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Abstract

This article is motivated by the problem of studying the joint effect of different chemical 

exposures on human health outcomes. This is essentially a nonparametric regression problem, with 

interest being focused not on a black box for prediction but instead on selection of main effects 

and interactions. For interpretability we decompose the expected health outcome into a linear 

main effect, pairwise interactions and a nonlinear deviation. Our interest is in model selection 

for these different components, accounting for uncertainty and addressing nonidentifiability 

between the linear and nonparametric components of the semiparametric model. We propose a 

Bayesian approach to inference, placing variable selection priors on the different components, 

and developing a Markov chain Monte Carlo (MCMC) algorithm. A key component of our 

approach is the incorporation of a heredity constraint to only include interactions in the presence 

of main effects, effectively reducing dimensionality of the model search. We adapt a projection 

approach developed in the spatial statistics literature to enforce identifiability in modeling the 

nonparametric component using a Gaussian process. We also employ a dimension reduction 

strategy to sample the nonlinear random effects that aids the mixing of the MCMC algorithm. 

The proposed MixSelect framework is evaluated using a simulation study, and is illustrated using 

data from the National Health and Nutrition Examination Survey (NHANES). Code is available on 

GitHub.
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1. Introduction.

Humans are exposed to mixtures of different chemicals arising due to environmental 

contamination. Certain compounds, such as heavy metals and mercury, are well known to 

be toxic to human health, whereas very little is known about how complex mixtures impact 

health outcomes. One of the key questions that epidemiology should address according to 

Braun, Gennings and Hauser (2016) is, What is the interaction among agents? The primary 

focus of epidemiology and toxicology studies has been on examining chemicals one at a 

time. However, chemicals usually cooccur in the environment or in synthetic mixtures, and 

hence assessing joint effects is of critical public health concern. Certainly, findings from one 

chemical at a time studies may be misleading (Dominici et al. (2010), Mauderly and Samet 

(2009)).

Building a flexible joint model for mixtures of chemicals is suggested by the National 

Research Council (Mauderly et al. (2010), National Research Council et al. (2004), Vedal 

and Kaufman (2011)). Recently, several studies have shown relationships between complex 

mixtures of chemicals and health or behavior outcomes. For example, Sanders, Claus Henn 

and Wright (2015) review findings on perinatal and childhood exposures to cadmium (Cd), 

manganese (Mn) and metal mixtures. Several attempts have been made to simultaneously 

detect the effect of different chemicals on health outcomes, using either parametric or 

nonparametric regression techniques. The former include regularization methods, like 

LASSO (Roberts and Martin (2005)), or ridge regression and deletion/substitution/addition 

algorithms (Mortimer et al. (2008), Sinisi and van der Laan (2004)). Some of these 

techniques have also been applied to high-dimensional spaces (Hao and Zhang (2014)). 

While providing interpretability in terms of linear effects and pairwise interactions, the 

resulting dose response surface is typically too restrictive, as chemicals often have nonlinear 

effects.

Nonparametric models can also be used to estimate interactions among chemicals, ranging 

from tree-methods (Hu et al. (2008), Lampa et al. (2014)), to Bayesian Kernel Machine 

Regression (BKMR) (Bobb et al. (2015), Liu et al. (2018), Valeri et al. (2017)) and Bayesian 

P-splines (Lang and Brezger (2004)). Although tree based methods, like boosted trees or 

random forests, are convenient computationally and often provide accurate predictions, 

interpretation of covariate effects is typically opaque. While providing good predictive 

performance, nonparametric regression surfaces like BKMR provide excessive flexibility 

when a simple parametric model provides an adequate approximation. On the other hand, 

the estimation of interactions with Bayesian P-splines becomes extremely challenging when 

p is larger than ~10, which is common in environmental epidemiology; refer to Section 2 of 

the Supplementary Material (Ferrari and Dunson (2020a)) for additional details.

Our goal is to simultaneously estimate a flexible nonparametric model and provide 

interpretability. To do so, we decompose the regression surface on the health outcome into 

a linear effect, pairwise interactions and a nonlinear deviation. This specification, which 

we describe in Section 2, allows one to interpret the parametric portion of the model 

while also providing flexibility via the nonparametric component. We address identifiability 

between the parametric and nonparametric part of the model by adapting a projection 
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approach developed in spatial statistics; see Section 2.1. We accurately take into account 

uncertainty in model selection on the different components of the model with a Bayesian 

approach to inference. We choose spike and slab priors for main effects and pairwise 

interactions (George and McCulloch (1997)) and allow for variable selection of nonlinear 

effects adapting the approach of Savitsky, Vannucci and Sha (2011) which introduces spike 

and slab priors in the Gaussian process setting. We reduce computation imposing a heredity 

condition (Chipman (1996)), described in Section 2.2, and applying a dimension reduction 

approach to the Gaussian process surface (Banerjee, Dunson and Tokdar (2013), Guan and 

Haran (2018)), which we describe in Section 3.

We describe our efficient Bayesian inference procedure in Section 3, and we propose a 

Markov chain Monte Carlo (MCMC) algorithm. We compare our method with the state-of­

the-art nonparametric models and with methods for interaction estimation in Section 4. 

Finally, in Section 5 we assess the association of metal concentrations on BMI using data 

from the National Health and Nutrition Examination Survey (NHANES). This application 

shows the practical advantages of our method and how it could be used as a building block 

for more complex analysis.

2. MixSelect modeling framework.

Let yi denote a continuous health outcome for individual i, let xi = (xi1,…, xip)T denote 

a vector of “exposure” measurements, and let zi = (zi1,…, ziq)T denote covariates. For 

example, “exposure” may consist of the levels of different chemicals in a blood or urine 

sample, while covariates correspond to demographic factors and potential confounders. For 

interpretability our focus is on decomposing the impact of the exposures into linear main 

effects, linear pairwise interactions and a nonparametric deviation term, while including an 

adjustment for covariates. Each of the exposure effect components will include a variable 

selection term so that some exposures may have no effect on the health response, while 

others only have linear main effects, and so on. This carefully structured semiparametric 

model differs from usual black-box nonparametric regression analyses that can characterize 

flexible joint effects of the exposures but lack interpretability and may be subject to 

overfitting and the curse of dimensionality. By including variable selection within our 

semiparametric model, we greatly enhance interpretability while also favoring a more 

parsimonious representation of the regression function.

Our model structure can be described as follows:

yi = xiTβ + ∑
j = 1

p
∑
k > j

p
λjkxijxik + g∗ xi + ziTα + ϵi, ϵi N 0, σ2 ,

gn∗ = Pgn, g GP 0, c ,
(2.1)

where β = (β1,…, βp)T are linear main effects of exposures, λ = {λjk} are pairwise linear 

interactions, gn = [g(x1), … , g(xn)] is a nonparametric deviation and α = (α1,…, αq)T 

are coefficients for the covariates. We include variable selection in each of the three terms 

characterizing the exposure effects, as we will describe in detail in Section 2.2. In addition, 

a key aspect of our model is the inclusion of a constraint on the nonparametric deviation 
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to enforce identifiability separately from the linear components. This is the reason for the P 
term multiplying g in the above expression with P , a projection matrix, to be described in 

Section 2.1. The notation GP(0, c) denotes a Gaussian process (GP) centered at zero with 

covariance function c controlling the uncertainty and smoothness of the realizations.

In spatial statistics it is common to choose a Matern covariance function, but in our setting 

we instead use a squared exponential covariance to favor smooth departures from linearity; 

in particular, we let

c x, x′ = cov g x , g x′ = τ2exp − ∑
j = 1

p
ρj xj − xj′

2 , (2.2)

where ρj is a smoothness parameter specific to the jth exposure and τ2 is the signal variance. 

Similar covariance functions are common in the machine learning literature and are often 

referred to as automatic relevance determination (ARD) kernels (Qi et al. (2004)). They 

have also been employed by Bobb et al. (2015). However, to our knowledge previous 

work has not included linear main effects and interactions or a projection adjustment 

for identifiability. The proposed GP covariance structure allows variable selection (ρj = 0 

eliminates the jth exposure from the nonparametric deviation) and different smoothness of 

the deviations across the exposures that are included. For example, certain exposures may 

have very modest deviations while others may vary substantially from linearity.

The proposed model structure is quite convenient computationally, leading to an efficient 

Markov chain Monte Carlo (MCMC) algorithm which mostly employs Gibbs sampling 

steps. We will describe the details of this algorithm in Section 3, but we note that 

the projection adjustment for identifiability greatly aids mixing of the MCMC; our 

code can be run efficiently for the numbers of exposures typically encountered in 

environmental epidemiology studies (up to 100). Code for implementation is available at 

https://github.com/fedfer/MixSelect and in the Supplementary Material (Ferrari and Dunson 

(2020a)).

2.1. Nonidentifiability and projection.

Confounding between the Gaussian process prior and parametric functions is a known 

problem in spatial statistics and occurs when spatially dependent covariates are strongly 

correlated with spatial random effects; see Hanks et al. (2015) or Guan and Haran (2018). 

This problem is exacerbated when the same features are included in both the linear term and 

in the nonparametric surface. For this reason we project the nonlinear random effects g on 

the orthogonal column space of the matrix containing main effects.

The usual projection matrix on the column space of X is equal to PX = X(XT X)−1XT. We 

define P = P ┴
X = In − PX and set gn∗ = Pgn. First, notice that the projection has an effect on 

the variance of the generated nonlinear effects; in particular,
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∑
i = 1

n
gi, n∗ 2 ≤ ∑

i = 1

n
gi, n

2 .

This follows from

gn∗
Tgn∗ = In − PX gn T In − PX gn

= gnTgn − PXgn T PXgn ≤ gnTgn .

Figure 1 in the Supplementary Material (Ferrari and Dunson (2020a)) shows examples of 

realizations of gn and gn∗. The curvature of the functions drawn from the projected GP is 

greater than the curvature in the nonprojected case.

Another possibility would be to project the nonlinear random effects gn on the orthogonal 

column space of the matrix containing both main effects and interactions. However, we 

noticed in our simulations that this would make the resulting nonparametric surface too 

restrictive, especially when the number of possible interactions p p − 1
2  is greater than 

n, resulting in a worse performance of the model. We did not experience significant 

confounding between the interaction effects and the nonlinear regression surface. Finally, 

notice that, rather than sampling g and then projecting onto the orthogonal column space of 

X, we can equivalently sample g* from a Gaussian process with covariance matrix PcPT. 

Another option that we explore in Section 3 consists in integrating out the nonlinear effects.

2.2. Variable selection.

In this section we describe the variable selection approach that we develop in order 

to provide uncertainty quantification and achieve parsimonious model specification. We 

assume that the chemical measurements and the covariates have been standardized prior to 

the analysis. We choose spike and slab priors for the main effects and nonlinear effects. 

Regarding main effects, we choose a mixture of a normal distribution with a discrete Dirac 

delta at zero. Let us define as γk the indicator variable that is equal to 1 if the kth variable 

is active in the linear main effect component of the model and equal to 0 otherwise. We 

have that βk γkN 0, 1 + 1 − γk δ0. For the γk we assume independent Bernoulli priors with 

success probability π. We endow π with a Beta distribution with parameters (aπ, bπ ). 

The prior expected number of predictors included in the model is p
aπ

aπ + bπ
 which can be 

used to elicitate the hyperparameters (aπ, bπ ). As a default we choose aπ = bπ = 1 

which corresponds to a uniform distribution on π. We endow the main effects of covariate 

adjustments αl with a normal prior Nq(0,I), for l = 1,…,q.

We impose a heredity condition for the interactions. The heredity condition is commonly 

employed for datasets with p ∈ 20, 100  by one-stage regularization methods like Bien, 

Taylor and Tibshirani (2013) and Haris, Witten and Simon (2016) or two-stage approaches 

as Hao, Feng and Zhang (2018) when p > 100. Strong heredity means that an interaction 

between two variables is included in the model only if the main effects are. For weak 
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heredity it suffices to have one main effect in the model in order to estimate the interaction 

of the corresponding variables. Formally:

S: λj, k γj = γk = 1 N 0, 1 , λj, k γj = γk = 1 C δ0,

W : λj, k γj = γk = 0 C N 0, 1 , λj, k γj = γk = 0 δ0,

where S and W stand for strong and weak heredity, respectively, and δ0 is a Dirac 

distribution at 0. Models that satisfy the strong heredity condition are invariant to translation 

transformations in the covariates. Weak heredity provides greater flexibility with the cost 

of considering a larger number of interactions, leading to a potentially substantial statistical 

and computational cost. Consider the case when the j th covariate has a low effect on the 

outcome, but the interaction with the kth feature is significantly different than zero. Strong 

heredity will sometimes prevent us from discovering this pairwise interaction. Heredity 

reduces the size of the model space from 2p + p
2  to ∑i = 0

p p
i 2

i
2  or ∑i = 0

p p
i 2pi − i i + 1 /2

for strong and weak heredity, respectively. The heredity condition can also be extended to 

higher-order interactions.

As for the main effects and interactions, we apply a variable selection strategy for the 

nonlinear effects. We endow the signal standard deviation τ with a spike and slab prior, that 

is, τ γτFτ ⋅ + 1 − γτ δ0, where Fτ ⋅  is a gamma distribution with parameters (1/2, 1/2) and 

γ τ has a Bernoulli(1/2) prior. We noticed that this spike and slab prior prevents overfitting 

of the nonlinear term in high-dimensional settings, in particular when the variables are 

highly correlated and the true regression does not include nonlinear effects. This added 

benefit is highlighted in Section 4 when comparing with BKMR. Finally, when γ τ = 0, the 

regression does not include nonlinear effects, resulting in faster computations. In this case 

the computational complexity of the model equals the one of a Bayesian linear model with 

heredity constraints.

With respect to the covariate specific nonlinear effects, we follow the strategy of Savitsky, 

Vannucci and Sha (2011), which is also employed by Bobb et al. (2015), and endow the 

smoothness parameters ρ1,…, ρp with independent spike and slab priors. In particular, 

ρk γτγk
ρFρ ⋅ + 1 − γτ 1 − γk

ρ δ0, where Fρ ⋅  is a gamma distribution with parameters (1/2, 

1/2). Only when γ τ is different than zero, we allow the covariate specific nonlinear 

effects γj
ρ to be different than zero. When γk

ρ = 0, the kth exposure is eliminated from the 

nonparametric term g in (2.1). As before, we choose a Bernoulli prior for γk
ρ with mean φ, 

and we endow φ with a Beta prior with parameters (aφ, bφ). As a default we choose aφ bφ 1 

which corresponds to a Uniform distribution on φ. A graphical representation of the model 

can be found in Figure 1.
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3. Computational challenges and inference.

In this section we describe how we conduct inference for model (2.1). We also address 

the computational challenges associated with Gaussian process regression in the Bayesian 

framework and summarize the MCMC algorithm at the end of the section.

We defined a mixture of normal priors for the main effects, interactions and the coefficients 

of the covariate adjustments, namely, β, λ and α, in Section 2.2. Having a Gaussian 

likelihood, the full conditionals for these parameters are conjugate, hence we can directly 

sample from multivariate normal distributions within a Gibbs sampler. This operation could 

be quite expensive since the number of parameters is of order p2. However, thanks to the 

strong heredity condition, we only need to sample the interactions between the variables 

with nonzero main effects, and we set to zero all the others. Given each of the elements of β, 

λ and α, we can update the labels γ with a Bernoulli draw. We also reparametrize the model 

setting τ = τ *σ , so that we can directly update σ2 from an inverse gamma distribution.

Dealing with the nonlinear term g can also be expensive since we need to sample n 
parameters at each iteration. For this reason we integrate out the GP term so that, marginally, 

the likelihood of model (2.1) is equivalent to

y β, Λ , c N Xβ + diag X Λ XT + αZ, σ2In + PcPT , (3.1)

where Λ is a upper triangular matrix such that Λj, k = λj, k when k > j and zero otherwise.

The covariance matrix depends on the hyperparameters ρj , for j = 1,…, p, that define 

the variable selection scheme for the nonlinear effects. The priors for the smoothness 

parameters ρj and τ2 defined in Section 2.2 are not conjugate so that we need a Metropolis–

Hastings step within the Gibbs sampler to sample these parameters. In order to compute 

the acceptance ratio, we need to evaluate the likelihood of (3.1) and invert the matrix 

σ2In + PcPT  of dimension n: such operation is of complexity O(n3) and needs to be done 

p times. For this reason we approximate the matrix PcPT with the strategy described in 

Algorithm 1 of Guan and Haran (2018). This approach is a generalization of Banerjee, 

Dunson and Tokdar (2013) and uses random projections to find an approximation of the 

Eigen Decomposition of PcPT. In particular, we approximate this matrix as UmDmUm
T , where 

m is related to the order of the approximation, with m usually being much smaller than n. 

Dm is a diagonal matrix of dimension m, and Um is of dimension n × m. We can now apply 

the Sherman–Morrison–Woodbury formula to compute the inverse of Σ = σ2In + PcPT ,

Σ−1 = σ2In + PcPT −1 ≈ σ2In + UmDmUmT
−1 =

= 1
σ2 In + Um σ2Dm + UmTUm

−1UmT

which now involves the inversion of an m × m matrix. Similarly, we can simplify the 

computations for the determinant of Σ using the determinant lemma (Harville (1997)),
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Σ = σ2In + PcPT ≈ σ2n ∏
j = 1

m
Dm; j, j−1 + σ−2 Dm; j, j .

It is challenging to design a sampler with satisfactory mixing for the smoothness parameters 

{ρj}. However, we obtained good performance for an add-delete sampler which updates ρj at 

every iteration. When the previous ρj = 0, we perform add move: sample from a distribution 

with support on ℝ+. When ρj ≠ 0, we perform a delete move and propose ρj = 0. Then, for 

the ρj ≠ 0, we also perform the Gibbs-type move and sample from the same proposal as in 

the add move. The MCMC sampler is summarized in Algorithm 1.

4. Simulations.

In this section we compare the performance of our model with respect to five other methods: 

BKMR (Bobb et al. (2015)), Family (Haris, Witten and Simon (2016)), hierNet (Bien, 

Taylor and Tibshirani (2013)), PIE (Wang and Jiang (2019)) and RAMP (Hao, Feng and 

Zhang (2018)). BKMR is a nonparametric Bayesian method that employs Gaussian process 

regression with variable selection in a similar fashion as model (2.1). Family, hierNet, PIE 

and RAMP are designed for interaction selection in moderate to high-dimensional
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Algorithm   1   MCMC   algorithm   for   sampling   the   parameters   of   model   2 . 1
Step   1 Sample γj for j = 1, …, p from

π γj ⋅ Bernoulli 1
1 + 1 − π

π Rj
,

where Rj =
X0j

T Σ−1 X0j + I −1/2exp 1
2m0

TV 0m0

X1j
T Σ−1 X1j + I −1/2exp 1

2m1
TV 1m1

, Σ = σ2In + PcPT , m0 = X0j
T Σ−1 y and V 0 =

X0j
T Σ−1 X0j

T + I −1 . X0j is the matrix of   covariates such that γk = 1 for k ≠ j . X1j is the
matrix of covariates such that γk = 1 for k = 1, …, p, with Xi included .

Step 2 Sample π from π π ⋅ Beta aπ + ∑j = 1
T γj, bπ + p − ∑j = 1

p γj
Step   3   Sample   the   main   coefficients βγ from the distribution:

π βγ ⋅ N V XγT Σ−1 y − αZ − diag X Λ XT , V ,

where V = Xγ Σ−1 Xγ + I −1 and the subscript γ indicates that we are including only
the variables such that γj = 1
Step   4 Set λj, k equal to zero according to the chosen heredity condition .   Then   update λj, k
following an appropriate modification of   Step 2
Step   5 Sample α following an appropriate modification of Step 2

Step   6 If γτ = 0, set ρj = 0 and γj
ρ = 0 and move   to   Step   7,   else   go   to   Step 6′

Step 6′ If ρj ≠ 0, perform delete move: propose ρj∗ = 0 and γj∗ = 0. If ρj = 0 perform

add move: propose ρj∗ > 0 and γj∗ = 1, for j = 1, …, p . Compute Um∗ D∗Um∗ T with the

approximation of Section 3, Σ ∗ − 1 with Sherman − Woodbury formula and Σ ∗ − 1 with de‐
terminant lemma .   Then   compute

− 2log r = log Σ ∗ − 1 − log Σ−1 + 1
2μT Σ ∗ − 1 − Σ−1 μ,

where μ = y − Zα + Xβ + diag X Λ XT . Sample u from a Uniform distribution in the

interval  0, 1  and if log r  > log u , set ρj = ρj∗, γj, Σ = Σ∗ , Σ−1 = Σ ∗ − 1

Step   7 For all j = 1, …, p such that ρj ≠ 0, perform a Gibbs − type move: sample ρj∗ from
a symmetric proposal distribution and then follow Step   5.
Step   8 Sample φ following an appropriate modification of   Step   2.
Step   9 Sample τ ∗ 2 from a symmetric proposal distribution and update following an appro‐
priate modification of Step   5. If τ ∗ 2 ≠ 0 perform a Gibbs − type move .

Step   10 Sample σ2 from π σ2 ⋅ InvGamma 1 + n
2 ,

1 + μT In + Pc′PT −1μ
2 where

c′ x, x∗ = τ∗ 2exp ∑j = 1
p ρj xj − xj∗

2

settings. We generate the covariates independently Xi Np 0, Ip  for i = 1,…, n, for n = 250, 

500 and p = 25, 50, so that the number of parameters that we estimate with model (2.1) is 

353 and 1352, respectively. We generate the outcome as follows:
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a. yi = x1 − x2 + x3 + 2x1x2 − x1x3 + 1
2x4

2 + 4
exp −2x5 + 1 + ϵi,

b. yi = x1 + x2 − x3 − x4 + 2x1x2 − x1x3 − x2x3 − 2x3x4 + ϵi,

c. yi = sin x1 + 3x3 − 1
2x3

2 + exp 0.1 ∗ x1 + ϵi,

where ϵi N 0, 1 . The first setting involves a model with strong heredity and nonlinear 

effects, whereas the second is an interaction model and the third a nonlinear model. We 

evaluate the performance on a test dataset of 100 units with predictive mean squared error 

for all the models. We compute the Frobenious norm for the matrix containing pairwise 

interactions for Family, hierNet, RAMP and PIE. The Frobenious norm between two square 

matrices Λ and Λ of dimension p is defined as

trace Λ − Λ T Λ − Λ .

We also compute posterior inclusion probabilities of nonlinear effects, so that we can 

calculate the percentage of true positive and true negative nonlinear effects for our method 

and BKMR. We average the results across 50 simulations. The results for n = 500 are 

summarized in Table 1 and Table 2 and are summarized for n = 250 in Table 1 and Table 2 

of the Supplementary Material (Ferrari and Dunson (2020a)).

Across all the simulation scenarios, our model consistently achieves nearly the best 

predictive performance in terms of prediction error and Frobenious norm and is able to 

identify main effects, interactions and nonlinear effects. The experiments highlight the 

advantages of MixSelect in the context of the application, where the dose-response surfaces 

usually have roughly linear, hill-shaped or sigmoid shapes. Hence, constraining the flexible 

nonparametric surface allows MixSelect to have a predictive and inference advantage over 

BKMR which is the main nonparametric method used in environmental epidemiology 

applications. For model (a), we achieve a better performance because of the decomposition 

of the regression surface, and we correctly identify linear and nonlinear effects. With respect 

to model (b), our method is able to correctly estimate a regression surface without nonlinear 

effects, thanks to the spike and slab prior on the term τ. We also achieve a similar, 

if not better performance, in the nonlinear scenario of method (c). Finally, Figure 2 of 

the Supplementary Material (Ferrari and Dunson (2020a)) shows the estimated regression 

surface vs. the true surface for model (a), when n = 250 and p = 25.

5. Environmental epidemiology application.

5.1. Motivation.

The goal of our analysis is to assess the association of 14 metals (barium, cadmium, 

cobalt, caesium, molybdenum, manganese, mercury, lead, antimony, tin, strontium, thallium, 

tungsten and uranium) with body mass index (BMI). Recently, several studies showed 

the relation between complex mixtures of metals and health or behavioral outcomes. See 

Sanders, Claus Henn and Wright (2015) for example for a literature review on perinatal 

and childhood exposures to cadmium (Cd), manganese (Mn) and metal mixtures. The 
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authors state that there is suggestive evidence that cadmium is associated with poorer 

cognition. Claus Henn, Coull and Wright (2014) report associations between mixtures and 

pediatric health outcomes, cognition, reproductive hormone levels and neurodevelopment. 

With respect to obesity indices and using data from the National Health and Nutrition 

Examination Survey (NHANES), metals have already been associated with an increase in 

waist circumference and BMI; see Padilla et al. (2010) and Shao et al. (2017).

5.2. Data description.

We consider data from NHANES collected in 2015. We select a subsample of 2532 

individuals for which at least one measurement of metals and BMI have been recorded. 

We also include in the analysis cholesterol, creatinine, sex, age and ethnicity which 

has five categories (Hispanic, other Hispanic, non-Hispanic White, non-Hispanic Black 

and other Etnicity). We choose Hispanic as a reference group for ethnicity. Table 3 in 

the Supplementary Material (Ferrari and Dunson (2020a)) shows the correlations among 

chemicals; Figure 3 and Figure 4 in the Supplementary Material (Ferrari and Dunson 

(2020a)) show the missingness pattern and the cases below the limit of detection (LOD). In 

NHANES, different groups of chemicals, such as metals or phthalates, are only measured for 

a subsample of individuals. This subsampling only depends on demographic characteristics 

of the individuals, and hence the missing at random assumption should be appropriate in our 

context.

We apply the base 10 logarithm transformation to the chemical exposure values, cholesterol 

and creatinine. We also apply the log10 transformation to BMI in order to make its 

distribution closer to normality which is the assumed marginal distribution in our model. 

The log-transformation is commonly applied in environmental epidemiology in order to 

reduce the influence of outliers and has been employed in several studies using NHANES 

data (Buman et al. (2013), Lynch et al. (2010), Nagelkerke et al. (2006)). We leave these 

transformations implicit for the remainder of the section.

5.3. Missing data and LOD.

In this subsection we describe how to explicitly model the covariates to allow imputation of 

observations that are missing or below the limit of detection. We are particularly motivated 

by studies of environmental health collecting data on mixtures of chemical exposures. These 

exposures can be moderately high-dimensional with high correlations within blocks of 

variables. For this reason we decide to endow the chemical measurements, cholesterol and 

creatinine with a latent factor model. Let X be the n × p matrix containing the chemical 

measurements, Z an n × q matrix containing the covariates and let Wi = (Xi, zi1, zi2)T be a d 
× 1 vector containing the 14 chemical measurements, cholesterol and creatinine. The factor 

model is as follows:

W i = Λ ηi + ϵi, ϵi Nd 0, Σ ,
ηi Nk 0, I , (5.1)

where we center the data Wi to have zero mean prior to the analysis, Σ = diag σ1
2, …, σd

2  is 

as residual variance matrix, Λ is a d × k factor loadings matrix and ηi are i.i.d. standard 
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normal latent factors. We assume an elementwise standard normal prior for Λ and endow σ 
2 with independent inverse-gamma priors with parameters (1/2, 1/2), for j = 1,…,d. From an 

eigendecomposition of the correlation matrix, the first nine eigenvectors explain more than 

85% of the total variability; hence, we set the number of factors equal to 9. Algorithm 2 

in the Supplementary Material (Ferrari and Dunson (2020a)) describes how to sample the 

parameters of (5.1) within an MCMC algorithm.

In addition to missingness due to chemicals that have not been assayed, 13.5% of chemicals 

have been recorded under the limit of detection (LOD). We can impute these observations as

Xij Xij ∈ −∞, log10 LODj TN ηiTλj, σj2, − ∞, log10 LODj ,

where LODj is the limit of detection for exposure j and TN μ, σ2, a, b  is a truncated normal 

distribution with mean μ, variance σ2 and support in [a, b]. A related approach was used 

in Ferrari and Dunson (2020b) to impute chemicals below the LOD within an MCMC 

algorithm.

To simplify data imputation under the above model and improve robustness to model 

misspecification, we apply a common “cut of feedback” approach (Lunn et al. (2009)). 

In particular, in imputing the missing values and those below the limit of detection, we use 

the conditional posterior given only the data in the Wi component of the model and not 

taking into account that Wi also appears in the outcome model.

5.4. Statistical analysis.

We estimate a quadratic regression with nonlinear effects for the transformed chemicals, 

which are included in the matrix X, and we control for covariates, which are included in the 

matrix Z, according to model (2.1). We use the specified priors in Section 2.2 and alternate 

between the steps of Algorithm 1 and Algorithm 2 at each MCMC iteration to obtain the 

posterior samples. In environmental epidemiology the signal to noise ratio is usually low; 

hence, we use the weak heredity specification in order to have greater flexibility in our 

model and to enhance power in discovery of linear interactions. We run the MCMC chain for 

a total of 5000 iterations with a burn-in of 4000.

We observed good mixing for main effect and interaction coefficients. In particular, the 

average effective sample size (ESS) for main effects and interactions was equal to 725. 

For the smoothness parameters the effective sample size for each ρj was on average three 
times higher with respect to the corresponding parameters in BKMR. We also computed 

the Geweke diagnostic for main and interaction effects, for a total of 105 parameters. 

The Geweke diagnostic tests for a difference of the mean in the first 25% of the MCMC 

samples and the last 25% of the samples. All computed p-values were not significant at the 

0.01 level. Residual plots are included in Figure 5 of the Supplementary Material (Ferrari 

and Dunson (2020a)). The residual diagnostics suggest that the model assumptions are 

satisfied fairly well. First, approximate normality holds with only a mild deviation in the 

tails. Second, inspecting the scatter plot of predicted BMI vs standardized residual, we did 

not find any clear patterns, suggesting homoskedasticity and adequate fit of our regression 
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model. Lastly, we conducted posterior predictive checks, comparing the mean of the in­

sample predictions at each MCMC iteration to the data mean. Figure 6 in the Supplementary 

Material (Ferrari and Dunson (2020a)) shows that the two means align very well. We also 

observed good in sample and out of sample coverage of 100(1 – α)% predictive intervals for 

different α values; refer to Table 4 in Supplementary Material (Ferrari and Dunson (2020a)).

The complexity per iteration of Gibbs sampling is O n2m  when τ ≠ 0, where m is related to 

the approximation described in Section 3. When τ = 0, the complexity per iteration of Gibbs 

sampling is O d2 , where d is the number of active main effects.

5.5. Results.

In our analysis we found significant nonlinear associations with BMI for cadmium and 

tungsten with posterior predictive probabilities of having an active nonlinear effect of 

1 and 0.79, respectively. Figure 2 shows the estimated nonlinear surfaces for cadmium 

and tungsten, when all the other variables are set to their median. The nonlinear effect 

of cadmium has a hill-shaped dose response, with a monotone increase at lower doses 

followed by a downturn leading to a reverse in the direction of association—presumably, 

as toxic effects at high doses lead to weigh loss. We also found a significant negative 

linear association between BMI and lead and molybdenum, and the main effect estimates 

suggested a negative linear association with cesium, cobalt and tin. A similar negative effect 

for higher doses of cadmium, cobalt and lead was found in Shao et al. (2017) and Padilla et 

al. (2010), where both authors found an inverse linear association among these metals and 

BMI, suggesting that they can create a disturbance of metabolic processes.

We found positive linear interactions between molybdenum × strontium, lead × antimony, 

and negative interaction between lead × uranium. Figure 7 in the Supplementary Material 

(Ferrari and Dunson (2020a)) shows the estimated coefficients for interactions. With 

respect to covariate adjustments, we found a positive association between BMI and age, 

creatinine and cholesterol, as expected, and also a negative association with ethnicities—

Other Hispanic, non-Hispanic White, non-Hispanic Black and Other Ethnicity—with respect 

to the reference group Hispanic, refer to Figure 8 of the Supplementary Material (Ferrari 

and Dunson (2020a)). Finally, even if some of the chemicals were moderately correlated 

(see molybdenum and tungsten, e.g., in Table 3 in the Supplementary Material, Ferrari and 

Dunson (2020a)), our model was able to distinguish the two effects, estimating a linear 

association for molybdenum and no association for tungsten.

We compared the performance of our model with the methods described in Section 4: 

BKMR (Bobb et al. (2015)), Family (Haris, Witten and Simon (2016)), hierNet (Bien, 

Taylor and Tibshirani (2013)), PIE (Wang and Jiang (2019)) and RAMP (Hao, Feng and 

Zhang (2018)). For simplicity in making comparisons across methods that mostly lack 

an approach to accommodate missing exposures, we focus on complete case analyses, 

discarding all observations having any values that are missing. Table 3 shows the 

performance of the models for in sample MSE when training on the full dataset and out of 

sample MSE when holding out 500 data points. Notice that BKMR overfits the training data 

in the presence of highly correlated covariates and, consequently, has worse performance 
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on the test set. In addition, BKMR estimates a posterior probability of a nonlinear effect 

greater than 0.87 for each chemical which could be a result of overfitting. On the other hand, 

MixSelect is able to distinguish a simple regression surface from a more complex one thanks 

to the identifiability constraint which prevents overfitting.

Figure 3 shows the estimated main effects of the chemicals, and 95% credible intervals for 

MixSelect. Notice that most of the main effect estimates of the other models are equal to 

0, perhaps due to low power. The method PIE also estimates a negative association for lead 

and molybdenum; RAMP and hierNet estimate a negative association for lead. Finally, there 

is suggestive evidence of a negative association between BMI with cesium, tin and cobalt, 

which is also detected by PIE. In the Supplementary Material (Ferrari and Dunson (2020a)) 

we consider possible chemical interactions with Sex and non-Hispanic Black ethnicity. The 

nonlinear effect of cadmium in Females and non-Hispanic Blacks has a hill-shaped dose 

response as in Figure 2, whereas it is negatively associated with BMI in the male subgroup. 

Moreover, we found that lead and molybdenum exposures have a stronger negative effect on 

females than males, and we observe the opposite behavior for tin and cobalt.

6. Discussion.

We proposed a MixSelect framework that allows identification of main effects and 

interactions. We also allow flexible nonlinear deviations from the parametric specification 

relying on a Gaussian process prior. We showed that MixSelect improves on the state-of­

the-art for assessing associations between chemical exposures and health outcomes. To 

our knowledge, this is the first flexible method that is designed to provide interpretable 

estimates for main effects and interactions of chemical exposures while not constraining 

the model to have a simple parametric form. We also included variable selection, 

uncertainty quantification, missingness in the predictors and limit of detection. The proposed 

specification provides a nice building block for more complicated data structures; for 

example, there are straightforward extensions to allow censored outcomes, longitudinal data, 

spatial dependence and other issues.

NHANES data are obtained using a complex sampling design, which includes oversampling 

of certain population subgroups, and contains sampling weights for each observation that 

are inversely proportional to the probability of being sampled. We did not employ sampling 

weights in our analysis because our goal was to study the association between metals and 

BMI rather than providing population estimates. One possibility to include the sampling 

weights in our method is to jointly model the outcome and the survey weights (Si, Pillai and 

Gelman (2015)), without assuming that the population distribution of strata is known.

With correlated features, variable selection techniques can lead to multiple models having 

almost the same posterior probability of being the best one, and, with few observations, the 

interpretation of results becomes difficult. However, our method provided better inference 

under correlated predictors than BKMR (Bobb et al. (2015)). We believe this is due to 

the projection approach which protects against overfitting by adding a constraint to the 

highly flexible nonparametric surface. An alternative solution is to cluster the predictors 

at each iteration of the MCMC algorithm using a nonparametric prior specification for the 

coefficients (MacLehose et al. (2007)).
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Instead of focusing on mean regression, we can easily modify MixSelect to accommodate 

quantile regression. In order to induce a regression on a specific quantile, one can use (2.1) 

but with the residual ‹i having an asymmetric Laplace distribution (Yu and Moyeed (2001)). 

The asymmetric Laplace can be represented as a scale mixture of Gaussians, facilitating 

a straightforward modification to our MCMC algorithm; refer to Yu et al. (2013) for 

related work. Alternatively, it is possible to allow main effects and interactions to vary with 

quantiles of yi; see, for example, Reich, Fuentes and Dunson (2011). We can also induce 

a quantile dependence on the nonlinear deviation g*(xi). In particular, we can introduce 

uniformly distributed latent variables ηi modifying the nonlinear deviation as g*(xi, ηi) 

which is referred to as the Gaussian process transfer prior (Kundu and Dunson (2014)).

Chemical studies usually involve up to dozens of exposures, but recent developments 

employing novel data collection techniques are starting to produce interesting datasets in 

which the number of exposures is in the order of the number of data points, so that the 

estimation of statistical interactions becomes infeasible with standard techniques. In this 

paper we impose heredity constraints and an approximation to the Gaussian process surface 

in order to deal with this problem, but new developments for dimension reduction are 

needed to scale up to allow massive number of exposures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Graphical representation of the model. The arrows between two nodes indicate conditional 
dependence. Variables that are in the same plate share the same indices. S/W refers to strong 
or weak heredity.
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Fig. 2. 
Estimated dose response curves for the chemicals cadmium, tungsten, lead and cobalt, when 
all the other quantities are equal to their median. The black line corresponds to the posterior 
median, the shaded bands indicate 95% posterior credible intervals and the marks on the 
x-axis indicate the observed data points.
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Fig. 3. 
Estimated main effects using MixSelect with 95% credible intervals and estimated 
coefficients using RAMP, hierNet, Family and PIE. We trained all the methods on the 
dataset with complete cases. Exposure measurements are on the log scale.
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Table 1

Results from the simulation study under the three scenarios with p = 25, n = 500. We computed test error, 
FR for interaction effects, percentage of true positives and true negatives for main effects and interactions for 
MixSelect, BKMR, hierNet, Family, PIE and RAMP. We divided each value of test error and FR by the best 
(lowest) result for that metric. This makes the metric of the best model equal to 1

MixSelect BKMR hierNet Family PIE RAMP

Model (a) test MSE 1.138 1 1.098 5.645 4.400 1.217

FR 1.033 5.659 5.820 2.465 1

TP main 1 1 1 1 1

TN main 0.758 0.798 0.947 0.679 0.919

TP int 1 1 1 1 1

TN int 1.000 0.989 0.984 0.997 0.997

TP nl 0.947 1

TN nl 0.977 0.821

Model (b) test MSE 1 1.902 1.430 8.928 1.363 1.061

FR 1 18.162 22.572 1.723 1.433

TP main 1 1 1 1 1

TN main 0.998 0.863 0.907 0.688 0.992

TP int 1 1 0.978 1 0.989

TN int 1 0.988 0.958 0.993 0.999

TP nl 0.984 0.673

TN nl

Model (c) test MSE 1.359 1 1.203 2.927 1.285 2.641

FR 1 8.759 2.508 9.600 5.542

TP main

TN main 0.808 0.719 0.868 0.834 0.851

TN int 1.000 0.984 0.980 0.992 0.991

TP nl 0.645 0.985

TN nl 0.989 0.893
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Table 2

Results from the simulation study under the three scenarios with p = 50, n = 500. We computed test error, 
FR for interaction effects, percentage of true positives and true negatives for main effects and interactions for 
MixSelect, BKMR, hierNet, Family, PIE and RAMP. We divided each value of test error and FR by the best 
(lowest) result for that metric. This makes the metric of the best model equal to 1

MixSelect BKMR hierNet Family PIE RAMP

Model (a) test MSE 1.135 11.409 1 5.630 4.057 1.181

FR 1.808 8.718 9.642 3.949 1

TP main 1 1 0.993 1 1

TN main 0.863 0.868 0.976 0.789 0.967

TP int 1 1 0.989 1 1

TN int 1 0.996 0.996 0.999 1.000

TP nl 0.826 1

TN nl 0.999 0.037

Model (b) test MSE 1.000 12.987 1.420 9.485 1.364 1

FR 1.222 20.973 25.820 1.849 1

TP main 1 1 1 1 1

TN main 0.999 0.880 0.977 0.822 0.999

TP int 1 1 0.990 0.995 1

TN int 1 0.996 0.993 0.999 1.000

TN nl 1 0.046

Model (c) test MSE 1.360 4.139 1 2.589 1.070 2.519

FR 1 7.990 2.078 8.885 3.562

TN main 0.894 0.815 0.950 0.901 0.942

TP int

TN int 1.000 0.994 0.997 0.998 0.999

TP nl 0.523 0.983

TN nl 0.984 0.043
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Table 3

Performance of MixSelect, BKMR, RAMP, hierNet, Family and PIE for in sample mean squared error when 
training on the complete cases and out of sample mean squared error when holding out 500 data points

MixSelect BKMR hierNet Family PIE RAMP

In sample MSE 0.530 0.031 0.573 0.879 0.626 0.572

Out of sample MSE 0.687 0.919 0.611 0.927 0.710 0.604
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