Skip to main content
. 2021 Oct 8:1–11. Online ahead of print. doi: 10.1007/s13369-021-06041-4

Table 6.

Results achieved on the training set for the vowel /e/

Algorithm Sensibility (%) Specificity (%) Accuracy (%) Precision (%) F1-score (%) AUC
Naive Bayes [25] 66.67 84.85 75.76 81.48 73.33 0.861
Bayes Net [25] 60.61 91.30 76.30 86.96 71.43 0.880
SVM [6] 96.97 95.45 96.21 95.52 96.24 0.960
SGD [3] 100.00 100.00 100.00 100.00 100.00 1.000
Ibk [2] 100.00 100.00 100.00 100.00 100.00 1.000
LWL [14] 78.79 98.48 88.64 98.11 87.39 0.941
Adaboost [12] 80.30 96.97 88.64 96.36 87.60 0.965
Bagging [12] 89.39 87.88 88.64 88.06 88.72 0.961
OneR [19] 86.36 71.21 78.79 75.00 80.28 0.788
Decision Table [26] 89.16 80.30 86.64 91.93 90.52 0.800
J48 [41] 96.97 98.48 97.73 98.46 97.71 0.991
Random Forest [49] 100.00 100.00 100.00 100.00 100.00 1.000