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Abstract
Healthcare sensors represent a valid and non-invasive instrument to capture and analyse physiological data. Several vital
signals, such as voice signals, can be acquired anytime and anywhere, achieved with the least possible discomfort to the
patient thanks to the development of increasingly advanced devices. The integration of sensors with artificial intelligence
techniques contributes to the realization of faster and easier solutions aimed at improving early diagnosis, personalized
treatment, remote patient monitoring and better decision making, all tasks vital in a critical situation such as that of the
COVID-19 pandemic. This paper presents a study about the possibility to support the early and non-invasive detection of
COVID-19 through the analysis of voice signals by means of the main machine learning algorithms. If demonstrated, this
detection capacity could be embedded in a powerful mobile screening application. To perform this important study, the
Coswara dataset is considered. The aim of this investigation is not only to evaluate which machine learning technique best
distinguishes a healthy voice from a pathological one, but also to identify which vowel sound is most seriously affected by
COVID-19 and is, therefore, most reliable in detecting the pathology. The results show that Random Forest is the technique
that classifies most accurately healthy and pathological voices. Moreover, the evaluation of the vowel /e/ allows the detection
of the effects of COVID-19 on voice quality with a better accuracy than the other vowels.
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1 Introduction

The ageing of the population, the diffusion of chronic con-
ditions and the outbreaks of infectious diseases and new
pandemics, such as COVID-19 which has been affecting
the world since last year, all represent major challenges in
our present-day society [22]. The acquisition, processing and
analysis of health information constitute significant tasks in
relation to the early detection and treatment of major dis-
eases. The use of unobtrusive sensing and wearable devices
constitutes a valuable support in the acquisition of health
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data anywhere and anytime. Sensors can be integrated into
clothing, accessories and the living environment. Advanced
electronic devices can provide detailed health information,
monitoring continuously and in real-time biochemical and
physiological parameters during the daily life of the patient
[20,21,34,54].

These sensors are particularly useful in the monitoring of
the health condition of the millions of people who have been
afflicted by COVID-19. This pandemic has so far affected
more than 80 million people and at present its diffusion
shows no sign of reaching a conclusion [53]. While the
application of increasingly advanced, easy-to-use and wear-
able technologies has helped to improve the processes of
patient care through the continuous real-time monitoring of
vital parameters and the definition of personalized treatment,
on the other hand this has contributed to the accumulation
of a large amount of data from such devices and the con-
sequent need for its accurate analysis and processing. The
successful application of these sensors, in fact, hinges on the
ability to extract, interpret and elaborate the considerable vol-
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ume of heterogeneous data they generate in a consistent and
constructive way. The complexity and variety of these data
require the provision of new models, solutions and technolo-
gies able to process and analyse them reliably and easily. This
objective can be achieved by using Machine Learning (ML)
algorithms. These techniques, in fact, represent an important
tool capable of providing different possibilities to transform
such data into valid insights to be used for the construction of
reliable decision-making models necessary to provide accu-
rate healthcare to patients. In addition, their use in health
care contributes to the optimization of resources through the
improvement of processes and services with a consequent
reduction in costs [10,32].

In this study, we explore the opportunity to support the
early assessment and detection of COVID-19 symptoms
through the evaluation of voice sounds. COVID-19 patients,
including asymptomatic subjects, have, in fact, reported dif-
ficulties in voice production as well as abnormalities in vocal
folds oscillation [24,40]. In detail,wehave analysed and stud-
ied the sounds of three vowels, /a/, /e/ and /o/. These were
selected from the Coswara database, an available crowd-
sourced database [46]. The aim has been to evaluate the
possibility to support the early and non-invasive detection of
COVID-19 by analysing the vocalization of a vowel through
the use of the most appropriate ML algorithm. In particu-
lar, on one hand, we have investigated among all the three
vowels sound present in the dataset considered, which vowel
reflects more accurately the effects of COVID-19 on voice
production, so which vowel is more appropriate to detect the
coronavirus disease. On the other hand, we have performed
an evaluation of which, among an ample number, ML tech-
nique is more performing in terms of correct classification.
The possibility to detect COVID-19 by easily analysing short
vowel sounds could be significant in terms of the realiza-
tion of a mobile health (m-health) solution able to acquire
the vocalization sound, analyse it and distinguish between
healthy and pathological subjects through the most reliable
ML technique. Such an m-health system could constitute a
valid instrument for a fast and easy screening, reducing the
time required to map the spread of the infection, as well as
the costs involved in its detection.

The remaining sections of the manuscript are organized as
follows. Themainworks relating to the diagnosis of COVID-
19 existing in literature are discussed in Sect. 2. The voice
samples, features andMLmodels evaluated in this study are,
instead, presented in Sect. 3. Finally, the results obtained are
discussed in Sect. 4, while our conclusions are presented in
Sect. 5.

2 RelatedWorks

Due to the recent diffusion of the COVID-19 pandemic and
the continuous mutations of the virus with the formation of
new variants, very few studies exist in the literature about
the detection of COVID-19 symptoms through the analysis
of voice signals. Respiratory signals [5,18,48] or coughing
sounds [4,7,23,27,36,37,47] constitute the main vocal sig-
nals for the detection of the effects of COVID-19. Other
studies, instead, have identified pathomorphological modi-
fications caused by the pandemic in the patient’s chest by
analysing Computed Tomography (CT) images [35,55] or
chest radiographic [1,52].

However, limited and, often, non-accessible datasets, have
been used to perform these preliminary studies, reducing the
possibility for further development of reliable classification
approaches on standardized datasets for the research com-
munity. A small dataset composed of only 9 healthy and 10
pathological subjects, for example, was used in [42] to eval-
uate the accuracy of the proposed Support Vector Machine
(SVM) model. Mel filter bank features represent the inputs
to this model, achieving an F1-score and an accuracy, respec-
tively, of 77.0% and 70.5%.

A SVM algorithm was, also, used in [17] to detect pan-
demic symptoms by evaluating voice samples. The authors
proposed a system able to analyse the severity of the dis-
ease by evaluating the vocalization of five sentences. Voice
samples were collected from 52 pathological subjects in two
hospitals inWuhan, China. The GenevaMinimalistic Acous-
tic Parameter and Computational Paralinguistics Challenge
sets were estimated and used as inputs of the SVM. An accu-
racy of 69% was achieved.

A Convolutional Neural Network (CNN) model capable
of detecting the anomalies in the dynamics of the glottal flow
waveform (GFW) during voice production was, instead, pro-
posed in [11]. A private database containing recordings of
the vowels /a/, /i/ and /u/ voiced by a limited sample of only
9 pathological and 10 healthy subjects was analysed. The
performance is presented in terms of the Receiver Operat-
ing Characteristic (ROC-AUC) and its standard deviation,
respectively, equal to 0.900 and 0.062.

In [18], a deep learning approach was proposed. The
features extracted from the vocal, breathing and cough-
ing sounds were processed by a Long Short-Term Mem-
ory (LSTM) architecture. The dataset evaluated consists
of 80 subjects (60 healthy and 20 pathological). As fea-
tures, the Spectral Roll-off (SR), Spectral Centroid (SC),
Mel-Frequency Cepstral Coefficients (MFCC), the first and
second derivates ofMFCC and the Zero-Crossing rate (ZCR)
were considered. The LSTM model, relating to the voice
samples, achieved an accuracy and F1-score, of 88.2% and
92.5%, respectively.
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A new feature, called the COVID-19 Coefficient (C-
19CC), was, instead, proposed by Dash et al. [8] to detect
the presence of COVID-19 symptoms through an analysis of
opportune sounds selected from the Coswara database. The
reliability of these cepstral features to distinguish correctly
between pathological and healthy subjects was evaluated by
classifying the sample with a SVM algorithm. The best per-
formance was obtained through an analysis of the coughing
sounds, with an accuracy of about 85%.

To the best of our knowledge, our study is the first and the
only study that presents a reproducible analysis by using a
freely available dataset and an exhaustive overview of how
different vowels sounds and ML techniques impact on the
COVID-19 detection.

3 Materials andMethods

Voice samples were selected from the Coswara database, a
readily available database [9]. The Indian Institute of Sci-
ence (IISc) Bangalore realized this database and it contains
coughing, breathing and voice sounds of healthy and patho-
logical subjects. In this preliminary study, we analysed voice
samples from 166 subjects, 83 healthy and 83 COVID-19
positive. 46 female and 120 male voices were selected with a
mean age of 33 years. More details about the number, gender
and age of the subjects involved in this study are shown in
Table 1.

In this preliminary study voice samples with an adequate
quality, not particularly corrupted by noise, were selected,
although all the sounds were filtered by using an opportune
filter to reduce the effect of this noise [33]. It is important
to note that Coswara is a crowd-sourced database, with all
samples being recorded by volunteers, and therefore it is nec-
essary to control the quality of the voice signals. Although
the database adopted, Coswara, provides voice, coughing
and breathing sounds for each subject, we decided to eval-
uate the effects of COVID-19 by using only the vowels
sounds. This choice has been made because in the medical
practice, accordingly with the medical guidelines, experts
analyse the vowels characteristics in order to estimate any
pneumo-phono-articulatory apparatus disorders [30,38]. Sci-
entific studies confirmed that sustained vowels are rated
significantly more than continuous speech [29]. Based on
this scientific evidence, we have also consulted a medical
team of the Department of Otorhinolaryngology, of the Uni-
versity Hospital (Policlinico) Federico II of Naples (Italy),
that confirmed to us that the analysis of vowels sounds allows
us to exhaustively extract the most relevant features useful to
identify specific changes in vowel articulation and to quantify
any pneumo-phono-articulatory apparatus alterations.

The sounds of three vowels, /a/, /e/ and /o/, were processed
for each subject to extract the features that constitute the

Table 1 Details about the subjects involved in this study. For the age,
we report the mean and standard deviation (SD)

Category Gender No Age
Mean SD

Healthy Female 21 29.6 ± 10.1

Male 62 36.4 ± 13.1

Total 83 34.7 ± 12.7

Covid-positive Female 25 32.08 ± 11.4

Male 58 31.2 ± 11.5

Total 83 31.5 ± 11.4

Total Female 46 30.9 ± 10.7

Male 120 33.9 ± 12.6

Total 166 33.1 ± 12.1

Bold italics indicate the total obtained for each category (healthy, covid-
positive and all subjects involved in this study)

inputs of the considered ML algorithms. Due to the recent
diffusion of the COVID-19 pandemic and the consequent
scarcity of studies about the effects of this infection on voice
quality, the choice of the features to be extracted from the
voice sounds and to be used as inputs of ML algorithms
cannot be performed in accordance with a specific medi-
cal protocol. Therefore, we decided to use as features the
acoustic parameters indicated in medical protocol [28] to
evaluate voice quality, such as the Fundamental Frequency
(F0), shimmer, jitter and Harmonic to Noise Ratio (HNR),
as well as other parameters used in literature for the voice
classification when usingML algorithms [16,39,44,51], such
as Mel-Frequency Cepstral Coefficients (MFCC) or Spectral
Centroid or Roll-Off.

The F0 is useful for an assessment of the correct func-
tioning of the larynx as it shows the rate of oscillation
of the vocal folds. The instabilities of these oscillations in
amplitude and frequency are represented, respectively, by
the shimmer and jitter. The incorrect closure of the vocal
folds due to a pathology is, instead, represented by the noise
in the voice signals. This noise is evaluated by the HNR
parameter. These acoustic parameters were calculated by
adopting the Java Programming Language through the use
of Eclipse IDE (version 4.6.3) according to the procedures
indicated in [13,45,50]. Other parameters, such as theMFCC
coefficients represent the voice signal as the linear cosine
transform of a log power spectrum on a non-linear mel scale
of frequency. The dynamic behaviour of the voice signal is
represented by the first and second derivatives of the cepstral
coefficients. Finally, the spectral centroid (SC) and Spec-
tral Roll-off (SR) were considered. The former is useful for
an evaluation of the modifications of the signal frequency
over time, while the latter is used to distinguish between
unvoiced and voiced sounds. These were evaluated by using
Matlab, version R2020a with the function audioFeatureEx-
tractor being adopted [31].
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These features have been used as inputs of the main ML
techniques used in the literature for voice classification, as
described in the following subsection.

3.1 Machine Learning Classifiers

Currently, many biomedical applications use appropriate
methodologies based on machine learning (ML) techniques
to support the early and reliable diagnosis of specific patholo-
gies [43]. These techniques are, in fact, able to distinguish
between a pathological and healthy subject through the pro-
cessing and analysis of specific data. The evaluation of
the set of data allows the construction of a model. This
model approximates the so-called features, namely the val-
ues assumed by independent variables corresponding to the
measurable characteristics of each sample. ML techniques
are capable of learning from the observed data and adapting
their structure to optimize the classification.

In this study, several ML techniques were used to
distinguish between a pathological and a healthy voice.
The Waikato Environment for Knowledge Analysis project
(WEKA) [15] tool, version 3.8.4, was used to perform the
analyses. All the experiments were performed on a machine
with an 8GBmemory and Intel(R)Core(TM) i5-6200UCPU
with 2.40 GHz. The ML algorithms are subdivided into sev-
eral categories. In this work for a better readability, only the
performances of the best techniques are reported for each
category. In detail, the performances of the following ML
classifiers were evaluated:

– Bayes: the classification, for these algorithms, is based
on a probabilistic model where the nodes and strings rep-
resent, respectively, a set of random variables and their
conditional dependencies. This category is based on the
Bayes theorem:

P(A|B) = P(B|A)P(A)
P(B)

. (1)

This allows you to find the probability of event A, given
event B. As shown in Eq. 1, this is estimated by means of
the relationship between a priori probability of A (P(A))
and a posteriori probability of B (P(B)), i.e. the proba-
bility of event A after evidence is seen, as well as the
probability of event B, given the event A (P(B|A)). The
BayesNet (BN) and Naive Bayes (NB) algorithms were
used in this study. This latter assumes that predictions
are independent, namely that the presence of an appro-
priate feature in a class is unconnected to the presence of
other features. InBayesNet, instead, the conditional prob-
ability is estimated on each node by building a Bayesian
Network. More details are provided in [25].

– Functions: the operation of the classifiers of this category
can be interpreted as a mathematical equation. The clas-
sification performances of Stochastic Gradient Descent
(SGD) and Support Vector Machine (SVM) were evalu-
ated. SVM is a supervised machine learning algorithm.
Its aim is to find the optimal classification function that
distinguishes between the samples of the classes. The
optimal hyperplane that is searched, shown in Fig. 1, is
the one equally distant from the support vectors of the
classes [6]. SGD, instead, implements stochastic gradient
descent learning of the linear models. The true gradient
is approximated by considering one training sample at
a time. It is an iterative algorithm, its parameters being
updated for each sample analysed [3].

– Lazy: the k nearest neighbours were evaluated by means
of an Instance-based Learning approach. This evaluation
is necessary to decide the class towhich a sample belongs.
A group of k objects of the training set that has the closest
proximity to the test set was localized. A label derived
from the prevalence of a class in the closest proximity
was assigned. The LocallyWeighted Learning (LWL) and
k-nearest neighbour (Ibk) algorithms were used in this
work. The LWL algorithm, is a non-parametric method,
where a local model for each point of interest was used
to achieve the prediction. This model is based on the
neighbouring data of the classifiers analysed [14]. The
Ibk model, instead, represents the simplest lazy learner.
The nearest neighbours can be found with a variety of
different search algorithms. The predictions from more
than one neighbour are weighted based on their distance
from the test instance [2].

– Meta: the classification of this category was achieved
combining multiple ML models to improve the perfor-
mance but with a consequent increment of computational
time and network complexity [12]. The performances of
the Adaboost and Bagging techniques were estimated in
this study. Baggings bags the classifier. The averaging
probability estimates generate the predictions. Adaboost,
instead, was designed so that subsequent models try to
correct the prediction errors made by previous models.
The weights of each instance of the training set are, in
fact, updated based on the accuracy of the model. In
detail, Adaboost is a boosting algorithm constitute from
n number of decision trees. The records incorrectly clas-
sified during the first model are priority. These records
are sent as inputs for the second model and this process
continues until the indicated number of base learners as
shown in Fig. 2.

– Rules: the voice classification for these approaches is
governed by rules. One-R and Decision Table (DT) have
been evaluated. DT is a decision table classifier, where
the features subsets are evaluated using best-first search
[26]. The One-R algorithm, instead, uses minimum-error
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Fig. 1 An overview of Support Vector Machine algorithm

Fig. 2 An overview of Adaboost algorithm

attributes for the prediction. The rules are based on the
most informative attribute. The ranking of the attributes
is estimated based on the error rate [19].

– Trees: the classification is based ondata attributes, hierar-
chical models composed of decision nodes and terminal
leaves, while the branches are labelled with the discrete
outcomes of the function that each decision node imple-
ments. The Random Forest and C4.5 decision tree (J48)
algorithms constitute the algorithms belonging to this
category considered in this study. The Random Forest
algorithm consists of a various number of decision trees,
as shown in Fig. 3. Each tree makes a class predic-
tion using as inputs from samples of the initial dataset.
The features extracted from these samples are randomly
selected and process from the tree to predict the class.
The class with the most votes constitute the model’s pre-
diction. The C4.5 algorithm is based on the theories of
Shannon. In particular, the entropy of Shannon measures
the disorder of the data and defines the amount of infor-
mation provided by the event [41]. Random Forest is an
ensemble of trees with each tree building via bagging
with replacement (bootstrap) and with a random selec-
tion of features at each tree node [49].

Fig. 3 An overview of Random Forest algorithm

4 Results and Discussion

In order to evaluate the classification reliability of the
ML approaches considered, the accuracy, sensitivity, speci-
ficity, F1-score, recall and Receiver Operating Characteristic
(ROC) area were estimated. The accuracy is defined as the
number of correct predictions out of all the samples, esti-
mated according to Eq. 2:

Accuracy = TP + TN

TP + TN + FP + FN
(2)

where True Positives (TP) and True Negatives (TN) are
defined as the number of samples correctly classified, respec-
tively, as pathological or healthy, while False Positives (FP)
and False Negatives (FN) represent the number of sam-
ples incorrectly classified, respectively, as pathological and
healthy. The sensitivity represents the number of pathological
cases the classifier correctly classifies, out of all the patho-
logical cases in the dataset. The specificity, instead, measures
the number of healthy correct predictions made, while the
precision represents the measurement of how many of the
pathological predictions made are correct. These measures
are calculated by using the following equations:

Sensitivity = TP

TP + FN
(3)

Specificity = TN

TN + FP
(4)

Precision = TP

TP + FP
(5)

The harmonic mean of the precision and sensitivity rep-
resents the F1-score, estimated by Eq. 6:

F1 − score = 2 ∗ precision ∗ sensitivity

precision + sensitivity
(6)
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Table 2 Results achieved on the training set for the vowels /a/, /e/ and /o/

Algorithm Sensibility (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%) AUC

Naive Bayes [25] 96.97 53.03 75.00 67.37 79.50 0.799

Bayes Net [25] 93.94 78.79 86.36 81.58 87.32 0.953

SVM [6] 100.00 100.00 100.00 100.00 100.00 1.000

SGD [3] 100.00 100.00 100.00 100.00 100.00 1.000

Ibk [2] 100.00 100.00 100.00 100.00 100.00 1.000

LWL [14] 68.18 83.33 75.76 80.36 73.77 0.941

Adaboost [12] 92.42 89.39 90.91 89.71 91.04 0.966

Bagging [12] 98.48 92.42 95.45 92.86 95.59 0.988

OneR [19] 71.21 86.36 78.79 83.93 77.05 0.788

Decision Table [26] 86.36 78.79 82.58 80.28 83.21 0.847

J48 [41] 98.48 100.00 99.24 100.00 99.24 1.000

Random Forest [49] 100.00 100.00 100.00 100.00 100.00 1.000

Table 3 Results achieved on the testing set for the vowels /a/, /e/ and /o/

Algorithm Sensibility (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%) AUC

Naive Bayes [25] 100.00 35.29 67.65 60.71 75.56 0.706

Bayes Net [25] 88.24 29.41 58.82 55.56 68.18 0.671

SVM [6] 94.12 52.94 73.53 66.67 78.05 0.735

SGD [3] 94.12 47.06 70.59 64.00 76.19 0.706

Ibk [2] 88.24 47.06 67.65 62.50 73.17 0.676

LWL [14] 58.82 52.94 55.88 55.56 57.14 0.647

Adaboost [12] 70.59 76.47 73.53 75.00 72.73 0.785

Bagging [12] 76.47 64.71 70.59 68.42 72.22 0.747

OneR [19] 29.41 76.47 52.94 55.56 38.46 0.529

Decision Table [26] 64.71 47.06 55.88 55.00 59.46 0.554

J48 [41] 64.71 52.94 58.82 57.89 61.11 0.588

Random Forest [49] 94.12 70.59 82.35 76.19 84.21 0.901

Finally, the performance of the classifiers is evaluated
considering the area under the ROC curve (AUC). This is
useful for an evaluation of the goodness of the classifier.
When the AUC is, in fact, the minimum (AUC=0), the ML
technique incorrectly classifies all the data, while, when the
AUC is equal to 1 and so is the maximum, the algorithm
distinguishes perfectly between the pathological and healthy
samples.

The voice samples were divided randomly into training
(80% of the samples) and testing (20% of the samples) sets.
In detail, the sounds of three vowels (/a/, /e/ and /o/) of 132
subjects (66 healthy and 66 COVID-19 positive) constitute
the training set, while the remaining recordings of 34 subjects
(17 healthy and 17 COVID-19 positive) compose the testing
set. The Coswara database is unbalanced, in that it contains
more healthy voices than pathological voices. In this prelim-
inary study, we have adopted a balanced dataset, selecting
an equal number of healthy and pathological voice samples.

However, it is important to note that the data collection is
still in progress and that, in future studies, the increase in
data may improve the analyses.

Tables 2 and 3 report the results, respectively, for the train-
ing set and testing set, of several of the ML algorithms for
each sample, analysing for each subject the sound of all three
vowels, /a/, /e/ and /o/. These show that the best-performing
ML algorithms are Random Forest, Adaboost and SVM.
Among these three algorithms, the best performance in the
testing set was obtained by Random Forest, achieving a clas-
sification accuracy and F1-score, respectively, of about 82%
and 84%. An accuracy of about 74% is, instead, obtained
by Adaboost and SVM algorithms. Meanwhile, observing
the sensitivity and specificity values, we can affirm that both
Random Forest and SVM are able to accurately distinguish
between the voices of people suffering from COVID-19 and
those of healthy ones. This is confirmed by the sensitivity
value obtained (about 94%), while the sensitivity achieved
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Table 4 Results achieved on the training set for the vowel /a/

Algorithm Sensibility (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%) AUC

Naive Bayes [25] 92.42 28.79 60.61 56.48 70.11 0.801

Bayes Net [25] 78.79 68.18 73.48 71.23 74.82 0.775

SVM [6] 95.45 93.94 94.70 94.03 94.74 0.947

SGD [3] 95.45 100.00 97.73 100.00 97.67 0.977

Ibk [2] 100.00 100.00 100.00 100.00 100.00 1.000

LWL [14] 80.30 65.15 72.73 69.74 74.65 0.908

Adaboost [12] 78.79 93.94 86.36 92.86 85.25 0.952

Bagging [12] 89.39 87.88 88.64 88.06 88.72 0.958

OneR [19] 75.00 86.36 81.15 82.35 78.50 0.750

Decision Table [26] 75.76 71.21 73.48 72.46 74.07 0.753

J48 [41] 98.48 96.97 97.73 97.01 97.74 0.993

Random Forest [49] 100.00 100.00 100.00 100.00 100.00 1.000

Table 5 Results achieved on the testing set for the vowel /a/

Algorithm Sensibility (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%) AUC

Naive Bayes [25] 82.35 23.53 52.94 51.85 63.64 0.713

Bayes Net [25] 47.06 70.59 58.82 61.54 53.33 0.616

SVM [6] 52.94 82.35 67.65 75.00 62.07 0.676

SGD [3] 47.06 94.12 70.59 88.89 61.54 0.706

Ibk [2] 52.94 70.59 61.76 64.29 58.06 0.618

LWL [14] 47.06 58.82 52.94 53.33 50.00 0.626

Adaboost [12] 41.18 70.59 55.88 58.33 48.28 0.683

Bagging [12] 70.59 70.59 70.59 70.59 70.59 0.744

OneR [19] 47.06 58.82 52.94 53.33 50.00 0.529

Decision Table [26] 52.94 58.82 55.88 56.25 54.55 0.578

J48 [41] 58.82 76.47 67.65 71.43 64.52 0.713

Random Forest [49] 47.06 76.47 61.76 66.67 55.17 0.739

Table 6 Results achieved on the training set for the vowel /e/

Algorithm Sensibility (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%) AUC

Naive Bayes [25] 66.67 84.85 75.76 81.48 73.33 0.861

Bayes Net [25] 60.61 91.30 76.30 86.96 71.43 0.880

SVM [6] 96.97 95.45 96.21 95.52 96.24 0.960

SGD [3] 100.00 100.00 100.00 100.00 100.00 1.000

Ibk [2] 100.00 100.00 100.00 100.00 100.00 1.000

LWL [14] 78.79 98.48 88.64 98.11 87.39 0.941

Adaboost [12] 80.30 96.97 88.64 96.36 87.60 0.965

Bagging [12] 89.39 87.88 88.64 88.06 88.72 0.961

OneR [19] 86.36 71.21 78.79 75.00 80.28 0.788

Decision Table [26] 89.16 80.30 86.64 91.93 90.52 0.800

J48 [41] 96.97 98.48 97.73 98.46 97.71 0.991

Random Forest [49] 100.00 100.00 100.00 100.00 100.00 1.000
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Table 7 Results achieved on the testing set for the vowel /e/

Algorithm Sensibility (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%) AUC

Naive Bayes [25] 70.59 70.59 70.59 70.59 70.59 0.754

Bayes Net [25] 52.94 82.35 67.65 75.00 62.07 0.749

SVM [6] 84.62 71.43 76.47 64.71 73.33 0.765

SGD [3] 64.71 76.47 70.59 73.33 68.75 0.706

Ibk [2] 58.82 52.94 55.88 55.56 57.14 0.559

LWL [14] 35.29 100.00 67.65 100.00 52.17 0.709

Adaboost [12] 64.71 76.47 70.59 73.33 68.75 0.763

Bagging [12] 82.35 70.59 76.47 73.68 77.78 0.820

OneR [19] 76.47 29.41 52.94 52.00 61.90 0.529

Decision Table [26] 58.82 64.71 61.76 62.50 60.61 0.606

J48 [41] 58.82 70.59 64.71 66.67 62.50 0.652

Random Forest [49] 76.47 94.12 85.29 92.86 83.87 0.867

Table 8 Results achieved on the training set for the vowel /o/

Algorithm Sensibility (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%) AUC

Naive Bayes [25] 96.97 28.79 62.88 57.66 72.32 0.647

Bayes Net [25] 95.45 72.73 84.09 77.78 85.71 0.900

SVM [6] 89.39 86.36 87.88 86.76 88.06 0.879

SGD [3] 96.97 95.45 96.21 95.52 96.24 0.962

Ibk [2] 100.00 100.00 100.00 100.00 100.00 1.000

LWL [14] 83.33 69.70 76.52 73.33 78.01 0.919

Adaboost [12] 89.39 80.30 84.85 81.94 85.51 0.923

Bagging [12] 93.94 91.18 92.54 91.18 92.54 0.993

OneR [19] 83.33 72.73 78.03 75.34 79.14 0.780

Decision Table [26] 95.45 54.55 75.00 67.74 79.25 0.750

J48 [41] 100.00 98.48 99.24 98.51 99.25 1.000

Random Forest [49] 100.00 100.00 100.00 100.00 100.00 1.000

Table 9 Results achieved on the testing set for the vowel /o/

Algorithm Sensibility (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%) AUC

Naive Bayes [25] 94.12 11.76 52.94 51.61 66.67 0.585

Bayes Net [25] 64.71 35.29 50.00 50.00 56.41 0.533

SVM [6] 70.59 58.82 64.71 63.16 66.67 0.647

SGD [3] 70.59 35.29 52.94 52.17 60.00 0.529

Ibk [2] 64.71 70.59 67.65 68.75 66.67 0.676

LWL [14] 76.47 58.82 67.65 65.00 70.27 0.775

Adaboost [12] 64.71 41.18 52.94 52.38 57.89 0.576

Bagging [12] 64.71 35.29 50.00 50.00 56.41 0.474

OneR [19] 47.06 35.29 41.18 42.11 44.44 0.412

Decision Table [26] 76.47 41.18 58.82 56.52 65.00 0.592

J48 [41] 58.82 41.18 50.00 50.00 54.05 0.517

Random Forest [49] 70.59 52.94 61.76 60.00 64.86 0.666
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by the Adaboost algorithm stops at about 71%. Nevertheless,
Adaboost obtains the best specificity (76.47% vs. 52.94% of
SVM and 70.59% of Random Forest) among the three clas-
sifiers. This means that Adaboost is better able to identify
healthy voices from pathological ones.

Considering the performance of each vowel, we can
observe that the recordings of the vowels /e/ identify the
presence of COVID-19 better than those of the vowels /a/
and /o/. An accuracy and F1-score of about 85% and 84%,
respectively, were obtainedwhen using the features extracted
from the vowel /e/ as inputs of the Random Forest algorithm
in the testing set, as indicated in Table 7. When analysing
the sound of the vowels /a/ and /o/, instead, the classification
accuracies and F1-scores were lower than those achieved for
the only vowel /e/, as shown in Tables 5 and 9.

It is important to note that the data collected for the consid-
ered database is still in progress. This means that the number
of data changes constantly, making the task of building a
common database for the entire scientific community diffi-
cult until data collection is finished, not allowing in this way
the comparison of the results obtained by different studies
existing in literature.

5 Conclusions

Nowadays, wearable sensors contribute to disease detec-
tion and patient monitoring and rehabilitation. Physiological
signals coming from these sensors constitute, in fact, a funda-
mental resource to support specific healthcare applications.
The increasingly commonpractice of the collection of health-
care data and the rapid development of artificial intelligence
algorithms have contributed to promoting an increase in the
successful application of these techniques in the healthcare
sector. Artificial intelligence methods offer an opportunity
to process and interpret healthcare data in a fast and reli-
able way, detecting, at times, clinically relevant information
hidden in a vast amount of data, thereby assisting medical
decision making.

In this paper we have presented an overview of the arti-
ficial intelligence algorithms most frequently used for voice
signal analysis in relation to the early detection of disorders
caused by COVID-19. The performance of several ML tech-
niques is presented. The aim is to identify the most reliable
ML technique to be used and the most accurate vowel sound
to be applied in order to distinguish between healthy and
COVID-19 positive subjects. The objective is to embed this
ML technique within a mobile health solution, capable of
acquiring a vowel sound, analysing it and classifying it as
healthy or COVID-19 positive. The utility of such a mobile
health solution is indisputable in that it would support the
early detection of COVID-19 in a faster, cheaper and more
reliable way. The analyses have shown that the Random For-

est algorithm achieves the best performance, obtaining an
accuracy of about 82% in the analysis of the sound of three
vowels (/a/, /e/ and /o/) for each subject. This performance
improves when only the sound of the vowel /e/ is analysed
(the accuracy is equal of 85%).

It is important to note that all the experimental tests
were performed on a dataset selected from a crowd-sourced
database. Currently, all available voice databases containing
samples from subjects suffering from COVID-19 are crowd-
sourced, volunteers independently recording all the samples
contained in this databasewithout any control froman expert.
Therefore, in order to validate an approach able to support
the early detection of the pandemic, the currently available
recordings need to be improved. It is fundamental to obtain
samples labelled by a medical specialist during a controlled
clinical trial. Additionally, it is necessary to enhance the qual-
ity of the collected data by reducing the effects of noise added
during the recording, as well as by ensuring a correct execu-
tion of the vocalization. Moreover, in this preliminary study,
only the effects of COVID-19 were evaluated. Due to the
recent and rapid diffusion of COVID-19, there is still very
little information about the causes and development of the
pandemic, as well as the association with patient data. In our
future research, it will be interesting to analyse data about
the etiopathogenesis of the pandemic, clinical data such as
age and data about pre-existing pathologies. It is important
to consider the effects of these factors on voice quality, com-
bining this information with that extracted from an analysis
of the voice parameters. It would be expedient to consider
the data already obtained as well as data obtained from an
analysis of the other two sounds provided by the database,
the coughing and respiratory samples.
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