Table 6.
Algorithm | Sensibility (%) | Specificity (%) | Accuracy (%) | Precision (%) | F1-score (%) | AUC |
---|---|---|---|---|---|---|
Naive Bayes [25] | 66.67 | 84.85 | 75.76 | 81.48 | 73.33 | 0.861 |
Bayes Net [25] | 60.61 | 91.30 | 76.30 | 86.96 | 71.43 | 0.880 |
SVM [6] | 96.97 | 95.45 | 96.21 | 95.52 | 96.24 | 0.960 |
SGD [3] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 1.000 |
Ibk [2] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 1.000 |
LWL [14] | 78.79 | 98.48 | 88.64 | 98.11 | 87.39 | 0.941 |
Adaboost [12] | 80.30 | 96.97 | 88.64 | 96.36 | 87.60 | 0.965 |
Bagging [12] | 89.39 | 87.88 | 88.64 | 88.06 | 88.72 | 0.961 |
OneR [19] | 86.36 | 71.21 | 78.79 | 75.00 | 80.28 | 0.788 |
Decision Table [26] | 89.16 | 80.30 | 86.64 | 91.93 | 90.52 | 0.800 |
J48 [41] | 96.97 | 98.48 | 97.73 | 98.46 | 97.71 | 0.991 |
Random Forest [49] | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 1.000 |