Table 5.
Algorithm | Sensibility (%) | Specificity (%) | Accuracy (%) | Precision (%) | F1-score (%) | AUC |
---|---|---|---|---|---|---|
Naive Bayes [25] | 82.35 | 23.53 | 52.94 | 51.85 | 63.64 | 0.713 |
Bayes Net [25] | 47.06 | 70.59 | 58.82 | 61.54 | 53.33 | 0.616 |
SVM [6] | 52.94 | 82.35 | 67.65 | 75.00 | 62.07 | 0.676 |
SGD [3] | 47.06 | 94.12 | 70.59 | 88.89 | 61.54 | 0.706 |
Ibk [2] | 52.94 | 70.59 | 61.76 | 64.29 | 58.06 | 0.618 |
LWL [14] | 47.06 | 58.82 | 52.94 | 53.33 | 50.00 | 0.626 |
Adaboost [12] | 41.18 | 70.59 | 55.88 | 58.33 | 48.28 | 0.683 |
Bagging [12] | 70.59 | 70.59 | 70.59 | 70.59 | 70.59 | 0.744 |
OneR [19] | 47.06 | 58.82 | 52.94 | 53.33 | 50.00 | 0.529 |
Decision Table [26] | 52.94 | 58.82 | 55.88 | 56.25 | 54.55 | 0.578 |
J48 [41] | 58.82 | 76.47 | 67.65 | 71.43 | 64.52 | 0.713 |
Random Forest [49] | 47.06 | 76.47 | 61.76 | 66.67 | 55.17 | 0.739 |