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Abstract
As severe acute respiratory syndrome coronavirus 2 continues to spread, easy-to-use risk models that predict hospital mortality can
assist in clinical decision making and triage. We aimed to develop a risk score model for in-hospital mortality in patients hospitalized
with 2019 novel coronavirus (COVID-19) that was robust across hospitals and used clinical factors that are readily available and
measured standardly across hospitals.
In this retrospective observational study, we developed a risk score model using data collected by trained abstractors for patients

in 20 diverse hospitals across the state of Michigan (Mi-COVID19) who were discharged between March 5, 2020 and August 14,
2020. Patients who tested positive for severe acute respiratory syndrome coronavirus 2 during hospitalization or were discharged
with an ICD-10 code for COVID-19 (U07.1) were included. We employed an iterative forward selection approach to consider the
inclusion of 145 potential risk factors available at hospital presentation. Model performance was externally validated with patients
from 19 hospitals in the Mi-COVID19 registry not used in model development. We shared the model in an easy-to-use online
application that allows the user to predict in-hospital mortality risk for a patient if they have any subset of the variables in the final
model.
Two thousand one hundred and ninety-three patients in the Mi-COVID19 registry met our inclusion criteria. The derivation and

validation sets ultimately included 1690 and 398 patients, respectively, with mortality rates of 19.6% and 18.6%, respectively. The
average age of participants in the study after exclusions was 64years old, and the participants were 48% female, 49% Black, and
87% non-Hispanic. Our final model includes the patient’s age, first recorded respiratory rate, first recorded pulse oximetry, highest
creatinine level on day of presentation, and hospital’s COVID-19 mortality rate. No other factors showed sufficient incremental model
improvement to warrant inclusion. The area under the receiver operating characteristics curve for the derivation and validation sets
were .796 (95% confidence interval, .767–.826) and .829 (95% confidence interval, .782–.876) respectively.
We conclude that the risk of in-hospital mortality in COVID-19 patients can be reliably estimated using a few factors, which are

standardly measured and available to physicians very early in a hospital encounter.

Abbreviations: AUC = area under the receiver operating characteristics curve, COVID-19 = 2019 novel coronavirus, MSE =
mean squared error.
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1. Introduction rather than taking a random sample of patients, to emulate
2019 novel coronavirus (COVID-19) was declared a pandemic
by the World Health Organization in March 2020 and continues
to devastate much of the world. As of July 26, 2021, there have
been approximately 194 million reported COVID-19 cases
worldwide and 4.2 million reported deaths attributed to COVID-
19, with a mortality rate per reported infection of 2.1%.[1]

During the pandemic, hospitals have needed to constantly adapt
how they operate as COVID-19 cases rise and wane. Empirical
tools to assess individual patients’ risk for mortality could be
lifesaving in hospitals, where decisions must be made as to how to
allocate resources. To fill this need, since March 2020, a number
of risk score models for predicting adverse outcomes of COVID-
19 have been published.[2–5] However, many of these models
were developed in patients within a single hospital or hospital
system, lacked validation, or incorporated variables that are not
routinely available or not measured consistently across hospitals
or required subjective evaluation. Concerns of generalizability
and ease of implementation remain.
In this study, we aimed to develop a model to predict the risk of

in-hospital mortality among patients hospitalized for COVID-19,
utilizing variables that are readily available when a patient is
hospitalized. We used a systematic variable selection approach to
determine a small number of highly predictive factors from over
100 variables in a high-quality observational dataset abstracted
from patient electronic health records in the state of Michigan.
2. Methods

2.1. Study design and data abstraction

For this retrospective observational study, we used data
abstracted from patients in hospitals across the state of Michigan
(Mi-COVID19 registry) to fit a model predictive of risk of in-
hospital death amongst patients hospitalized for COVID-19.
The Mi-COVID19 data registry is a joint initiative between
10 collaborative quality initiatives sponsored by an insurance
provider, Blue Cross Blue Shield of Michigan and Blue Care
Network to create a multihospital data registry.[6] Forty non-
critical access, non-federal Michigan hospitals voluntarily
participated in abstracting data from patients, following a
coordinated abstraction protocol, beginning on April 2, 2020.
Data were abstracted from medical records by trained

abstractors. The data included a pseudo-random sample of
COVID-19 positive cases discharged betweenMarch 5, 2020 and
August 14, 2020 (with the majority of discharges before April 24,
2020). If a hospital had the ability to abstract full patient data for
all eligible COVID-19 positive patients that entered the hospital,
they did so. However, if a hospital was unable to abstract all
cases, each day the eligible cases were ordered by the timestamp
(minute) of discharge andwere included starting with the smallest
minute value of discharge, until the hospital reached their
abstraction capacity.
For this study, we only included patients who tested positive

for severe acute respiratory syndrome coronavirus 2 within the
hospital in which they were enrolled or were discharged with an
ICD-10 code for COVID-19 (U07.1). We split the data to include
20 hospitals in the derivation set and 20 hospitals in the
validation set. Our derivation set included the 20 hospitals with
the largest number of patients with abstracted data and we
reserved the data on patients in the 20 hospitals with the smallest
sample sizes for the validation set. We split the data by hospitals,
2

external validation and ensure that our estimates of model
discrimination were not overly optimistic. We used a complete
case analysis, so we ultimately excluded 1 hospital in the
validation set since it had no observations with complete cases for
the variables included in our final model. It is worth noting that
the sample size available in the Mi-COVID19 data registry did
not necessarily correlate with the size of the hospital, so there are
small and large hospitals in both the derivation and validation
sets.
2.2. Outcome and potential risk factors

The outcome of interest was in-hospital mortality.We considered
as possible risk factors 145 variables abstracted in Mi-COVID19
which were measured on the first or second days of hospitaliza-
tion. These risk factors included a patient’s demographics and
health behaviors (e.g., smoking), medical history (comorbidities
and previous medications and treatments), exposure risk factors
(e.g., being a service or healthcare worker), symptoms and
primary complaint at hospital arrival, triage and first day vital
signs, first or second hospitalization day lab values, and first or
second hospitalization day chest x-ray findings. See Table S1,
Supplemental Digital Content, http://links.lww.com/MD2/A525,
for a full list of factors considered in model derivation.
2.3. Statistical methods

We predicted in-hospital mortality using a logistic regression
model. Our approach to variable selection ensured that our
model was robust across the hospitals participating in Mi-
COVID19 and used factors that are commonly measured, while
maintaining high discrimination. In order to control for
variability between hospitals, we set our base model to be each
hospital’s COVID-19 mortality rate, which can be thought of as
the patient’s pre-test probability for mortality at a given hospital.
We included the hospital’s COVID-19 mortality rate as an
adjustment to ensure that hospital-level differences in mortality
would not be falsely attributed to patient characteristics or mask
important patient characteristics. From this base model, we used
forward and backward selection to choose which variables to
include in the model.
In the forward and backward selection, we assessed the model

with 3 quality metrics: mean squared error (MSE), R-squared,
and an adjusted area under the receiver operating characteristics
curve (AUC). The adjusted AUC (denoted AUC(w)) assessed the
discrimination of the model in a way that was unaffected by the
value of the mortality rate of each hospital (see eMethods,
Supplemental Digital Content, for details on the calculation,
http://links.lww.com/MD2/A538). We used this metric so that
the AUC was not falsely inflated by including hospital mortality
rate in the model. The value of AUC(w) can be interpreted as an
estimate of the probability that, for 2 randomly selected patients
with opposite outcomes from the same hospital, the model
estimates a higher risk of mortality for the patient who is
deceased. The AUC(w) calculation is a weighted average of the
individual hospital AUCs, with weights proportional to the
sample size. If AUC(w) is calculated for only 1 hospital, it is
equivalent to the standard AUC.
For each step of forward selection, we added every potential

risk factor individually to the model determined from the
previous step. We then assessed how much the model’s MSE,
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AUC(w), and R-squared improved when including a variable as
compared to the model excluding that variable. We assessed
improvement in the quality metrics (MSE, AUC(w), and R-
squared) both for the full derivation dataset (all 20 hospitals) and
within each hospital individually. We considered adding
variables to the base model only if there was consistent
improvement in MSE, AUC(w), and R-squared across the
individual hospitals as well as all hospitals combined and if
the improvement across all derivation hospitals was sufficiently
large to warrant inclusion. Amongst factors that had consistent
quantitative support for being added to the model, we considered
whether these factors were likely to be routinely available and
standardly reported across hospitals, as inferred by our clinical
experience. If the answer was “yes,”we added the variable to the
model. We repeated this process until there were no remaining
clinically meaningful and standardly measured variables that also
dependably improved MSE, AUC(w), and R-squared in a
meaningful way across hospitals in the derivation set when
added to the model.
Following this forward selection protocol, we additionally

performed 1 step of backward selection to ensure that all
variables, given all others in the model, were predictive of in-
hospital mortality. We removed each variable individually and
again assessed the change in MSE, AUC(w), and R-squared from
the initial model to this model with 1 variable removed. If the
MSE consistently increased and the AUC(w) and R-squared
consistently decreased across hospitals when the variable was
removed from the model, then we kept that variable in our final
model.
In both forward and backward selection, predictions for each

individual hospital were made using a model fit on all other
hospitals in the derivation set. In this way, all models were
assessed using leave-one-out predictions, which reduced the
concern for overfitting.
2.4. Model validation

We assessed the performance of our final model on the external
validation set of 19 hospitals described previously. We
additionally assessed the performance of the model across
subgroups of patients (Black vs White, male vs female, and 75
years of age or older vs younger than 75) in terms of AUC for the
full dataset.
2.5. Model application

We aimed to develop a mortality risk assessment model that was
as accessible as possible; therefore, we shared the model using an
online app developed in R (see Figure S1, Supplemental Digital
Content, http://links.lww.com/MD2/A521). One can input the
values for the patient characteristics included in the final model
into the app and the predicted risk of mortality is outputted. We
set up the app such that one does not need to have or guess the
values of every variable used in our final risk score model in order
to estimate a patient’s risk of mortality. Instead, the app will refit
the model using variables that the user does have access to (see
eMethods, Supplemental Digital Content, for details, http://links.
lww.com/MD2/A538). The app can be accessed at https://
micovidriskcalc.org/.
The study was deemed exempt by the University of Michigan

Institutional Review Board on April 2, 2020, for the reason that
MI-COVID19 is a Quality Assurance/Quality Improvement
3

Initiative and does not satisfy the definition of research under 45
CFR 46.102(d), 21 CFR 56.102(c), or U-M policy as described in
Human Research Protection ProgramOperationsManual Part 4.
Data management and analysis was completed in SAS (SAS
Institute, Inc., Cary, NC) and R version 4.0.3 (R Core Team,
Oct. 2020).
3. Results

3.1. Patient and hospital characteristics

The Mi-Covid19 dataset included 2193 patients who met our
inclusion criteria. In the final model validation, we excluded 79
(4.5%) individuals in the derivation set and 26 (6.1%)
individuals in the validation set who were missing data for 1
of the predictive factors in the final model. Therefore, our final
derivation and validation sets included 1690 and 398 patients,
amongst the 20 and 19 hospitals, respectively. The demographic
and clinical characteristics of the patients in the derivation set are
described in Table 1. See Table S2, Supplemental Digital Content,
http://links.lww.com/MD2/A526 and Table S3, Supplemental
Digital Content, http://links.lww.com/MD2/A527, for hospital
characteristics in theMi-COVID19 registry and characteristics of
the patients in the validation set. The overall in-hospital mortality
rates in the derivation and validations sets were 19.6% and
18.6%, respectively. However, there was variability of mortality
rates between individual hospitals. The mortality rates in
individual derivation set hospitals ranged from 7.4% to
54.3% (see Figure S2, Supplemental Digital Content, http://
links.lww.com/MD2/A522 and Table S2, Supplemental Digital
Content, http://links.lww.com/MD2/A526, for all hospital
COVID-19 mortality rates).
3.2. Risk score model

Through our forward and backward variable selection process,
we arrived at a final risk score model that included patient age,
first recorded pulse oximetry, first recorded respiratory rate, and
highest creatinine level on the first day of admission, along with
the overall mortality rate at the patient’s hospital. The first
variable that met the forward selection criteria was patient age,
then pulse oximetry, respiratory rate, and heart rate in the second
step of forward selection, and then finally creatinine in the third
step. Then, based on the backward selection criteria, we removed
heart rate. In a final step of forward selection, no further factors
met our criteria. See eAppendix A, Supplemental Digital Content
and Figure S3, Supplemental Digital Content, http://links.lww.
com/MD2/A523, for details.
During the forward selection process, the manner in which a

patient arrived at the Emergency Department (e.g., by ambulance
or by foot) seemed to improve the model (improving AUC(w) by
2%–13% in the first steps of forward selection), however this
data was not reliably available in different hospitals. The
interleukin-6 and creatine phosphokinase labs additionally
appeared to improve the model in terms of MSE (improving
MSE by .003, the most out of other variables in the second and
third steps of forward selection), however these lab values were
available for only 156 (7%) and 562 (26%) patients of the
patients in the MiCOVID-19 data, respectively, and are unlikely
to be commonly measured. Finally, the patient’s emergency
department triage score (a number from 1–5 indicating acuity
with 1 as highest acuity and 5 as lowest acuity) and the presence
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Table 1

Derivation set patient characteristics.

Overall [N=1769] In-hospital mortality
Characteristic Mean/No. (SD/%) [n

∗
] No [N=1422] Yes [N=347]

Age 64.4 (16.7) [1769] 62 (16.6) [1422] 74.4 (13.1) [347]
Gender (female) 830 (47%) [1769] 670 (47%) [1422] 160 (46%) [347]
Race (yes)
Black 840 (49%) [1698] 687 (50%) [1364] 153 (46%) [334]
White 744 (44%) [1698] 579 (42%) [1364] 165 (49%) [334]
Asian 45 (3%) [1698] 38 (3%) [1364] 7 (2%) [334]
Native American or Pacific Islander 10 (1%) [1698] 8 (1%) [1364] 2 (1%) [334]
Other 59 (3%) [1698] 52 (4%) [1364] 7 (2%) [334]

Ethnicity (yes)
Hispanic 92 (5%) [1762] 84 (6%) [1415] 8 (2%) [347]
Non-Hispanic 1535 (87%) [1762] 1229 (87%) [1415] 306 (88%) [347]
Unknown 135 (8%) [1762] 102 (7%) [1415] 33 (10%) [347]

Residing in a Nursing Facility or Assisted Living (yes) 340 (19%) [1748] 207 (15%) [1406] 133 (39%) [342]
Ever-smoker (yes) 645 (39%) [1648] 515 (38%) [1355] 130 (44%) [293]
BMI 31.2 (8.5) [1680] 31.5 (8.4) [1359] 30 (8.8) [321]
No. of comorbidities
0 228 (13%) [1769] 211 (15%) [1422] 17 (5%) [347]
1 341 (19%) [1769] 314 (22%) [1422] 27 (8%) [347]
2 369 (21%) [1769] 309 (22%) [1422] 60 (17%) [347]
3 299 (17%) [1769] 223 (16%) [1422] 76 (22%) [347]
4 225 (13%) [1769] 166 (12%) [1422] 59 (17%) [347]
>4 307 (17%) [1769] 199 (14%) [1422] 108 (31%) [347]

Presence of comorbidity (yes)
Cardiovascular disease 485 (27%) [1769] 347 (24%) [1422] 138 (40%) [347]
Congestive heart failure 275 (16%) [1769] 191 (13%) [1422] 84 (24%) [347]
Chronic obstructive pulmonary disease 208 (12%) [1769] 149 (10%) [1422] 59 (17%) [347]
Asthma 219 (12%) [1769] 189 (13%) [1422] 30 (9%) [347]
Diabetes (complicated and uncomplicated) 655 (37%) [1769] 487 (34%) [1422] 168 (48%) [347]
Severe liver disease 12 (1%) [1769] 10 (1%) [1422] 2 (1%) [347]
Cancer 144 (8%) [1769] 106 (7%) [1422] 38 (11%) [347]

Symptoms (yes)
Fatigue 585 (33%) [1769] 491 (35%) [1422] 94 (27%) [347]
Fever (subjective and objective) 1452 (82%) [1769] 1204 (85%) [1422] 248 (71%) [347]
Chest pain 301 (17%) [1769] 263 (18%) [1422] 38 (11%) [347]
Hypoxia 729 (41%) [1769] 526 (37%) [1422] 203 (59%) [347]

First recorded heart rate
<90 BPM 701 (40%) [1760] 572 (40%) [1415] 129 (37%) [345]
90–100 BPM 391 (22%) [1760] 321 (23%) [1415] 70 (20%) [345]
101–124 BPM 544 (31%) [1760] 442 (31%) [1415] 102 (30%) [345]
>124 BPM 124 (7%) [1760] 80 (6%) [1415] 44 (13%) [345]

First recorded respiratory rate
<20 645 (37%) [1734] 564 (41%) [1390] 81 (24%) [344]
20–24 682 (39%) [1734] 559 (40%) [1390] 123 (36%) [344]
25–30 240 (14%) [1734] 173 (12%) [1390] 67 (19%) [344]
>30 167 (10%) [1734] 94 (7%) [1390] 73 (21%) [344]

First recorded systolic blood pressure
≥101mmHg 1619 (93%) [1740] 1318 (94%) [1401] 301 (89%) [339]
90–100mmHg 80 (5%) [1740] 52 (4%) [1401] 28 (8%) [339]
<90mmHg 41 (2%) [1740] 31 (2%) [1401] 10 (3%) [339]

First recorded pulse oximetry
91%–100% 1386 (79%) [1750] 1147 (82%) [1406] 239 (69%) [344]
81%–90% 287 (16%) [1750] 219 (16%) [1406] 68 (20%) [344]
71%–80% 45 (3%) [1750] 26 (2%) [1406] 19 (6%) [344]
�70% 32 (2%) [1750] 14 (1%) [1406] 18 (5%) [344]

Triage score
1 91 (6%) [1564] 43 (3%) [1259] 48 (16%) [305]
2 731 (47%) [1564] 570 (45%) [1259] 161 (53%) [305]
3 646 (41%) [1564] 582 (46%) [1259] 64 (21%) [305]
4 37 (2%) [1564] 35 (3%) [1259] 2 (1%) [305]
5 59 (4%) [1564] 29 (2%) [1259] 30 (10%) [305]

Highest initial creatinine (mg/dL) 1.7 (1.7) [1737] 1.5 (1.6) [1392] 2.3 (2) [345]
Highest initial white blood cell count (K/uL) 8.4 (6.7) [1750] 8.1 (6.9) [1405] 9.9 (5.5) [345]
Pneumonia indication on chest x-ray (yes) 1318 (78%) [1684] 1024 (77%) [1337] 294 (85%) [347]

BMI=body mass index, BPM=beats per minute, SD= standard deviation.
∗
n is the number of complete cases in the data for the given variable. Percentages are calculated as No./n.
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Table 3

Estimated risk of in-hospital mortality for ten example patients.

Example
patient

Creatinine
(mg/dL)

Age
(yrs)

Respiratory
rate

Pulse
oximetry

Estimated
risk

Patient 1 1 50 20 82% 7%
Patient 2 1 50 20 92% 5%
Patient 3 1 50 30 82% 11%
Patient 4 1 50 30 92% 8%
Patient 5 1 75 20 82% 24%
Patient 6 1 75 20 92% 18%
Patient 7 1 75 30 82% 35%
Patient 8 1 75 30 92% 27%
Patient 9 2 50 20 92% 8%
Patient 10 2 75 20 92% 28%
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of hypoxia as a symptom appeared predictive in the first steps of
forward selection (improving the AUC(w) by 3%), however we
chose to add vital signs before symptoms since they have
objectively measured values and before the triage score because
the vital signs are incorporated in that score. Once the vital signs
were added to the model, the marginal gain from adding hypoxia
and triage score (only improving AUC(w) by .7%–1%) was not
sufficient to warrant a more complicated model (see eAppendix
A, Supplemental Digital Content, http://links.lww.com/MD2/
A523). A number of factors that have appeared in other risk
models did not appear predictive in our model after controlling
for the hospital, for instance a patient’s body mass index, race,
and gender.
Thus, we predict risk of in-hospital mortality using a logistic

regression model with 5 covariates. We applied a spline basis
transformation to age, with knots at 35, 50, 65, and 80years, to
allow for a non-linear relationship with risk, and a log
transformation to creatinine level. Pulse oximetry on admission
was collected as “70% or less,” “71%–80%,” “81%–90%,”
and “91%–100%.” Respiratory rate was collected as “Abnor-
mal (20–24),” “Abnormal (25–30),” “Abnormal (greater than
30),” and “Normal (less than 20).” Table 2 reports the odds
ratios corresponding to the coefficients of this model, fit on the
derivation set (see Figure S4, Supplemental Digital Content,
http://links.lww.com/MD2/A524, for the age odds ratios). In a
logistic regression model, the odds (i.e., the probability of
mortality divided by the probability of survival) is estimated
by eb

0
X where b is a vector of coefficients and X is the matrix of

covariates. We estimate that the odds of mortality increases as
age, respiratory rate, and creatinine increases, and as pulse
oximetry decreases. See Table 3 for examples of the predicted risk
of mortality for 12 patients with different characteristics.
Table 2

Odds ratios associated with coefficients of final risk score model.

Factor Odds ratio 95% CI P

Age
∗

50 (referent) 1.00
30 0.28 (0.09–0.87)
40 0.53 (0.32–0.87)
60 1.87 (1.58–2.22)
70 3.26 (2.64–4.02)
80 5.26 (4.07–6.81)

Respiratory rate
Less than 20 (referent) 1.00
20–24 1.50 (1.06–2.12) .022
25–30 2.57 (1.68–3.93) <.001
Greater than 30 3.88 (2.42–6.23) <.001

Pulse oximetry
91%–100% (referent) 1.00
81%–90% 1.44 (1.00–2.07) .05
71%–80% 3.66 (1.81–7.42) <.001
70% or less 5.57 (2.22–13.92) <.001

Creatinine (log transformed) 2.29 (1.85–2.84) <.001
Hospital mortality rate (logit transformed) 2.81 (2.28–3.45) <.001
Constant 0.06 (0.02–0.14) <.001

CI= confidence interval, P=P value.
∗
We applied a spline transformation on age, however the spline regression coefficients are not

interpretable. Therefore, in this table we display the estimated odds ratios for different ages as
compared to 50 years as a reference age. The coefficients for the spline are significant with p-values
<.001. See Figure S4, Supplemental Digital Content, http://links.lww.com/MD2/A524, for an
illustration of the odds ratios and confidence intervals for age with 50 years as a reference age for the
full range of ages in the data.

5

3.3. Model validation

The AUC(w) for the model on the derivation set was .796 (95%
confidence interval, .767–.826). The model had similar discrimi-
nation on the validation set, with an AUC(w) of .829 (95%
confidence interval, .782–.876). The individual hospital AUC(w)

values for the validation set vary around .83 and show good
discrimination (see Fig. 1). We also found that the model shows
similar discrimination for Black and White patients as well as
male and female patients, although the discrimination is not as
strong for patients 75years or older (see eAppendix B,
Supplemental Digital Content and Table S4, Supplemental
Digital Content, http://links.lww.com/MD2/A529). We observe
good model calibration when using the individual hospital
mortality rates (see Fig. 2).

4. Discussion

Using a systematic variable selection approach, we built a simple
model that estimates the risk of in-hospital mortality for patients
hospitalized for COVID-19 with comparable discrimination to
more complex models. We performed external validation of the
model in 19 separate hospitals for our validation set. It is notable
that only age and a few vital signs and labs on hospital
presentation and the hospital specific COVID-19 mortality rate
are able to predict the risk of in-hospital mortality with high
discrimination. Further, our model can be used even when not all
variables are available to the user.
Age, creatinine, respiratory rate, and pulse oximetry have been

found to be associated with mortality in COVID-19 patients in
other studies with different populations, attesting to their validity
as outcome predictors.[2–5,7] Furthermore, the model was
developed and validated on data from 39 diverse hospitals from
different hospital systems, with variable size, urbanicity, profit
status, and academic affiliation. Because of the diversity of
hospitals included inMi-COVID19, we expect that our risk score
will generalize well to other hospitals, including those outside the
state of Michigan.
We diverge from previous models by including individual

hospital’s mortality rate for patients with COVID-19 in our
model. The inclusion of this variable controls for unmeasured
differences between hospitals, as well as the patient populations.
We expect including this indicator for each hospital helps control
for differing social determinants of health. We do find that after
conditioning on the hospital, a patient’s race is not predictive of
in-hospital mortality. If a user is uncertain about the current
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Figure 1. AUC(w) by hospital in the validation set with overall validation AUC(w). Hospitals V-J, V-R, and V-S are not included because they have observed COVID-19
mortality rates of 0% or 100%. AUC = area under the receiver operating characteristics curve, COVID-19 = 2019 novel coronavirus.
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mortality rate at their hospital, they can still calculate a risk of
mortality for a patient using our web application, as the mean
COVID-19 mortality rate in the data (20%) is used automatical-
ly. Additionally, a user can compare the risk of mortality between
patients within the same hospital without needing to know a
Figure 2. Observed COVID-19 mortality rate and average predicted risk of COVID
use the individual hospital mortality rate. COVID-19 = 2019 novel coronavirus.
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hospital COVID-19 mortality rate. The contribution of the
mortality rate to the prediction of mortality risk for each patient
can be thought of as adjusting the constant term in the model for
each hospital, based on previous understanding of the overall
risk of COVID-19 mortality at that hospital. In other words,
-19 mortality within each decile of predictions for the validation set. Predictions
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this is essentially incorporating a pre-test probability into the
model, which can be updated over time as the mortality rate at an
individual hospital changes.
Our study should be interpreted in the context of some

limitations. First, this is a retrospective observational study on
patients admitted to the hospital, so it is unclear how the model
may generalize to predict eventual outcomes for patients with
COVID-19 before hospital admittance. Second, the cutoffs used
in the factor variables such as pulse oximetry and respiratory rate
were decided before data abstraction occurred, and it is possible
that other or additional cutpoints may yield better prediction of
hospital mortality. In particular, a cut point of <95% SpO2 may
be beneficial as a marker of early disease not yet requiring
supplemental oxygen and should be the subject of future
investigation. Likewise, breakpoints <80% may not be helpful
since there is poor correlation with arterial oxygen at this level.
Third, many of the hospitalizations in our dataset were in
SoutheasternMichigan during the spring 2020 COVID-19 surge,
when many hospitals in this region were experiencing very high
patient volumes and treatment differed from current best
practices. For example, in March and April 2020, dexametha-
sone and remdesivir were used only rarely, while hydroxychlor-
oquine use was common. Thus, because our model was
developed and validated using data from the Spring 2020 surge,
it may overestimate the in-hospital mortality of patients treated in
non-surge settings and with current best practices. Importantly,
however, our model includes the hospital’s mortality rate for
COVID-19 as a predictor, such that the model automatically re-
calibrates over time. Furthermore, while in-hospital mortality has
changed over time in relation to patient volume and the
introduction of new therapies, we expect that age, respiratory
rate, pulse oximetry, and creatinine will remain important
predictors of in-hospital mortality for COVID-19, as these
variables are consistently identified for inclusion in risk-
prediction models. However, future studies that evaluate the
model discrimination and calibration for patients hospitalized
after the summer of 2020 will need to confirm that the model
performance does not degrade over time.
In sum, we developed a parsimonious risk-predictionmodel for

in-hospital mortality in patients fromCOVID-19. The use of data
from a statewide registry, systematic approach to variable
inclusion, and external validation should improve applicability in
diverse hospital settings.
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