Table 4.
Algorithm | Sensibility (%) | Specificity (%) | Accuracy (%) | Precision (%) | F1-score (%) | AUC |
---|---|---|---|---|---|---|
Naive Bayes [25] | 92.42 | 28.79 | 60.61 | 56.48 | 70.11 | 0.801 |
Bayes Net [25] | 78.79 | 68.18 | 73.48 | 71.23 | 74.82 | 0.775 |
SVM [6] | 95.45 | 93.94 | 94.70 | 94.03 | 94.74 | 0.947 |
SGD [3] | 95.45 | 100.00 | 97.73 | 100.00 | 97.67 | 0.977 |
Ibk [2] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 1.000 |
LWL [14] | 80.30 | 65.15 | 72.73 | 69.74 | 74.65 | 0.908 |
Adaboost [12] | 78.79 | 93.94 | 86.36 | 92.86 | 85.25 | 0.952 |
Bagging [12] | 89.39 | 87.88 | 88.64 | 88.06 | 88.72 | 0.958 |
OneR [19] | 75.00 | 86.36 | 81.15 | 82.35 | 78.50 | 0.750 |
Decision Table [26] | 75.76 | 71.21 | 73.48 | 72.46 | 74.07 | 0.753 |
J48 [41] | 98.48 | 96.97 | 97.73 | 97.01 | 97.74 | 0.993 |
Random Forest [49] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 1.000 |