Skip to main content
. 2021 Oct 8:1–11. Online ahead of print. doi: 10.1007/s13369-021-06041-4

Table 4.

Results achieved on the training set for the vowel /a/

Algorithm Sensibility (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%) AUC
Naive Bayes [25] 92.42 28.79 60.61 56.48 70.11 0.801
Bayes Net [25] 78.79 68.18 73.48 71.23 74.82 0.775
SVM [6] 95.45 93.94 94.70 94.03 94.74 0.947
SGD [3] 95.45 100.00 97.73 100.00 97.67 0.977
Ibk [2] 100.00 100.00 100.00 100.00 100.00 1.000
LWL [14] 80.30 65.15 72.73 69.74 74.65 0.908
Adaboost [12] 78.79 93.94 86.36 92.86 85.25 0.952
Bagging [12] 89.39 87.88 88.64 88.06 88.72 0.958
OneR [19] 75.00 86.36 81.15 82.35 78.50 0.750
Decision Table [26] 75.76 71.21 73.48 72.46 74.07 0.753
J48 [41] 98.48 96.97 97.73 97.01 97.74 0.993
Random Forest [49] 100.00 100.00 100.00 100.00 100.00 1.000