Table 3.
Algorithm | Sensibility (%) | Specificity (%) | Accuracy (%) | Precision (%) | F1-score (%) | AUC |
---|---|---|---|---|---|---|
Naive Bayes [25] | 100.00 | 35.29 | 67.65 | 60.71 | 75.56 | 0.706 |
Bayes Net [25] | 88.24 | 29.41 | 58.82 | 55.56 | 68.18 | 0.671 |
SVM [6] | 94.12 | 52.94 | 73.53 | 66.67 | 78.05 | 0.735 |
SGD [3] | 94.12 | 47.06 | 70.59 | 64.00 | 76.19 | 0.706 |
Ibk [2] | 88.24 | 47.06 | 67.65 | 62.50 | 73.17 | 0.676 |
LWL [14] | 58.82 | 52.94 | 55.88 | 55.56 | 57.14 | 0.647 |
Adaboost [12] | 70.59 | 76.47 | 73.53 | 75.00 | 72.73 | 0.785 |
Bagging [12] | 76.47 | 64.71 | 70.59 | 68.42 | 72.22 | 0.747 |
OneR [19] | 29.41 | 76.47 | 52.94 | 55.56 | 38.46 | 0.529 |
Decision Table [26] | 64.71 | 47.06 | 55.88 | 55.00 | 59.46 | 0.554 |
J48 [41] | 64.71 | 52.94 | 58.82 | 57.89 | 61.11 | 0.588 |
Random Forest [49] | 94.12 | 70.59 | 82.35 | 76.19 | 84.21 | 0.901 |