the corresponding viscoelastic

problem by exploiting the CPLV and a Discrete Fourier Transform (DFT) analysis to enable

fast computations of periodic time-dependent mechanical fields. Simulation results provides

an example simulation of a baseline case, followed by a parameter study to investigate the

influence of material properties and cell geometry. Each simulation predicts the interior

(cell) and exterior (hydrogel) displacement fields that can be compared to experimental

measurements. The model is used to calculate the multiaxial stress state inside the cell, the

traction distribution on the cell surface, and the mechanical work and power generated by

the cell. Finally, a summary and conclusions are provided in Conclusions & Perspectives.
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2. The Cell-in-Gel system

The Cell-in-Gel system was developed by us as an experimental tool (see Fig. 1) to apply

controlled 3-D mechanical loading on a single cardiomyocyte to enable an in-depth

investigation at the cellular and molecular levels. Ventricular myocytes (Fig. 1a) were

freshly isolated from a healthy rabbit heart (Hegyi et al., 2018) and loaded with the

fluorescent Ca2+ indicator Fura-2 (Jian et al., 2014). The cells were then embedded in the

hydrogel and continuously perfused with Tyrode’s solution (Fig. 1b). The hydrogel

consisted of polyvinyl alcohol (PVA) and polyethylene glycol (PEG)-boronate cross-linked

polymer matrix immersed in an aqueous solution. It provided a soft and viscous medium,

against which the contracting cell encountered mechanical resistance. The boronate-base

crosslinker also binds to the glycosylated molecules on the cell surface to attach the cell to

the polymer matrix. As the cell contracted and relaxed, the hydrogel deformation could also

be tracked via confocal microscopy by the motion of embedded microbeads.

The in-gel cardiomyocyte was paced at approximately 0.5 Hz frequency using electric field

excitation pulses (suprathreshold, 4 ms) to undergo excitation-Ca2+ signaling-contraction

cycles. As depicted in Fig. 1c, intracellular cytosolic Ca2+ transients ( Ca2 +
i, shown in

upper panel) and cell contractions (shortening of sarcomere length, shown in lower panel)

were measured simultaneously using epi-fluorescence microscopy. Measurements on a

single cardiomyocyte were first performed when the cell was contracting in-gel under

mechanical load (left panel). The gel was then dissolved to release the cell inside the

solution, and contraction of the same cell was measured again under load-free conditions

(right panel). Such self-control experiments clearly showed that the cardiomyocyte had

significantly larger Ca2+ transients under mechanical load than when load-free. Hence, the

mechanical load exerted by the surrounding hydrogel was sensed by the cell and transduced

to biochemical signal to upregulate the Ca2+ transients. This MCT mechanism led to a MCT-

Ca2+ gain that enhanced the contractility of the cardiomyocyte in response to increased load.

(It will be shown in Section 5 that a smaller change in SL would have occurred without this

gain.)

In the classical paradigm of cardiac excitation-contraction coupling, the action potential

causes the Ca2+ transient which in turn results in muscle contraction. Previous mechanistic

studies mostly focused on the forward action from the electrical system to the Ca2+ signaling

system, and then to the contractile system. The Cell-in-Gel method enables one to control

the afterload on a single cardiomyocyte and provides new information on how mechanical

load feedback affects the Ca2+ signaling system. For more than a century it is known that the

heart has the remarkable ability to autoregulate contractility to compensate for mechanical

load changes in order to maintain constant cardiac output. However, the molecular structures

responsible for the autoregulation observed at the heart and tissue level remain unclear. The

Cell-in-Gel technique provides a modern tool for in-depth investigation of MCT

mechanisms at the single cell, sarcomere, and molecular levels. Ongoing Cell-in-Gel

experiments, which will be reported elsewhere in experimental papers, have generated

extensive structural and functional data to probe the origins of MCT mechanisms. The main

focus of this modeling paper is to illustrate how a 3-D mechanical analysis of the strain and
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stress fields of the cardiomyocyte in a viscoelastic environment can be determined, thereby

interpreting the experimental data, in order to better understand the MCT mechanisms in a

quantitative way.

3. Materials characterization

The mechanical analysis of Section 4 requires that the constitutive behaviors of the hydrogel

and the cardiomyocycte be known. Both are treated here as viscoelastic materials. Our

hydrogel consists of three main constituents: PVA, PEG-boronate cross-linker, and

physiological solution (e.g. Tyrode’s or phosphate-buffered saline). Each of these

components has a considerable effect on the viscoelastic properties of the hydrogel, so the

magnitude of the applied mechanical load can be fine-tuned by adjusting the concentrations

of these constituents. Hydrogels of various cross-link densities are used in the Cell-in-Gel

experiments to systematically vary the mechanical resistance to cardiomyocyte contraction.

This section provides a brief review of linear viscoelasticity theory, followed by the

mechanical characterizations of the hydrogel and the cardiomyocyte.

3.1. Linear viscoelasticity

According to the theory of linear viscoelasticity, the constitutive (stress-strain) response of

the material can be expressed as a convolution integral in terms of a relaxation modulus and

a prescribed strain history. That is, for a given shear strain history γ(t), the shear stress τ(t)
history is expressed in terms of the relaxation shear modulus G(t) as

τ(t) = G(t)γ 0+ + ∫
0+

t
G(t − s)γ̇(s) ds (1)

where γ̇ = dγ /dt is the strain rate. If the strain input is a step function at time t = 0 according

γ(t) =
0, t < 0
γ0, t ≥ 0 (2)

where γ0 is a constant, the response is simply τ(t) = γ0G(t). Thus, the relaxation modulus

G(t) = τ(t)/γ0 is the stress response to a unit step strain input. For a typical viscoelastic solid

the stress jumps to an initial value G0 at time t = 0+ and then decays monotonically as t ∞
to a smaller positive value G∞.

To capture the viscoelastic behavior of real hydrogels from rheology data with reasonable

accuracy, the relaxation modulus G(t) is approximated here by a generalized Maxwell

viscoelastic model, consisting of a spring of stiffness G∞ assembled in parallel with

multiple Maxwell elements. The relaxation modulus is then mathematically represented by a

Prony series according to (Wineman & Rajagopal, 2000)

G(t) = G∞ + ΔG ∑
j = 1

Nτ
ξ je

−t /τ j, (3)
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where G∞ is the asymptotic value as t ∞, ΔG = G0 − G∞, τ j j = 1, 2, …, Nτ  are relaxation

time constants (not to be confused with the shear stress), and ξj represent ‘phase fractions’

that apportion the amount of material that relaxes according to each time constant τj. To

ensure it is physically reasonable and to preserve the interpretation of G0 and G∞ as

instantaneous short-term and long-term values, respectively, the fractions must be non-

negative ξ j ≥ 0 (for all j = 1, 2, …, Nτ) and satisfy ∑ j = 1
Nτ ξ j = 1.

If strain input is oscillatory, say γ(t) = γ0 sin ωt where ω is a prescribed angular frequency, the

resulting shear stress history, τ(t) by Eq. (1), is

τ(t)
γ0

= G′ sin ωt + G″ cos ωt − ΔG ∑
j = 1

Nτ ωτ jξ j

1 + ω2τ j
2e

−t /τ j, (4a)

G′ = G∞ + ΔG ∑
j = 1

Nτ ω2τ j
2ξ j

1 + ω2τ j
2 , (4b)

G″ = ΔG ∑
j = 1

Nτ ωτ jξ j

1 + ω2τ j
2 . (4c)

After a sufficiently long time the decaying part in Eq. (4a) can be neglected, leaving the

steady oscillatory response

τ(t)
γ0

= G′sinωt + G″cosωt . (5)

The quantity that characterizes the in-phase portion of the response G′ is called the storage
modulus, while that for the out-of-phase portion G″ is called the loss modulus. These are

frequency-dependent functions which can be measured in a modern dynamical mechanical

analyzer. To see the phase δ explicitly, one can rewrite Eq. (5) as τ(t)/γ0 = |G | sin(ωt + δ),

where tanδ = G″/G′ and |G | = G′ 2 + G″ 2.

Alternatively, using complex variables1, suppose the input strain history is oscillatory

according to γ (t) = γ0eiωt = cos ωt + i sin ωt (by Euler’s relation) with i = −1 and the

complex relaxation function is G = G′ + iG″. Repeating the convolution integration Eq. (1)

and neglecting the decaying part, gives the response as

1Complex-valued quantities are denoted with a hat, such as γ.
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τ(t)
γ0

= G′ + iG″ eiωt

= G′ cos ωt − G″ sin ωt + i G′ sin ωt + G″ cos ωt .
(6)

The real part is the response to a cosine input, and the imaginary part is the response to a

sine input. Moreover, the convolution integral Eq. (1) can now be replaced by

τ(t) = G(ω)γ0eiωt
(7)

in terms of complex variables, when one is only interested in the limit cycle response after

transients have died out.

3.2. Hydrogel characterization

Rheometry measurements were performed on PVA-PEG-boronate hydrogels using a

torsional dynamical mechanical analyzer with cone and plate platens (Fig. 2a). In all cases

the shear strain γ amplitude was 2 %, and frequency scans were performed between 0.1 and

100 rad/s. Hydrogels of 10 % PVA (89–98 kDa) for several different cross-linker (CL)

concentrations C = {2.5, 5, 7.5, 10, 12.5, 15}% were examined. Each case was run on three

or four samples at 25 °C.

As an example, the results of a 10% CL hydrogel sample are shown in Fig. 2b to e. The

angular frequency was converted to cyclic frequency (f in Hz) according to ω = 2π f, and

frequency results are shown on a logarithmic scale for clarity. In Fig. 2b and c, the open

symbols mark experimental data, and the solid lines are fits according to Eqs. (4b) and (4c).

In this case, and all others, G∞ = 0 was prescribed, since the G′ was quite small at low

frequencies (see the lefthand tail in Fig. 2b). This means the hydrogel actually behaves more

like a viscoelastic fluid than a viscoelastic solid.

The fits for G′ and G″ are reasonably good. This was achieved by selecting time constants

at equal increments along a logarithmic scale, τ j = 2−10, 2−9, …, 22 , and then fitting the

parameters ξj (j = 1, 2,..., 13) and ΔG. For most of the hydrogel samples, an unconstrained

fit resulted in a distribution of ξ versus log τ (relaxation spectrum) that resembled a

Gaussian distribution. Consequently, the relaxation spectra for all of the results herein were

constrained to lie along a Gaussian distribution according to

ξ j = ξ τ j = ξ0exp −
log τ j/τ0

σ0

2
, (8)

where τ0 is the mean time constant, σ0 is the standard deviation (characteristic width) of the

distribution, and ξ0 is a normalizing constant to make ∑ j = 1
Nτ ξ j = 1. The resulting spectrum

is shown in Fig. 2e. This reduced the number of fitting parameters down to only three
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G0, τ0, σ0  for each hydrogel sample. The only tradeoff is that tan δ is somewhat over-

predicted at very low frequencies (see Fig. 2d).

A summary is provided in Fig. 3, showing the trends of the three fitting parameters across all

CL cases. The data points shown were obtained by fitting each frequency scan, similar to

Fig. 2. The elastic shear modulus G0 generally increases with CL concentration in a non-

linear manner, although the scatter between samples becomes progressively larger. The mean

time constant τ0 also increases with CL concentration but trends almost linearly. The width

of the relaxation spectrum σ0 is nearly constant, except at the smallest CL concentration.

The lines in Fig. 3 are CL-dependent fits of the fitting parameters according to

G0(C) =
g0
2 1 + tanh g1 C − g2 , (9a)

τ0(C) = h0 + h1C + h2C2, (9b)

σ0(C) = s0 1 − e
−s1C

. (9c)

Values of the fitting constants are provided in Table 1. This resulted in master fit functions

for the complex shear moduli as a function of frequency and CL concentration.

3.3. Cardiomyocyte characterization

The elastic modulus of the cardiomyocyte was estimated using available data from the

literature. (Prosser et al., 2013) performed uniaxial force-stretch measurements on a single

ventricular myocyte stimulated at 1.0 Hz frequency using coated micro-rods (Fig. 4a). The

cross-sectional area (A0) of the gauge section of the myocyte between the rods was

estimated from the micrograph assuming the out-of-plane depth was the same as the cell

width, allowing the axial stress (σxx = Fx/A0) to be calculated from the axial force (Fx).

According to the extracted stress-strain response curve shown in Fig. 4b, the cell had an

approximate Young’s modulus of Eℐ ≈ 25 kPa when electrically stimulated. Assuming the

cell is an incompressible linear elastic solid, the effective shear modulus was

Gℐ = Eℐ/3 ≈ 8.3 kPa. To our knowledge, unfortunately, no viscoelastic data on a single

cardiomyocyte currently exists in the literature.

4. Eshelby analysis

This section provides an analysis of the mechanical response of a live cardiomyocyte

embedded in a viscoelastic hydrogel and paced to perform periodic beat-to-beat contraction.

Our previous mechanical analysis of Cell-In-Gel experiments (Shaw et al., 2013) was based

on the Eshelby inclusion problem (Eshelby, 1957), where the cell was treated as an

ellipsoidal inclusion that undergoes an eigenstrain (transformation strain) inside an infinite

elastic matrix. The present work extends the Eshelby boundary value problem (BVP) to
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account for viscoelasticity of the constituents. Before the viscoelastic analysis is presented,

however, a brief review is provided of the purely elastic Eshelby BVP.

4.1. Elastic Eshelby analysis

When the elastic properties in the inclusion and matrix are the same, the boundary value

problem is called the homogeneous inclusion problem (Eshelby, 1957). The inclusion

occupies a subvolume Vℐ, assumed here to have the shape of an ellipsoid, and is embedded

and bonded to the matrix at its periphery (Fig. 5). The matrix, occupying the complementary

volume Vℳ, is assumed to be of infinite extent, so the remote boundaries are traction and

displacement free. The inclusion (here, the cell) is assumed to undergo an inelastic strain β,

called the eigenstrain. This simulates the strain of the cell when it contracts load-free

(unconstrained by any matrix). The mechanical resistance of the matrix (here, the gel),

however, causes the magnitude of the inclusion strain ε to be somewhat less. This tug-of-war

causes self-equilibrated residual stress fields in the inclusion and the matrix.

With respect to the Cartesian coordinate system2 shown in Fig. 5b, the displacements ui,

strains εij, and stresses σij for the elasto-static problem are

ui(x) = Bi jk(x)β jk, (10a)

εi j(x) = Di jkl(x)βkl, (10b)

σi j(x) = Ci jkl εkl(x) − Γ(x)βkl , (10c)

with Γ(x) ≡ 1, x ∈ Vℐ,
0, x ∈ Vℳ,

(10d)

where x = xiei is the position vector with Cartesian components xi = x, y, z  and

orthonormal base vectors ei (i = 1, 2, 3). Cijkl are the constant components of the 4th-order

elastic stiffness tensor C. The quantities Bijk (x) and Dijkl (x) are position-dependent

components of 3rd-order and 4th-order tensors, respectively, originally defined in (Eshelby,

1957; 1959). Within an ellipsoidal inclusion, the solution is

εi j = Si jkl
0 βkl, (11)

where Si jkl
0 = Di jkl(0) are the components of the classical Eshelby tensor S. Si jkl

0  are

constants, computed from elliptic integrals, which for isotropic material depend only on

Poisson’s ratio ν and the dimensions of the ellipsoid {a, b, c}. Thus, although strain and

2Scalar quantities are denoted in normal type, while bold-face symbols denote vector or higher-order tensor quantities. The Einstein
summation convention is used for repeated lower case latin subscripts within a term, as in xiei = x1e1 + x2e2 + x3e3.
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stress fields are quite non-uniform in the matrix, they are uniform within an ellipsoid

inclusion (the only known shape for which this is true).

If the elastic properties of the inclusion Cℐ and matrix Cℳ are different, the BVP is called

the inhomogeneous inclusion problem. It is solved by introducing an equivalent eigenstrain

β* that satisfies

σi j
ℐ = Ci jkl

ℐ Sklmn
0 βmn

∗ − βkl = Ci jkl
M Sklmn

0 βmn
∗ − βkl

∗ . (12)

The equivalent eigenstrain components βi j
∗ , calculated from Eq. (12), ensure the correct

stresses are recovered after the inclusion elastic properties are replaced by those of the

matrix Cℐ Cℳ. As shown in (Eshelby, 1957), this clever mathematical artifice converts

any inhomogeneous inclusion problem to the homogeneous Eshelby problem (with its

known analytical solution), and one just proceeds as before after replacing the actual

eigenstrain by the equivalent eigenstrain (β → β*).

Eq. (10) then becomes

ui(x) = Bi jk(x)β jk
∗ , (13a)

εi j(x) = Di jkl(x)βkl
∗ , (13b)

σi j(x) = Ci jkl
ℳ εkl(x) − Γ(x)βkl

∗ . (13c)

For the Cell-in-Gel problem, the hydrogel (matrix) and cell (inclusion) are treated as

isotropic and incompressible materials. The Young’s modulus E and shear modulus G are

related by 2G = E/(1 + ν), so in the limit ν → 1/2 the shear modulus is G = E/3. The

dilatation in this case is zero (εkk = 0), and the deformation is isochoric (volume preserving).

The eigenstrain components are taken as β11 = β, β22 = −β33 = −β/2, and β12 = β23 = β31 =

0, where β is the eigenstrain along the cell’s long axis. Explicit formulas for the computed

equivalent eigenstrains can be found in (Shaw et al., 2013). The nonzero equivalent

eigenstrains β11
∗ , β22

∗ , β33
∗  are proportional to β and depend nonlinearly on the ellipsoid

dimensions and the shear modulus ratio η ≡ Gℳ/Gℐ. They are isochoric βkk
∗ = 0 , and

β12
∗ = β23

∗ = β31
∗ = 0. The stresses then become

σi j(x) = 2Gℳ εi j(x) − Γ(x)βi j
∗ + p(x)δi j, (14)

where the mean stresses in the inclusion and matrix are
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p(x) =
3Gℳβ11

∗ I1(0)
4π − 1

3 , x ∈ Vℐ

3Gℳβ11
∗ I1(λ) − Λ(λ)x1

2α1
2(λ)

4π , x ∈ Vℳ
(15)

and expressions for I1(λ), Λ(λ), α1(λ) and λ(x) are provided in Shaw et al. (2013).

The use of an ellipsoidal inclusion is reasonable, despite the fact that a typical cardiac cell is

brick-like with jagged narrow ends in geometry. Using high-resolution finite element

simulations, Kazemi-Lari et al. (2018) recently showed that the strain and stress fields within

a brick-shaped inclusion are no longer uniform (as expected), gently varying mostly along

the inclusion’s long axis. However, it was verified that the volume-averaged values of the

stress components were quite similar between ellipsoidal and brick-shaped inclusion of the

same aspect ratios.

4.2. Viscoelastic Eshelby analysis

Now we wish to account for the viscosity of the cell and gel in the framework of the Eshelby

inclusion analysis. This causes all mechanical field quantities to become dependent on time

t. According to correspondence principle of linear viscoelasticity (CPLV), if the linear

elastic solution is known for a body that undergoes quasi-static motion, the solution to the

corresponding problem in linear viscoelasticity can be constructed by substituting

constitutive and load parameters with their time-dependent counterparts (see Wineman &

Rajagopal, 2000). The correspondence principle takes advantage of time-space separability

by solving the time-dependent portion of the problem in the Laplace or Fourier domain. The

principle however, is restricted to linear problems where the boundary location remains fixed

in the reference configuration and boundary conditions do not change type over time. That

is, while the surface tractions or displacements may be time-dependent, points on the surface

must remain traction-specified, or displacement-prescribed, or displacement-traction

coupled for all time. Ours is the last type.

The application of the correspondence principle has been used before to obtain the solution

to the viscoelastic Eshelby inclusion problem in order to estimate the properties of

composite materials. A recent paper (Barthélémya, Giraudb, Lavergnea, & Sanahuja, 2016)

contains a summary of relevant papers. The application of the viscoelastic Eshelby problem

to cardiomyocytes in this paper is new.

Taking the Fourier transform of the field equations in Eq. (13b), the pseudo-elastic solution

is solved in the frequency domain by

ui(x, ω) = Bi jk(x)β jk
∗ (ω), (16a)

εi j(x, ω) = Di jkl(x)βkl
∗ (ω), (16b)
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σi j(x, ω) = 2Gℳ(ω) ε i j(x, ω) − Γ(x)βi j
∗ (ω) + p(x, ω)δi j . (16c)

An arbitrary eigenstrain history can be expressed as the Complex Fourier Series

β(t) = ∑
n = − ∞

∞
βne

iωnt
, (17)

where the coefficients are complex valued βn = βn′ + iβn′′. Since β(t) are real valued, the

coefficients βn and β−n are complex conjugates.

The stress response to Eq. (17) is just the superposition of responses at each individual

frequency, since the viscoelastic constitutive relations and kinematics are linear. Thus, the

generalization of Eq. (16c) is the stress tensor (suppressing the spatial arguments)

σ(t) = ∑
n = − ∞

∞
σne

iωnt
, (18a)

σn = Gn
M εn − Γβn

∗ + pnδ . (18b)

where Gn
ℳ = Gℳ ωn  the complex relaxation moduli of the matrix at each frequency. This

relation provides the steady state oscillatory response to a periodic eigenstrain input. The

coefficient βn is found in the usual way by multiplying Eq. (17) through by e
−iωmt

 with

ωm = 2πm/T, integrating across the period of the interval t ∈ [ − T /2, T /2], and exploiting

orthogonality of integrals involving exp(i2π(n − m)t/T), resulting in

βn = 1
T ∫

−T /2

T /2
β(t)e−i2πnt /T dt . (19)

If the eigenstrain input is measured at N equal time increments (Δt = T /N) within the period,

the discrete sequence is

βm = β(m Δt), for integers m = − N
2 , …, N

2 − 1. (20)

which assumes N is even3. This leads to the Discrete Fourier Transform (DFT), where Eq.

(19) is approximated by

3If N is odd, m = − N − 1
2 , …, N − 1

2
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βn ≈ 1
N ∑

m = − N /2

N /2 − 1
βme−i2πnm/N, n = − N

2 , …, N
2 − 1, (21)

and the inverse DFT, replacing Eq. (17), is

βm = ∑
n = − N /2

N /2 − 1
βnei2πnm/N . (22)

Finally, using Eq. (18b) the stress response at discrete times becomes

σm = σ(mΔt) = ∑
n = − N /2

N /2 − 1
σnei2πnm/N . (23)

Note that the ordering of frequencies needs to be done with care to ensure the complex

modulus is summed over complex conjugate pairs. That is, we need G′ ωn = G′ −ωn  and

G″ ωn = − G″ −ωn  when using Eq. (4) with real frequency ωn = 2πn/T, which is why we

prefer the quasi-symmetric summation about n = 0 (rather than the often used n = 0,..., N
− 1).

Once the stress in the inclusion is known, the mechanical power output Pℐ of the cell

(inclusion) can be calculated. This is related to the product of the instantaneous stress σ(t)
and strain rate ε̇(t) in the cell, as

Pℐ(t) = − ∫
Vℐ

σi j(t)ε̇i j(t)dV = − σi j(t)ε̇i j(t)V
ℐ,

(24a)

and the work done per cycle is

Wℐ = ∫
t0

t0 + T

Pℐ(t) dt . (25a)

The volume of the ellipsoidal inclusion is Vℐ = (4/3)π abc (see Fig. 5b), and t0 is the start

time of a cycle. One should recognize that Wℐ is the net mechanical work done by the cell

on the gel, which is apart from other internal energy expenditures of the cell to maintain

metabolic homeostasis, ionic homeostasis, and Ca2+ signaling.

The internal stress, strain, and strain rate provide volume-averaged values of relevant

mechanical quantities that may be felt by interior mechano-sensors in the cell. Notably, the

3-D mechanical analysis also provides important clues to the locations of various mechano-

sensors in the cell (Chen-Izu & Izu, 2017). The mechanical loading sensed by surface
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mechano-sensors of the cell can be estimated by calculating the traction vector te on the

surface of the ellipsoid (interface of the cell and gel, ∂Vℐ). The traction components are

ti
e(x) = σi j

ℐn j(x), x ∈ ∂Vℐ, (26)

where nj are the components of the surface unit normal n.

5. Simulation results

In this section, the results of our mechanical analysis are interpreted and compared to Cell-

in-Gel data. The viscoelastic Eshelby model is used to calculate the multiaxial stress and

strain states and the time-dependent mechanical responses of the cardiomyocyte contractions

in the Cell-in-Gel experiments. First, simulation results are shown for a baseline case in the

absence of MCT gain, which focuses on characterizing the mechanical field distributions

inside and outside the cell. Next, a parameter study is performed to examine the influence of

the hydrogel’s viscoelastic properties, the cell’s aspect ratio, and the cell’s stiffness, on the

cell’s mechanical response. Finally, the inverse problem is solved to compute the eigenstrain

history that would account for the MCT gain in the live cell. This is shown to achieve good

agreement between the simulations and the Cell-in-Gel measurements.

5.1. Baseline case

Consistent with the cardiomyocyte in the Cell-in-Gel experiment (Fig. 1), the ellipsoidal

inclusion has dimensions 2a = 131.2 μm and 2b = 18.4 μm, resulting in an aspect ratio of a/b
= 7.13. From here on, in the absence of an out-of-plane measure, we assume c = b for

simplicity. This is a reasonable estimate for many myocytes, and our results are not greatly

affected even if c = 1.5b (as measured in certain myocytes.) The cell is treated as a

contractile, elastic object with a shear modulus of G0
ℐ = 8.3 kPa (consistent with Fig. 4b)

inside a viscoelastic hydrogel with G0
ℳ = 4.7 kPa at a CL density of C = 7.6 %.

The Cell-in-Gel experiment recorded the axial strain history of a cardiomyocyte electrically

stimulated at about 0.5 Hz after many cycles while embedded in the gel. A representative

cycle, where t = 0 is the time of electrical stimulation, is shown in Fig. 6a. The thin red line

shows the in-gel strain history of the cell, with a maximum contraction near εxx
ℐ = − 13%

strain. The gel was then dissolved away (leaving a nearly inviscid saline solution), and the

strain history of the same myocycte was measured under nearly load-free conditions (thin

blue line in Fig. 6a). The maximum contraction in this case was slightly smaller, about

−12.4 % strain. This load-free strain history is used as the eigenstrain input β(t) in the

viscoelastic Eshelby analysis of Section 4.

The predicted in-gel axial strain history (simulated εxx, shown by the bold black line in Fig.

6a) has the right qualitative character, but the peak contraction (−7.3 % strain) is less than

the experimental value (−13 %). As was shown in Fig. 1c, the actual myocyte significantly

upregulates its intracellular Ca2+ transient by the MCT mechanism to increase contractility

in response to the mechanical load. This adaptive feature is not captured here in the Eshelby
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model which treats the cell as an MCT-free passive entity, but will be included in Section

5.3. Also, as expected for a contractile inclusion inside a viscoelastic gel, the times of peak

eigenstrain, peak inclusion strain, and peak inclusion stress are somewhat different. The

minimum eigenstrain β occurs at t = 0.72 s, while the maximum axial stress σxx
ℐ = 1.53 kPa

occurs about 0.17 s earlier and the minimum axial strain εxx
ℐ occurs about 0.15 s later. The

minimum strain measured in the myocyte reaches its minimum value at t = 0.74 s which

happens 0.13 s earlier than the simulated minimum axial strain εxx
ℐ. The stress state in the

inclusion is multi-axial, but the peak lateral stresses are quite small (minimum σzz
ℐ kPa) due

to the slenderness of the ellipsoid.

Selected field quantities in the cell and gel, including the displacements, longitudinal strain,

and longitudinal stress, are shown in Fig. 7 at the time of maximum contraction within the

symmetry plane y = 0. The problem is also symmetric with respect to the plane x = 0 (mid-

span) and axisymmetric about the x-axis (since b = c). The stress and strain fields inside the

cell (inclusion) are uniform at any given time instant. The fields in the gel (matrix), however,

are non-uniform with a local strain and stress concentration just outside the cell’s ends (x =

±a), but these decay quickly to zero away from the cell.

Fig. 7a shows a deformed grid, where the displacements have been magnified two-fold to

clearly show the constrained cell which pulls on the surrounding hydrogel along the axial

direction (x) yet pushes outward on the gel along the transverse direction (z). Fig. 7b

presents a contour plot of the magnitude of the displacement (|u|) normalized by the cell’s

half-length (a). Streamlines are overlaid to show the directions of displacements during

contraction, again showing how the gel is drawn inward toward the ends of the cell at (x, y,

z) = (±a, 0, 0), yet is pushed away from the cell at the mid-span (0, 0, ±c). The contour plot

also shows that non-zero displacements in the gel are localized to the vicinity of the cell, and

rapidly approach zero by |x| > 2a, or so. Thus, the map provides useful information about the

expected displacements in the gel, which can be compared to the displacements of the

micro-beads in the Cell-in-Gel experiments. Contour plots of the axial strain (εxx) and axial

stress (σxx) are provided in Fig. 7c and d, respectively, showing uniform strain and stress

fields inside the cell. In the gel, both plots exhibit ‘hot spots’ near the cell ends and at the

mid-span (although much less severe). The maximum stresses and strains in the gel are quite

local, less than a/4 in extent near the cell ends.

To give a sense of the magnitude and direction of the traction along the boundary points, a

scaled schematic of the traction vector distribution along the entire cell’s boundary is

provided in Fig. 8a. A more quantitative view of the traction distribution is provided in Fig.

8b, taken at the moment (t = 0.55 s) of peak cell stress (σxx
ℐ kPa). The traction vector te on

the surface of the ellipsoid is decomposed into normal σn and shear τn components relative

to the surface (see inset schematic), and these are normalized by the Young’s modulus of the

cell Eℐ. Because of the symmetry with respect to x = 0 and z = 0 planes, the traction

components are only plotted in the positive quadrant of the y = 0 plane.
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The outward unit normal to the cell surface is n, the tangential unit vector is s, and they are

orthogonal (sini = 0). Fig. 8b shows that the normal component of the traction σn = ti
eni,

acting perpendicular to the surface, changes from slight compression (over about 50 % of

the length) to rapidly increasing tension, reaching a maximum value of about 0.061 Eℐ at

the cell end (x = a). The shear component of the traction τn = ti
esi, acting tangent to the cell’s

surface, starts zero at the mid-span (x = 0) and rises across the length until it reaches a

maximum of about 0.031 Eℐ, before dropping sharply to zero at the cell end. Since the

ellipsoid here is axisymmetric (c/b = 1), the same results would have been obtained if the

tractions were plotted in the positive quadrant of any other plane that includes the x-axis.

Using Eq. (24a), the output power and work of the cell during one contraction cycle are

quantified in Fig. 9. Interestingly, the power history in Fig. 9a exhibits two local maxima

near t = 0.38 s at 3.36 pW (picowatts) and t = 1.10 s at 1.96 pW, due to the out-of-phase

stress and strain histories. Integrated from the power, the corresponding mechanical work

history is provided in Fig. 9b. After a latency of about 0.2 s, the cell does positive work on

the gel during systole, the gel momentarily does work against the cell as it decelerates, and

then the cell again does work on the gel as the cell elastically lengthens during diastole.

Overall, the (MCT-free) cardiomyocyte outputs a total work of W = 2.42 pJ/cycle during

beat-to-beat contraction inside the viscoelastic hydrogel.

5.2. Parametric study

Numerous simulations were performed to understand the parametric sensitivities of the Cell-

in-Gel system with respect to the gel crosslink (CL) concentration, the cell aspect ratio, and

the cell stiffness. Each parameter is varied one at a time, while holding the other parameters

fixed at their base case values. The viscosity of the cell itself was also investigated, but it had

a relatively minor influence on the response so it is not shown. All cases calculated below

use the same load-free eigenstrain history β(t) as before.

As demonstrated in Fig. 10a, the hydrogel’s CL concentration (C) has a strong effect on the

cell contraction. As C is increased, the predicted magnitude of cell’s axial strain is

significantly reduced and the phase difference between the stimulus signal and the

contraction response is increased. In addition, Fig. 10b shows how the magnitude of the

axial stress increases and the stress recovery becomes delayed with increasing C. Cross-plots

of the corresponding stress-strain responses are provided in Fig. 10c. Each response is a

hysteretic loop, where the enclosed area is related to the (output) mechanical work done by

the cell on the gel. The hysteresis is small at low CL concentration (C = 2 %), large at

intermediate concentrations (6 %), and small again at large concentrations (10 %). The

calculated output work per cycle is plotted in Fig. 10d after normalizing by the cell volume

to give a work density (σ = W/Vℐ). This shows that the work density starts at zero for C = 0,

grows to a maximum value near 132 J/m3 at C = 6 %, and then decreases for larger C. This

non-monotonic trend is to be expected, since W = 0 at the two extremes, C = 0 (no gel, zero

cell stress) and C → 1 (nearly rigid gel, zero cell strain).
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The effect of cell’s aspect ratio has a similar non-monotonic effect on the cell response as

shown in Fig. 11. As the cell becomes more slender (larger a/b), reduced contractions and

larger stresses are predicted (Fig. 11a and b). This trend can also be understood by

examining the extreme cases. A spherical inclusion (a/b = 1) is the most able to contract, but

its short length generates only a small displacement (for a fixed eigenstrain). A thin needle

(a/b → ∞) would not be able to contract at all, since its axial cross-sectional area tends to

zero. Likewise, the axial force would become very small, and the cell’s attempted

contraction would be supressed by the resisting gel. As seen in Fig. 11c and d, increasing the

cell’s aspect ratio from a small value (a/b ≈ 1) initially causes the stress-strain hysteresis and

work density to increase. The work density reaches a peak at about 125 J/m 3 at a/b = 4, and

then decreases thereafter.

The cell’s shear modulus (Gℐ), by contrast, has a monotonic influence as shown in Fig. 12.

A stiffer cell is able to contract more (Fig. 12a), and this generates larger stresses (Fig. 12b).

The stress-strain loops (Fig. 12c) and the work density (Fig. 12d) become larger. This makes

sense, as a relatively compliant cell (Gℐ ≪ G0
ℳ) could not contract much against the gel,

while a nearly rigid cell’s contraction would approach the eigenstrain history, εxx
ℐ(t) β(t).

Despite the wide range of parameters examined, none of the responses appear to approach

the measured in-gel strain history of the actual cell. Admittedly, each parameter C, a/b, and

Gℐ has an uncertainty. The crosslink concentration was measured carefully, but the

viscoelastic properties do have some scatter (see again Fig. 3). We also note that in the Cell-

in-Gel experiment, the crosslinker had to be mixed in gently to avoid killing the myocytes,

so it is possible that some spatial nonuniformity in CL concentration could have existed in

the chamber. That, if anything, would have likely decreased the effective CL concentration,

not increased it. The aspect ratio of the cell was measured optically, so we expect the in-

plane aspect ratio is known reasonably accurately, although we could not measure the out-

of-plane dimension. Based on the dimensions of many myocytes measured, one would not

expect c to be much different than b, and even if it was 50 % different calculations show that

it would not matter much. The elastic modulus of the cell is perhaps the parameter with the

largest uncertainty, since we did not actually measure it (estimated from literature data

(Prosser et al., 2013) for a rodent ventricular myocyte) and is subject to unknown variability

between myocyte isolations and animal species. Nevertheless, the range of Gℐ we

considered appears to be extreme, and even in the case Gℐ → ∞ the calculation still did not

trend to the experimental result.

The missing feature in our (MCT-free) simulations so far is that the actual myocyte clearly

has an autoregulation in response to afterload (as observed in the intact heart). We can

envision two possible mechanical manifestations, either the cell increases its elastic stiffness

and/or the cell adapts its eigenstrain. Based on our results above, the discrepancy between

our predictions and the actual myocyte’s in-gel response cannot be explained by changes in

the cell stiffness alone. The cell stiffness cannot change the delay in the peak contraction

compared to the experimental in-gel strain history, and the calculation does not match the

prolonged contraction decay in the actual strain history. It appears, therefore, that the
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autoregulation in response to afterload at the single cell level is primarily associated with an

altered eigenstrain history.

5.3. Enhanced eigenstrain

We hypothesize that the MCT mechanism effectively alters the eigenstrain history in

response to the mechanical load on the cell. That is, the real cell can sense the increased load

and upregulates the Ca2+ transient to enhance contractility. The MCT-Ca2+ gain is clearly

observed in our experiments, but the exact MCT mechanism is incompletely understood. A

well-calibrated mechanical analysis should provide clues that will inform the ongoing

investigation of MCT mechanisms and functional consequences in cardiomyocytes. The

question arises, what enhanced (or MCT) eigenstrain history, βMCT(t), would be needed for

the cell to achieve the as-measured in-gel strain history εxx
ℐ(t) of Fig. 6a?

This final section answers the question by an inverse calculation, using the viscoelastic

generalization of Eqs. (12) and (16b), subject to the constraints that the enhanced eigenstrain

be periodic with βMCT (0) = βMCT (T) = 0 and remain non-positive (βMCT(t) ≤ 0, for 0 < t <
T). Good agreement can be achieved with a purely elastic inclusion (results not shown here),

but even better agreement is achieved by allowing the inclusion to be slightly viscous.

Accounting for viscoelasticity of the cell (inclusion) is of secondary importance compared to

upregulation of the cell’s contractility, and it is somewhat speculative since viscosity of the

cell could not be measured directly. Nevertheless, in the absence of better information, we

choose the simplest possible viscoelastic constitutive model, a three-parameter viscoelastic

solid (Eq. 3 with Nτ = 1) with G0
ℐ = 9.6 kPa, G∞

ℐ = 4.0 kPa, and τ1
ℐ = 0.6 s. The resulting

enhanced eigenstrain is plotted in Fig. 13, showing a nearly two-fold enhancement in the

peak MCT eigenstrain (−25 %) compared to the peak load-free (MCT-free) case (−13 %). It

also produces a faster transient, with the peak βMCT occurring about 0.2 s sooner. Thus, the

contractility of the cell is enhanced in both its amplitude and rate.

Using the hypothesized MCT eigenstrain (βMCT), the simulation is repeated to capture the

influence of Ca2+ upregulation on the cell deformation and stress. Fig. 14 shows the

simulated upregulated (εMCT) axial strain and stress histories during a periodic cycle. Peak

strains and stresses are identified with unfilled circles. The previous MCT-free simulated

results (gray lines) are shown for reference. As seen in Fig. 14a, the simulation produces an

excellent match to the measured strain response of the cell, such that the calculated peak

strain is identical to the measured value of −13.0 % and the time lag discrepancy is

eliminated. Importantly, the maximum predicted axial stress resulting from the MCT

eigenstrain is almost twice the MCT-free case in Fig. 14b. The fact that the simplest possible

viscoelastic model generates such good agreement provides us confidence that the assumed

parameter values are reasonable and the important effects of the cell’s viscosity are captured.

Accordingly, Fig. 14b provides our best estimate of the MCT cell’s axial stress history

during the in-gel portion of the Cell-in-Gel experiment. The peak stress of σxx
ℐ = 3.27 kPa

occurs at t = 0.40 s, and the minimum stress (maximum compression) of σxx
ℐ = −2.8 kPa

occurs at t = 1.06 s.
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Considering the mechanical energy, the effect of MCT upregulation is even more significant.

A comparison of the mechanical power and work histories between the MCT and MCT-free

simulations are plotted in Fig. 15.

The increases in mechanical power and work are quite large, since the strain magnitude,

strain rate, and stress magnitudes are all enhanced in the MCT model. The calculated

mechanical work delivered by the upregulated cell at the end of a cycle is W = 8.53 pJ,

which is about 3.5× larger than the MCT-free cell (W = 2.42 pJ).

6. Conclusions and perspectives

In this study we develop a mathematical model to analyze all mechanical fields associated

with the contraction of an ellipsoidal inclusion in an infinite viscoelastic medium. Our

mathematical model is based on the inhomogeneous Eshelby inclusion problem, a classical

3-D elasticity boundary value problem with a known exact analytical solution. By exploiting

the Correspondence Principal of Viscoelasticity, the model is extended here, for the first

time, to account for the viscoelastic properties of the inclusion and the surrounding matrix

and produces an exact solution of the time-dependent mechanical fields. The model is used

to help interpret ongoing Cell-in-Gel experiments, where a single cardiac muscle cell is

paced to contract within a constraining hydrogel, aimed at better understanding the impact

of mechanical afterload on biochemical signaling.

The model treats the cardiomyocyte as a viscoelastic contractile inclusion embedded in an

infinite 3-D viscoelastic matrix (the hydrogel). The contractility of the cell is interpreted as a

time-dependent eigenstrain.

The existence of an analytical solution, along with a discrete Fourier transform of steady

periodic contractions, provides an efficient computational tool to quantify the periodic time

histories of displacement, strain, and stress fields inside and outside of the cell. In particular,

the stresses in the cell and gel, not directly measurable in the Cell-in-Gel experiments, are

provided by analysis. The ability to accurately quantify the mechanical stress in the cell now

makes it feasible to answer the important question “how much stress in a cardiomyocyte is a

lot?” It also allows the mechanical energy and output power requirements of the myocyte

under afterload to be quantified. A parametric study shows that the strain, stress, and

mechanical work of the cell are significantly influenced by the viscoelastic properties of the

gel and the aspect ratio of the cell (slenderness). While the internal strain and stress fields

within an ellipsoidal cell are uniform (or nearly so in an actual myocyte) at any time instant,

the surface traction is strongly non-uniform with a distinct maximum near the ends (near

intercalated discs).

The viscoelastic inclusion model can provide first-order estimates of the mechanical

properties and contractility of live muscle cells and their active upregulation mechanisms in

the Cell-in-Gel system. For example, the geometry and stiffness of the cardiomyocytes vary

by cell type and pathophysiological state. Mammalian ventricular myocytes are stout;

whereas, atrial myocytes tend to be slender (Chen-Izu et al., 2006; Kirk et al., 2003). The

cell’s stiffness may change during development, aging, or with genetic mutations (Granzier
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& Irving, 1995; Jacot et al., 2010; Zile, Baicu, & Gaasch, 2004). The multiaxial strains and

stresses inside the cell are expected to influence internal mechanosensors such as titin

(Granzier & Labeit, 2004), while surface tractions are expected to influence surface

mechanosensors such as dystroglycans and integrins (Anastasi et al., 2009). Genetic

mutations of some mechanosensors, such as dystroglycans, are known to cause muscular

dystrophy cardiomyopathy (Reed, 2009a; 2009b). The mechanical analysis of the 3-D

strains and stresses in cardiomyocytes provides a useful companion tool to the Cell-in-Gel

experiments to ultimately better understand how the cell might sense multiaxial stresses,

activate various mechanosensors, and transduce the strains and stresses to biochemical

signals to regulate the heart’s function.

Cell-in-Gel experiments show that a healthy cardiomyocyte can adapt to increased afterload

(gel mechanical resistance) by upregulating the cytosolic Ca2+ transient to enhance

contractility (mechano-chemo-transduction, MCT). The viscoelastic Eshelby model initially

assumed the cell to be a contractile but otherwise passive (MCT-free) elastic inclusion, and it

analyzed the in-gel cell response based on the load-free cell strain history (eigenstrain).

Discrepancies between the simulated and measured strain timing, amplitude, and rate,

however, led us to propose a hypothesized enhanced MCT-eigenstrain and to assume

viscoelastic properties for the cell. The MCT-eigenstrain history was obtained by solving the

inverse Eshelby inclusion problem to find the corresponding eigenstrain that would recover

the experimentally measured in-gel strain history. Using this two-fold upregulated

eigenstrain, the viscoelastic Eshelby model then accurately predicts the enhanced

contractility of the cell in response to afterload.

The important contributions of this work are the discovery of an exact solution to the

viscoelastic Eshelby inclusion problem subject to a time-periodic eigenstrain history and its

application to the Cell-in-Gel system. Overall, the viscoelastic inclusion model developed

here provides a rigorous 3-D analysis of the Cell-in-Gel system to aid in the interpretation of

experimental results and ultimately to inform biological studies of the cellular and molecular

mechanisms that underly the heart’s ability to autoregulate contractility under physiological

and pathological conditions. Perhaps, other applications of the viscoelastic Eshelby

inclusion solution will be found in the future.

Acknowledgments

This work is supported by grants R01 HL123526, R01 HL141460, and R01 HL 149431 from the U.S. National
Institutes of Health (NIH). The authors gratefully acknowledge our colleagues and collaborators who have made
this research possible.

References

Anastasi G, Cutroneo G, Gaeta R, Di Mauro D, Arco A, Consolo A, . . . Favaloro A. (2009).
Dystrophin-glycoprotein complex and Vinculin-Talin-Integrin system in human adult cardiac
muscle. International Journal of Molecular Medicine, 23 (2), 149–159. [PubMed: 19148538]

Barthélémya J-F, Giraudb A, Lavergnea F, & Sanahuja J. (2016). The Eshelby inclusion problem in
ageing linear viscoelasticity. International Journal of Solids and Structures, 97–98, 530–542.

Chen-Izu Y, & Izu LT (2017). Mechano-chemo-transduction in cardiac myocytes. The Journal of
Physiology, 595 (12), 3949–3958. [PubMed: 28098356]

Kazemi-Lari et al. Page 20

Int J Eng Sci. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chen-Izu Y, McCulle SL, Ward CW, Soeller C, Allen BM, Rabang C, . . . Izu LT (2006). Three-
dimensional distribution of ryanodine receptor clusters in cardiac myocytes. Biophysical Journal, 91
(1), 1–13. [PubMed: 16603500]

Eshelby JD (1957). The determination of the elastic field of an ellipsoidal inclusion, and related
problems. Proceedings of the Royal Society A, 241 (1226), 376–396.

Eshelby JD (1959). The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society
London Series A, 252 (1271), 561–569.

Granzier HL, & Irving TC (1995). Passive tension in cardiac muscle: Contribution of collagen, titin,
microtubules, and intermediate filaments. Biophysical Journal, 68 (3), 1027–1044. [PubMed:
7756523]

Granzier HL, & Labeit S. (2004). The giant protein titin: A major player in myocardial mechanics,
signaling, and disease. Circulation Research, 94 (3), 284–295. [PubMed: 14976139]

Hashin Z. (1965). Viscoelastic behavior of heterogeneous media. Journal of Applied Mechanics, 32
(3), 630–636.

Hegyi B, Bányász T, Izu LT, Belardinelli L, Bers DM, & Chen-Izu Y. (2018). β-adrenergic regulation
of late Na+ current during cardiac action potential is mediated by both PKA and CaMKII. Journal
of Molecular and Cellular Cardiology, 123, 168–179. [PubMed: 30240676]

Hori M, & Nemat-Nasser S. (1993). Double-inclusion model and overall moduli of multi-phase
composites. Mechanics of Materials, 14 (3), 189–206.

Izu LT, Kohl P, Boyden PA, Miura M, Banyasz T, Chiamvimonvat N, . . . Chen-Izu Y. (2020).
Mechano-electric and mechano-chemo-transduction in cardiomyocytes. The Journal of
Physiology, 598 (7), 1285–1305. [PubMed: 31789427]

Jacot JG, Kita-Matsuo H, Wei KA, Chen HV, Omens JH, Mercola M, & McCulloch AD (2010).
Cardiac myocyte force development during differentiation and maturation. Annals of the New
York Academy of Sciences, 1188, 121. [PubMed: 20201894]

Jian Z, Han H, Zhang T, Puglisi J, Izu LT, Shaw JA, . . . Chen-Izu Y. (2014).
Mechanochemotransduction during cardiac contraction is mediated by localized nitric oxide
signaling. Science Signaling, 7 (317), 1–9.

Kazemi-Lari MA, Shaw JA, Wineman AS, Shimkunas R, Izu LT, & Chen-Izu Y. (2018). Viscoelastic
Eshelby analysis of cardiomyocyte contraction in the Cell-In-Gel system. In Conference on smart
materials, adaptive structures and intelligent systems (SMASIS 2018): 2: Mechanics and Behavior
of Active Materials; Integrated System Design and Implementation; Bioinspired Smart Materials
and Systems; Energy Harvesting. San Antonio, TX: ASME.

Kirk MM, Izu LT, Chen-Izu Y, McCulle SL, Wier WG, Balke CW, & Shorofsky SR (2003). Role of
the transverse-axial tubule system in generating calcium sparks and calcium transients in rat atrial
myocytes. The Journal of Physiology, 547 (2), 441–451. [PubMed: 12562899]

Mura T. (1991). Micromechanics of defects in solids (2nd). Kluwer Academic Publishers.

Prosser BL, Khairallah RJ, Ziman AP, Ward CW, & Lederer WJ (2013). X-ROS signaling in the heart
and skeletal muscle: Stretch-dependent local ROS regulates [Ca2+]i. Journal of Molecular and
Cellular Cardiology, 58, 172. [PubMed: 23220288]

Reed UC (2009a). Congenital muscular dystrophy. Part I: A review of phenotypical and diagnostic
aspects. Arquivos de Neuro-psiquiatria, 67 (1), 144–168. [PubMed: 19330236]

Reed UC (2009b). Congenital muscular dystrophy. Part II: A review of pathogenesis and therapeutic
perspectives. Arquivos de Neuro-psiquiatria, 67 (2A), 343–362. [PubMed: 19547838]

Shaw JA, Izu LT, & Chen-Izu Y. (2013). Mechanical analysis of single myocyte contraction in a 3-D
elastic matrix. PloS One, 8 (10), e75492. [PubMed: 24098388]

Shimkunas R, Hegyi B, Jian Z, Shaw JA, Kazemi-Lari MA, Mitra D, . . . Balardi N, et al. (2021).
Mechanical load regulates excitation-ca2+ signaling–contraction in cardiomyocyte. Circulation
Research, 128 (6), 772–774. [PubMed: 33601939]

Tandon GP, & Weng GJ (1984). The effect of aspect ratio of inclusions on the elastic properties of
unidirectionally aligned composites. Polymer Composites, 5 (4), 327–333.

Wineman AS, & Rajagopal KR (2000). Mechanical response of polymers. Cambridge University
Press.

Kazemi-Lari et al. Page 21

Int J Eng Sci. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Withers P, Stobbs W, & Pedersen O. (1989). The application of the Eshelby method of internal stress
determination to short fibre metal matrix composites. Acta Metallurgica, 37 (11), 3061–3084.

Zile MR, Baicu CF, & Gaasch WH (2004). Diastolic heart failure—abnormalities in active relaxation
and passive stiffness of the left ventricle. New England Journal of Medicine, 350 (19), 1953–1959.

Kazemi-Lari et al. Page 22

Int J Eng Sci. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1.
The Cell-in-Gel system and typical results.
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Fig. 2.
Example torsion rheology measurements on a C = 10 % cross-linked hydrogel. Solid lines

are fits using a Gaussian relaxation spectrum.
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Fig. 3.
Summary of hydrogel viscoelastic parameters at different cross-link concentrations (C).
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Fig. 4.
Single cell uniaxial response.
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Fig. 5.
The Cell-in-Gel boundary value problem.
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Fig. 6.
Baseline case: cell strain and stress responses.
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Fig. 7.
Baseline case: interior and exterior mechanical fields in the y = 0 plane at the time of

minimum cell strain (t = 1.1 s).
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Fig. 8.
Baseline case: traction distribution along the cell boundary at the time of peak stress (t =
0.55 s).
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Fig. 9.
Baseline case: cell output power and work histories.

Kazemi-Lari et al. Page 31

Int J Eng Sci. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10.

Effect of gel’s cross-link concentration C on the cell response (a/b = 7.13, Gℐ = 8.3 kPa).
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Fig. 11.

Effect of cell aspect ratio a/b on the cell response (C = 7.6 %, Gℐ = 8.3 kPa).
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Fig. 12.

Effect of cell stiffness Gℐ on the cell response (a/b = 7.13, C = 7.6 %).
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Fig. 13.
Comparison of the load-free (MCT-free) and calculated enhanced (MCT) eigenstrain

histories.
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Fig. 14.
Simulated upregulated MCT cell strain and stress responses (in-gel) including cell

viscoelasticity, showing good agreement with the measured cell strain response.
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Fig. 15.
Simulated mechanical power and work output of the cell with (MCT) and without (MCT-

free) upregulation of contractility.
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Table 1

Fitting parameters.

G 0 τ 0 σ 0

g0 = 14.7 (kPa) h0 = 0.00486 (s) s0 = 0.58

g1 = 34.4 h1 = 1.17 (s) s1 = 55

g2 = 0.0866 h2 = −2.62 (s)
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