
HDMF: Hierarchical Data Modeling Framework for Modern 
Science Data Standards

Andrew J. Tritt*,‖, Oliver Rübel*,‖, Benjamin Dichter†, Ryan Ly*, Donghe Kang‡, Edward F. 
Chang¶, Loren M. Frank§, Kristofer Bouchard†

*Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

†Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

‡Computer Science and Engineering, Ohio State University, Columbus, OH, USA

§Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of 
Physiology, University of California, San Francisco, San Francisco, CA,

¶Department of Neurological Surgery and the Center for Integrative Neuroscience, University of 
California, San Francisco, San Francisco, CA, USA

Abstract

A ubiquitous problem in aggregating data across different experimental and observational data 

sources is a lack of software infrastructure that enables flexible and extensible standardization 

of data and metadata. To address this challenge, we developed HDMF, a hierarchical data 

modeling framework for modern science data standards. With HDMF, we separate the process 

of data standardization into three main components: (1) data modeling and specification, (2) 

data I/O and storage, and (3) data interaction and data APIs. To enable standards to support the 

complex requirements and varying use cases throughout the data life cycle, HDMF provides object 

mapping infrastructure to insulate and integrate these various components. This approach supports 

the flexible development of data standards and extensions, optimized storage backends, and data 

APIs, while allowing the other components of the data standards ecosystem to remain stable. 

To meet the demands of modern, large-scale science data, HDMF provides advanced data I/O 

functionality for iterative data write, lazy data load, and parallel I/O. It also supports optimization 

of data storage via support for chunking, compression, linking, and modular data storage. We 

demonstrate the application of HDMF in practice to design NWB 2.0 [13], a modern data standard 

for collaborative science across the neurophysiology community.

ajtritt@lbl.gov .
‖These authors contributed equally to this work

Publisher's Disclaimer: Legal Disclaimer
Publisher's Disclaimer: This document was prepared as an account of work sponsored by the United States Government. While this 
document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of 
the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility 
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use 
would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the 
University of California

HHS Public Access
Author manuscript
Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

Published in final edited form as:
Proc IEEE Int Conf Big Data. 2019 December ; 2019: 165–179. doi:10.1109/
bigdata47090.2019.9005648.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Index Terms—

data standards; data modeling; data formats; HDF5; neurophysiology

I. Introduction

As technological advances continue to accelerate the volumes and variety of data being 

produced across scientific communities, data engineers and scientists must grapple with the 

arduous task of managing their data. A subtask to this broader challenge is the curation 

and organization of complex data. Within expansive scientific communities, this challenge 

is exacerbated by the idiosyncrasies of experimental design, leading to inconsistent and/or 

insufficient documentation, which in turn makes data difficult or impossible to interpret 

and share. A common solution to this problem is the adoption of a data schema, a formal 

description of the structure of data.

Proper data schemas ensure data completeness, allow for data to be archived, and 

facilitate tool development against a standard data structure. Despite the benefit to 

scientific communities, efforts to establish standards often fail. Diverse analysis tools and 

storage needs drive conflicting needs in data storage and API requirements, hindering 

the development and community-wide adoption of a common standard. Here, we present 

HDMF, a framework that addresses these problems by separating data standardization into 

three components: Data Specification, Data Storage, and Data Interaction. By creating 

interfaces between these components, we have created a modular system that allows users 

to easily modify these components without altering the others. We demonstrate the utility of 

HDMF by evaluating its use in the development of NWB, a data standard for storing and 

sharing neurophysiology data across the systems neuroscience community.

In this work, we first present an assessment of the state of the field (Sec. II) and common 

requirements for data standards (Sec. III). Motivated by these requirements, we then 

describe HDMF, a novel software architecture for hierarchical data standards that addresses 

key limitations of the current state of the art (Sec. IV). Finally, we assess this novel 

architecture and demonstrate its utility in building NWB 2.0, a community data standard for 

collaborative systems neuroscience (Sec. V).

II. Related Work

A. File Formats

File formats used in the scientific community vary broadly, ranging from: 1) basic formats 

that explicitly specify how data is laid out and formatted in binary or text data files 

(e.g., CSV, flat binary, etc.), 2) text files based on language standards, e.g., the Extensible 

Markup Language (XML) [3], JavaScript Object Notation (JSON) [6], or YAML [2], to 3) 

self-describing array-based formats and libraries, e.g., HDF5 [19], NetCDF [10], or Zarr 

[21]. While basic, explicit formats are common, they often suffer from a lack of portability, 

scalability and rigor in specification, and as such are not compliant with FAIR [20] 

data principles. Text-based standards, e.g., JSON, (in combination with character-encoding 

Tritt et al. Page 2

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



schema, e.g., ASCII or Unicode) are popular for standardizing documents for data exchange, 

particularly for relatively small, structured documents; however, they are impractical for 

storage and exchange of large, scientific data arrays. For storing large scientific data, self

describing, array-based formats, e.g., HDF5, have gained wide popularity in the scientific 

community.

B. Data Standards

Building on file formats, data standards specify the organization of data and metadata 

to enable standardized exchange, access, and use and to facilitate reuse, integration, and 

preservation of data assets. Tool-oriented data standards, e.g., VizSchema [16], NIX [17], 

XDMF [4], propose to bridge the gap between general-purpose, self-describing formats 

and the need for standardized tools via additional lightweight, low-level schema to further 

standardize the description of the low-level data organization to facilitate data exchange and 

tool development. However, such tool-oriented standards are still fairly low-level and often 

do not consider semantics of the data critical for applications.

Conversely, application-oriented data standards, such as NeXus [7], BRAINformat [11], or 

CXIDB [8] among many others, provide community-specific solutions that focus on the 

semantic organization of data for target applications. However, the approaches and tools 

developed do not generalize to other scientific communities.

III. Requirements

Data standards are central to all aspects of the data life-cycle, from data acquisition, 

pre-processing, and analysis to data publication, preservation, and reuse. A data standard 

must be flexible enough to accommodate the diversity of data types and metadata that 

arise throughout this cycle. Additionally, different use cases often emphasize different 

requirements. This leads to broad, and sometimes conflicting, requirements for data 

standards. Broadly speaking, requirements are driven by properties of and constraints on 

the data that need to be stored.

The 5 V’s of Big Data—volume, velocity, variety, value, and veracity—emphasize 

properties of the data itself, leading to strict requirements with regard to performance and 

flexibility of data standards. A data standard should be flexible enough to allow for the 

diversity of data generated by the scientific community. At the same time, it must not hinder 

scientists from storing and accessing large volumes of data. Providing this functionality 

requires that APIs for data access, I/O, and specification be decoupled in such a way that 

these attributes of big data can be properly addressed. For example, a standard should not be 

tied to a storage format that gives poor I/O performance nor a format that hinders interactive 

exploration.

FAIR data principles—findable, accessible, interoperable, reusable—aim to assist humans 

and machines in the discovery, access, and integration of data [20]. In contrast to the 

5 Vs, FAIR focuses on requirements for reusability of data. Achieving FAIRness goals 

requires that data and metadata be properly curated and documented, and that data and 

metadata be properly associated, both onerous tasks. To ensure that researchers adhere to 

Tritt et al. Page 3

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these principles, APIs for data access, I/O, and specification should simplify the process 

for including necessary documentation, have data documentation as a core capability, and 

facilitate machine and human readability.

IV. Software Architecture

The HDMF software architecture (see Fig. 1) consists of four main components:

i. specification interfaces (blue) for creation and use of the data standard schema 

(orange),

ii. data storage and I/O interfaces for read/write (green),

iii. front-end data containers defining the user API (purple), and

iv. a flexible object mapping API to insulate and integrate the different system 

components (red).

Through its modular architecture, HDMF supports:

i. specification and sharing of data standards (Sec. IV-A),

ii. advanced data storage, including multiple different storage backends (Sec. IV-B),

iii. design of easy-to-use user APIs (Sec. IV-C),

iv. flexible mapping between the specification, user APIs, and storage to insulate 

and integrate the various aspects of the system (Sec. IV-D), and

v. advanced I/O features to optimize data storage and I/O (Sec. IV-E).

HDMF is implemented in Python 3 (with 2.7.x support) and can be easily installed via the 

popular PIP and Conda package managers. All sources and documentation for HDMF are 

available online via GitHub at https://hdmf-dev.github.io/ using a BSD-style open source 

license.

A. Format Specification

A data standard describes the rules by which data is described and stored. In order to 

share, exchange, and understand scientific data, standards need to facilitate human and 

programmatic interpretation and formal verification. While use of text-based documents 

to describe standards is common, this approach is not scalable to increasingly complex 

data and impedes formal verification. To address this challenge, HDMF defines a formal 

language for specification of hierarchical data standards, i.e., a schema for defining 

hierarchical data schemas. This specification language enables the formal definition, 

programmatic interpretation, and verification of scientific data standards, as well as efficient 

sharing and versioning of standards documents.

1) Primitives: The HDMF specification language supports the following main primitives 

for defining data standards. A Group (similar to a folder) defines a collection of objects 

(subgroups, datasets, and links). A Dataset defines an n-dimensional array with associated 

data type and dimensions. An Attribute defines a small metadata dataset associated with a 

group or dataset. Attributes and datasets may store i) basic data types, e.g., strings (ASCII, 

Tritt et al. Page 4

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://hdmf-dev.github.io/


UTF-8) or numeric types (float, int, uint, bool, etc.), ii) flat compound data types similar 

to structs, iii) special types, e.g., ISO 8061 [5] datetime string, and iv) references to other 

objects.

2) Defining Reusable Data Types: To enable the modular specification and reuse of 

data standard components, HDMF supports the concept of data types. A group or dataset 

may be assigned a data type to support referencing and reuse of the types elsewhere 

in the specification. Types here are similar to the concept of a class in object-oriented 

programming. All components (groups, datasets, attributes, links) in a standard specification 

must have either a unique type or unique name within a type specification, ensuring a unique 

mapping between objects on disk to components of a standard specification. HDMF enables 

reuse of types through inheritance and composition via the keys: i) data_type_inc to include 

an existing type and ii) data_type_def to define a new type (Tab. I).

Using the HDMF specification language, a data standard schema typically defines a 

collection and organization of reusable types. This approach supports modular creation and 

extension of data standards through definition of new data types, while allowing new types 

to build on existing ones through inheritance and composition.

3) Data Referencing: In addition to the primitives described earlier, HDMF also 

supports the specification of Links to other types in the specification. Object references 
are similar to links but are stored as values of datasets or attributes (rather than objects inside 

groups). Using datasets of object references allows for efficient storage of large collections 

of references. Object references, like links, may point to datasets or groups with an assigned 

type. Finally, region references are similar to object references, but in contrast point to 

regions (i.e., select subsets) of datasets with an assigned type.

4) Namespaces: The concept of a namespace is used to collect all specifications 

corresponding to a data standard, to document high-level concepts, and to insulate standard 

specifications. Within a namespace, specified type names must be unique, while the 

same type name may be used in different namespaces. The namespace further documents 

metadata about a standard, e.g., the authors, description, and version. Using the concept of a 

namespace makes it easy to create new data standards, avoids collisions between standards 

and format extensions, and facilitates sharing, versioning, and dissemination of standards.

5) Specification API: HDMF provides a specification API for building and 

maintaining data type specifications. The specification API lets users progressively and 

programmatically build up data types and add them to namespaces. As these data types are 

definitions for groups and datasets, the specification API provides corresponding classes 

(i.e. GroupSpec and DatasetSpec) for building up these primitive objects into data type 

specifications. Additionally, the specification API provides AttributeSpec, LinkSpec, and 

RefSpec for specifying attributes, links, and references, respectively. After building up data 

type specifications and adding them to a namespace, users can serialize the namespace to 

YAML or JSON, which can be stored and used elsewhere.

Tritt et al. Page 5

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6) Tools: To validate files against a data standard, HDMF provides a built-in validator. 

Further, HDMF provides dedicated tools to automatically generate reStructuredText 

documentation and figures from a format specification.

B. Storage and I/O

The role of data I/O is to translate data primitives to and from storage. In practice, 

requirements of the storage backend vary depending on the particular use case, e.g., data 

archiving and publication emphasize FAIR principles, whereas data pipelines place more 

stringent demands on performance. Recognizing that no single storage modality can meet all 

requirements optimally, HDMF provides an abstract I/O interface to support integration of 

new I/O backends. The HDMF I/O interface consists of two main components: 1) Builders 

to describe data primitives (Sec. IV-B1) and 2) the HDMF I/O interface for reading/writing 

builders from/to storage (Sec. IV-B2). Leveraging this general design, HDMF implements a 

reference storage backend based on HDF5 (Sec. IV-B3), while providing the flexibility to 

add additional backends (see Sec. V-B).

1) Builder: Builders define intermediary objects for I/O and represent the main data 

primitives. HDMF defines a corresponding builder class for each primitive from the 

specification language, i.e., GroupBuilder, DatasetBuilder, LinkBuilder, ReferenceBuilder, 

RegionBuilder, etc. Builders provide a format-independent description of data objects for 

storage.

2) HDMF I/O: HDMFIO provides a general, abstract interface for creating new I/O 

backends. The role of the backend I/O is then to translate (i.e., read/write) builders to and 

from storage. The interface that new I/O backends need to implement consists of five main 

functions: the __init__(…) function to initialize the storage backend, the open() and close() 

functions to open and close the file (or connection to the storage, e.g., a database), the 

write_builder(builder) function to translate a given builder to storage, and the read_builder() 

function to load data from storage.

3) HDF5 I/O: HDMF provides HDF5IO, a reference implementation of a storage backend 

based on HDF5. As a concrete implementation of the abstract HDMFIO class, HDF5IO 

depends only on the Builders. As such, HDF5IO is agnostic to the data format specification 

and front-end API and supports read/write of any data format specified via the HDMF 

specification language. HDF5 was chosen as the main storage backend for HDMF because 

it meets a broad range of the fundamental requirements of scientific data standards. In 

particular, HDF5 is self-describing, portable, extensible, optimized for storage and I/O of 

large scientific data, and is supported by many programming languages and analysis tools.

C. User APIs

The role of the user API is to enable users to efficiently interact with data in memory and 

to provide usable interfaces for building user applications. HDMF uses an object-oriented 

approach toward user interfaces in which each type in the format specification is represented 

by a corresponding frontend container class.

Tritt et al. Page 6

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1) Containers: Containers are Python object representations of the data specified in a 

data type specification. Containers are endowed with an object ID and pointers to other 

containers to facilitate internal tracking of relationships, e.g. parent-child relationships. 

Apart from this, the base Container class provides no other functionality to the user 

to working with instances. Instead, it provides a base for users to add functionality 

associated with more specialized data types. The base Container class is generated from 

the metaclass ExtenderMeta, which provides decorators for designating routines to be used 

for programmatically defining behavior and functionality of Container subclasses.

2) Dynamic Containers: HDMF supports the dynamic generation of container classes 

to represent data types defined in a format specification. This functionality enables HDMF 

to read and write arbitrary data standards and extensions based on the format specification 

alone, i.e., without requiring users to write custom Container classes. Using dynamic 

containers allows users to easily prototype, evaluate, and share new data types and their 

definitions.

3) Data Validation: Ensuring compliance of data with the format specification is central 

to data standardization. This includes checking of data compliance at run-time during data 

generation as well as tools for post-hoc validation of files.

As a dynamically-typed language, Python does not enforce data types and only recently 

added support for type hints (which are also not enforced). To address this challenge, 

HDMF defines docval; a function decorator that allows documentation and type declaration 

for inputs and outputs of a function. Using docval, functions and methods can enforce 

variable types and generate standardized Sphinx-style docstrings for comprehensive API 

documentation.

HDMF also includes a user-friendly tool for post-hoc validation. Using the validator, a 

file can be checked for compliance to a given format specification to identify errors, such 

as missing objects or additional components in a file that are not governed by the given 

standard.

D. Object Mapping

The role of the object mapping (Fig 1, red) is to insulate and integrate the specification, 

storage, and user API components of HDMF. Using the format specification, the object 

mapping translates between front-end containers and data builders for I/O. Fig. 2 provides 

an overview of the main components of the object mapping API, consisting of the Object 

Mapper classes, the Type Map, and the Build Manager.

An Object Mapper maintains the mapping between frontend API container attributes and 

the data type specification components. Its role is to translate data containers using the 

format specification to builders for I/O and vice versa. For each type in the data standard, 

there exists a corresponding Container and ObjectMapper class. In many cases, the default 

ObjectMapper can be used, which implements a default mapping for: 1) objects in the 

specification to constructor arguments of the Container class and 2) Container attributes to 

specification objects. These mappings can be customized by creating a custom class that 

Tritt et al. Page 7

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inherits from the default ObjectMapper. To optimize storage and improve usability of the 

data API, the representation of data in memory as part of the container can differ from the 

organization of the data in a file. In this case, a direct mapping between Container attributes, 

Container constructor arguments, and specification data types may not be possible. To 

address this challenge, custom functions can be designated for setting Container constructor 

arguments or retrieving Container attributes.

The role of the Type Map then is to map between types in the format specification, 

Container classes, and Object Mapper classes. Using TypeMap instance methods, users 

specify which data type specification corresponds to a defined Container class and which 

Container class corresponds to a defined ObjectMapper class. By maintaining these 

mappings, a Type Map is then able to convert between all data types to and from their 

respective Container classes.

Finally, the BuildManager is responsible for memoizing Builders and Containers. To ensure 

a one-to-one correspondence between in-memory Container objects and stored data (as 

represented by Builder objects), the BuildManager maintains a map between Builder objects 

and Container objects, and only builds a Builder (from a Container) or constructs a 

Container (from a Builder) once, thereby maintaining data integrity.

E. Advanced Data I/O

Due to the large size of many experimental and observational datasets, efficient data read 

and write is essential. HDMF includes optional classes and functions that provide access 

to advanced I/O features for each storage backend. Our primary storage system, HDF5, 

supports several advanced I/O features:

1) Lazy Data Load: HDMF uses lazy data load, i.e., while HDMF constructs the full 

container hierarchy on read, the actual data from large arrays is loaded on request. This 

allows users to efficiently explore data files even if the data is too large to fit into main 

memory.

2) Data I/O Wrappers: Arrays, such as numpy ndarrays, can be wrapped using the 

HDMF DataIO class to define perdataset, backend-specific settings for write. To enable 

standard use of wrapped arrays, DataIO exposes the normal interface of the array. Using 

the concept of array wrappers allows HDMF to preserve the decoupling of the front-end 

API from the data storage backend, while providing users flexible control of advanced 

per-dataset storage optimization.

To optimize dataset I/O and storage when using HDF5 as the storage backend, HDMF 

provides the H5DataIO wrapper, which extends DataIO, and enables per-dataset chunking 

and I/O filters. Rather than storing an n-dimensional array as a contiguous block, chunking 

allows the user to split the data into sub-blocks (chunks) of a specified shape. By aligning 

chunks with typical read/write operations, chunking allows the user to accelerate I/O and 

optimize data storage. With chunking enabled, HDF5 also supports a range of I/O filters, 

e.g., gzip for compression. Chunking and I/O filters are applied transparently, i.e., to the user 

the data appears as a regular n-dimensional array independent of the storage options used.

Tritt et al. Page 8

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3) Iterative Data Write: In practice, data is often not readily available in memory, 

e.g., data may be acquired continuously over time or may simply be too large to fit into 

main memory. To address this challenge, HDMF supports writing of dataset iteratively, 

one data chunk at a time. A data chunk, represented by the DataChunk class, consists of 

a block of data and a selection describing the location of data in the target dataset. The 

AbstractDataChunkIterator class then defines the interface for iterating over data chunks. 

Users may define their own data chunk iterator classes, enabling arbitrary division of arrays 

into chunks and ordering of chunks in the iteration. HDMF provides a DataChunkIterator 

class, which implements the common case of iterating over an arbitrary dimension of an 

n-dimensional array. DataChunkIterator also supports wrapping of arbitrary Python iterators 

and generators and allows buffering of values to collect data in larger chunks for I/O.

4) Parallel I/O: The ability to access (read/write) data in parallel is paramount to enable 

science to efficiently utilize modern high-performance and cloud-based parallel compute 

resources and enable analysis of the ever-growing data volumes. HDMF supports the use 

of the Message Passing Interface (MPI) standard for parallel I/O via HDF5. In practice, 

experimental and observational data consists of a complex collection of small metadata (i.e, 

few MB to GB), with the bulk of the data volume appearing in a few large data arrays (e.g., 

raw recordings). In practice, parallel write is most appropriate for populating the largest 

arrays, while creation of the metadata structure is usually simpler and more efficient in 

serial. With HDMF, therefore, the initial structure of the file is created on a single node, 

and bulk arrays are subsequently populated in parallel. This use pattern has the advantage 

that it allows the user to maintain their workflow for creating files while providing explicit, 

fine-grained control over the parallel write for optimization. Similarly, on read, the object 

hierarchy is constructed on all ranks, while the actual data is loaded lazily in parallel on 

request.

5) Append: As scientific data is being processed and analyzed, a common need is to 

append (i.e., add new components) to a file. HDMF automatically records for all builders 

and containers whether they have been written or modified. On write, this allows the I/O 

backend to skip builders that have already been written previously and append only new 

builders.

6) Modular Data Storage: Separating data into different files according to a 

researcher’s needs is essential for efficient exploratory analysis of scientific data, as well 

as productionlevel processing of data. To facilitate this, HDMF allows users to reference 

objects stored in different files. By default, backend sources are automatically detected 

and corresponding external links are formed across files. For cases where this default 

functionality is not sufficient, the H5DataIO wrapper allows users to explicitly link to 

objects.

V. Evaluation

We demonstrate the application of HDMF in practice to design the NWB 2.0 [13] 

neurophysiology data standard. Developed as part of the US NIH BRAIN Initiative, the 

NWB data standard supports a broad range of neurophysiology data modalities, including 

Tritt et al. Page 9

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



extracellular and intracellular electrophysiology, optical physiology, behavior, stimulus, and 

experiment data and metadata. HDMF has been used to both design NWB 2.0 as well as to 

implement PyNWB, the Python reference API for NWB. Following the same basic steps as 

in the previous section, we first discuss the use of HDMF to specify the NWB data standard 

(Sec. V-A). Next, we demonstrate the use of the HDMF I/O layer to integrate Zarr as an 

alternate storage backend and show its application to store NWB files from a broad range of 

neurophysiology applications (Sec. V-B). We then discuss how HDMF facilitates the design 

of advanced user APIs (here, PyNWB; Sec. V-C). Finally, we demonstrate how HDMF 

facilitates the creation and use of format extensions (Sec. V-D) and show the application of 

the advanced data I/O features of HDMF to optimize storage and I/O of neurophysiology 

data (Sec. V-E).

A. Format Specification

Neurophysiology data consists of a wide range of data types, including recordings of 

electrical activity from brain areas over time, microscopy images of fluorescent activity 

from a brain areas over time, external stimuli, and behavioral measurements under different 

experimental conditions. A common theme among these various types of recordings is that 

they represent time series recordings in combination with complex metadata to describe 

experiments, data acquisition hardware, and annotations of features (e.g., regions of interest 

in an image) and events (e.g., neural spikes, experimental epochs, etc.). Because HDMF 

supports the reuse of data types through inheritance and composition, NWB defines a 

base TimeSeries data type consisting of a dataset of timestamps in seconds (or staring 

time and sampling rate for regularly sampled data), a dataset of measured traces, the unit 

of measurement, and a name and description of the data. TimeSeries then serves as the 

base type for more specialized time series types that extend or refine TimeSeries, such 

as ElectricalSeries for voltage data over time, ImageSeries for image data over time, 

SpatialSeries for positional data over time, among others. By supporting reusable and 

extensible data types, HDMF allows the NWB standard and its extensions to be described 

succinctly and modularly. In addition, NWB specifies generic types for column-based tables, 

ragged arrays, and several other specialized metadata types. On top of these modular types, 

NWB defines a hierarchical structure for organizing these types within a file. In total, the 

NWB standard defines 68 different types, which describe the vast majority of data and 

metadata used in neurophysiology experiments (see [13]).

NWB uses links to specify associations between data types. For example, the 

DecompositionSeries type, which represents the results of a spectral analysis of a time 

series, contains a link to the source time series of the analysis. A link can also point to a 

data type stored in an external file, which is often used for separating the results of different 

analyses from the raw data while maintaining the relationships between the results and 

the source data. As such, HDMF links facilitate documenting relationships and provenance 

while avoiding data duplication.

To model relationships between data and metadata and to annotate subsets of data, 

NWB uses object references. For example, neurophysiology experiments often consist of 

time series where only data at selected epochs of time are important for analysis, e.g. 

Tritt et al. Page 10

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the electrical activity of a neuron during a one second period immediately following 

presentation of stimuli. These epochs are stored as a dataset of object references to 

time series and indices into the time series data. HDMF object references provide an 

efficient way to specify the large datasets of metadata that are often required to understand 

neurophysiology data.

Because HDMF supports storage of format specifications as YAML/JSON text files, the 

NWB schema is version controlled and hosted publicly on GitHub [14]. Sphinx-based 

documentation for the standard is then automatically generated from the schema using 

HDMF documentation tools, and is version controlled and integrated with continuous 

documentation web services with minimal customization required. These features make 

updating the NWB schema and its documentation to a new version simple and transparent, 

while maintaining a detailed history of previous versions.

B. Data Storage

In practice, different storage formats are optimal for different applications, uses, and 

compute environments. As such, it is critical that users can use data standards across storage 

modalities. Using the HDMF abstract storage API, we demonstrate the integration of Zarr’s 

DirectoryStore with HDMF by defining the ZarrIO class (see Appendix F). The goal of this 

evaluation is to demonstrate feasibility and practical use of multiple storage backends via 

HDMF. However, it is beyond the scope of this manuscript to evaluate and compare HDF5 

and Zarr.

To integrate Zarr with HDMF and PyNWB, we only had to define new classes defining the 

backend, i.e., no modifications to the frontend container classes or the format specification 

were needed. As this example demonstrates, using the HDMF abstract storage API 

facilitates the integration of new storage backends and allows us to make new storage 

options broadly accessible to any application format built using HDMF.

Table II illustrates the use of the Zarr backend in practice. We converted four NWB files 

from the Allen Institute for Brain Science and one from the BouchardLab at LBNL from 

HDF5 to Zarr. We chose these datasets as they are very complex and allow us to cover a 

wide range of data sizes and NWB use cases, i.e., extracellular electrophysiology (D1, D4), 

intracellular electrophysiology (D2), as well as optical physiology and behavior (D3) (see 

also Appendix G).

As an example, Fig. 3a shows the conversion of dataset D2 from HDF5 to Zarr. Fig. 3b 

then shows a simple analysis to compare the same recording from the HDF5 and Zarr file, 

illustrating that both indeed store the same data (Fig. 3c). Importantly, as the front-end API 

is decoupled from the storage backend, we can use the same code to access and analyze the 

data, independent of whether it is stored via Zarr or HDF5.

C. Data API

Building on top of HDMF, the PyNWB Python package is used for reading and 

writing NWB files. PyNWB primarily consists of a set of HDMF Container classes and 

ObjectMappers to represent and map NWB types. PyNWB provides a modified base 

Tritt et al. Page 11

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Container class, NWBContainer, upon which the rest of the API is built. NWBContainer 

uses HDMFs ExtenderMeta metaclass decorators for defining functions that autogenerate 

setter and getter methods from parameterized macros, creating uniform functionality across 

the API and simplifying integration of new types. To ensure compliance of constructor 

arguments with the schema, PyNWB uses docval. Three main classes that exercise 

additional functionality of HDMF are NWBFile, TimeSeries, and DynamicTable.

1) NWBFile: The NWBFile data type is the top-level type in the NWB standard, which 

defines the hierarchical organization of all data types in a file. These data types, in the form 

of Containers, are added to the NWBFile object through automatically generated instance 

methods. These methods are generated using the parameterized macros provided by the base 

NWBContainer class.

Another notable feature of the NWBFile Container is the copy method, which allows 

users to create a shallow copy of an NWBFile Container. Leveraging the modular storage 

capabilities of HDMF, this copy method allows users to easily create an interface file, which 

does not store any large data itself, but contains external links to all objects in the original 

file. This is useful for storing the results of exploratory data analysis separate from the raw 

data.

2) TimeSeries: The TimeSeries Container represents the base TimeSeries type of the 

NWB data standard, which allows us to define a consistent base interface to all time series 

data in NWB. Neurophysiology experiments often use the same time axis for all time 

series data. To facilitate reuse of the same timestamps across different time series data, 

the timestamps of a TimeSeries Container can be defined as another TimeSeries object. 

To resolve this sharing, a custom ObjectMapper is used to override the base behavior for 

retrieving the timestamps from a given TimeSeries Container. This is done using decorators 

provided by ObjectMapper class in HDMF.

3) DynamicTable: The DynamicTable data type is a group that represents tabular data, 

where each column is stored as a dataset. Using different types of datasets (i.e. unique data 

types), a DynamicTable can store one-to-one and one-to-many relationships. The details for 

populating and working with these different types of datasets are all managed by custom add 

and retrieval instance methods of the DynamicTable Container class, thereby shielding the 

user from details of the format specification.

As the DynamicTable data type does not predefine specific columns, users can extend 

DynamicTable to provide a stable specification for certain types of tabular data. To simplify 

development of corresponding DynamicTable Container subclasses, the DynamicTable 

Container uses directives of the ExtenderMeta metaclass in HDMF to automatically define 

structure of the Container class.

D. Extensions

Scientific data standards, by necessity, evolve slower than scientific experiments, but rather 

emerge from common needs across experiments. As a result, there is often a gap between 

common practices supported by scientific standards and the data needs of bleeding-edge 

Tritt et al. Page 12

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



science experiments. To address this challenge, HDMF enables users to extend data 

standards, enabling the integration of new data types while facilitating use (and reuse) of 

best practice and existing standard components.

To demonstrate the creation and use of format extensions in practice, we show the extension 

of the NWB data standard for electrocorticography (ECoG) data. ECoG uses electrodes 

placed directly on the exposed surface of the brain to record electrical activity from the 

cerebral cortex (Fig. 4 left). To enable localization of electrodes on the brain surface, we 

create a format extension to store a triangle mesh describing the cortical surface of the brain 

(Fig. 4 right). Similar to how one would typically write data to disk, we use the HDMF 

specification API to specify all data objects (groups, datasets, and attributes) and data types 

for our extensions (Fig. 5). We then specify a new namespace and export our extensions. The 

result is a collection of YAML files that describe our extensions (see Appendix A).

Using the HDMF load_namespace method to load our extension and get_class method 

to automatically create a Python class to represent our new Surface data type, we can 

then then immediately write and read data using our extension (Fig. 6). The ability 

to read/write extension data purely based on the specification supports fast prototyping, 

evaluation, sharing, and persistence of extensions and data. To enable users to define custom 

functionality for extensions, e.g., to facilitate specialized queries and visualizations, HDMF 

supports the creation of custom container classes.

E. Data I/O

Next, we discuss the impact of HDMF’s advanced data I/O features for lazy data load, 

compression, iterative write, parallel I/O, append, and modular storage in practice.

1) Lazy Data Load: Lazy data load enables us to efficiently read large data files, while 

avoiding loading the whole file into main memory. To demonstrate the impact of lazy data 

load, we evaluate the performance and memory usage for reading the NWB files from Table 

II. Here, file read includes opening the HDF5 file and subsequent lazy read to construct all 

builders and containers. We performed the tests on a 2017 MacBook Pro using the profiling 

scripts shown in Appendix C. We repeated the file read 100 times for each file and report the 

mean times: D1) 0.16s, D2) 0.92s, D3) 0.31s, and D4) 0.22s. For memory usage, we observe 

that instantiating the NWBHDF5IO object requires ≈ 0.3MB for all files. The actual read 

then requires: D1) 4.1MB, D2) 11.9MB, D3) 4.7MB, and D4) 3.5MB. We observe that data 

read requires only a few MB and less than one second in all cases. Here, read performance 

and memory usage depend mainly on the number of objects in the file, rather than file size. 

In fact, D2 as the smallest file overall but with the most objects, requires the most time and 

memory on initial read.

2) Chunking: Chunking (and I/O filters, e.g., compression) allow us to optimize data 

layout for storage, read, and write. To illustrate the impact of chunking on read performance, 

we use as an example a dataset from file D4, which stores the frequency decomposition of 

an ECoG recording. The dataset consists of 916,385 timesteps for 128 electrodes and 54 

frequency bands. We store the data as a single binary block as well as using (32×128×54) 

chunks. We evaluate performance for reading random blocks in time consisting of 512 

Tritt et al. Page 13

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



consecutive time steps. We observe a mean read time of 0.179s without chunking and 0.012s 
with chunking, i.e., a ≈ 15× speed-up (see Appendix D). Design of optimal data layouts is a 

research area in itself and we refer the interested reader to the literature for details [1], [9], 

[12], [15], [18].

3) Compression: NWB uses GZIP for compression. GZIP is available with all HDF5 

deployments, ensuring that files are readable across compute systems. As shown in Table 

II, using GZIP we see compression ratios of 1.32×, 3.43×, 2.23×, and 1.18× for the four 

NWB files, respectively. Compression and chunking are applied transparently by HDF5 on 

a per-chunk basis. This ensures that we only need to de/compress chunks that we actually 

need and it allows users to interact with files the same way, independent of the storage 

optimizations used.

4) Iterative Data Write: Iterative data write allows us to optimize memory usage and 

I/O for large data, e.g., to avoid loading all data at once into memory during data import 

(Fig. 7a) and support streaming write during acquisition (Fig. 7b). By combining the 

iterative write approach with chunking and compression, we can further optimize both 

storage and I/O of sparse data and data with missing data blocks (Fig. 7c).

A common example in neurophysiology experiments is intervals of invalid observations, 

e.g., due to changes in the experiment. Using iterative data write allows us to write only 

blocks of valid observations to a file, and in turn reduce the cost for I/O. To illustrate this 

process, we implemented a Python iterator that yields a set of random values for valid 

timesteps and None for invalid times. For write, we then wrap the iterator using HDMFs 

DataChunkIterator, which in turn collects the data into data chunks for iterative write, while 

automatically omitting write of invalid chunks (see Appendix E). When using chunking in 

HDF5, chunks are allocated in the file when written to. Hence, chunks of the array that 

contain only invalid observations are never allocated. In our example, the full array has a 

size of 2569.42MB while only 1233.51MB of the total data are valid. The resulting NWB 

file in turn has a size of just 1239.07MB. In addition, iterative write can help to greatly 

reduce memory cost, since we only need to hold the chunks relevant for the current write 

in memory, rather than the full array. In our example, memory usage during write was only 

6.6MB.

5) Append: The process for appending to a file in HDMF consists of: 1) reading the 

file in append mode, 2) adding new containers to the file, and finally 3) writing the file as 

usual. Using this simple process allows us to easily add, e.g., results from data processing 

pipelines, to an existing data file. See Appendix B for a code example.

6) Modular Data Storage: HDMF’s support for modular storage, enables us to easily 

separate data from different acquisition, processing, and analysis stages across individual 

files. This approach is useful in practice to facilitate data management, avoid repeated file 

updates, and manage file sizes. At the same time, links are resolved transparently, enabling 

convenient access to all relevant data via a single file.

Tritt et al. Page 14

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VI. Conclusion

Creating data standards is as much a social challenge as it is a technical challenge. 

With stakeholders ranging from application scientists to data managers, analysts, software 

developers, administrators, and the broader public, it is critical that we enable stakeholders 

to focus on the data challenges that matter most to them while limiting conflict and 

facilitating collaboration. HDMF addresses this challenge by clearly defining and insulating 

data specification, storage, and interaction as the core technical components of the data 

standardization process. At the same time, HDMF supports the integration of these core 

components via its sophisticated data mapping capabilities. HDMF facilitates, in this way, 

the creation, expansion, and technical evolution of data standards while simultaneously 

shielding and enabling collaboration between stakeholders. The successful use of HDMF 

in developing NWB 2.0, a standard for diverse neurophysiology data, suggests that it may 

be suitable for addressing analogous problems in other experimental and observational 

sciences.

In the future, we plan to enhance the specification language and API of HDMF to support 

complex data constraints to define dimensions scales, dependencies between datasets (e.g., 

alignment of shape), and mutually exclusive groups of attributes and datasets. We also plan 

to further expand the integration of HDMF with common Python analysis tools.

Acknowledgments

The authors thank Nicholas Cain, Nile Graddis, Lydia Ng, and Thomas Braun for providing us with pre-release data 
from the Allen Institute for Brain Science. We thank Max Dougherty for providing us with the NSDS dataset. We 
thank the NWB Executive Board, Technical Advisory Board, and the whole NWB user and developer community 
for their support and enthusiasm in developing and promoting the NWB data standard.

This work was sponsored by the Kavli foundation. Research reported in this publication was supported by the 
National Institute of Mental Health of the National Institutes of Health under Award Number R24MH116922 to 
O. Rübel and by the Simons Foundation for the Global Brain grant 521921 to L. Frank. The content is solely 
the responsibility of the authors and does not necessarily represent the official views of the National Institutes of 
Health.

APPENDIX A

ECOG Extension Example

Sources for the ECoG extension used in the paper are available at: https://github.com/

bendichter/nwbext_ecog

Tritt et al. Page 15

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/bendichter/nwbext_ecog
https://github.com/bendichter/nwbext_ecog


Fig. A.1: 
Source YAML files with the complete specification for the ECoG extension used in Sec. 

V-D.

Tritt et al. Page 16

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



APPENDIX B

Appending To an existing file

Fig. B.1: 
Example illustrating the creation of an example NWB file (top) and process for appending a 

new SpatialSeries container to an existing file using HDMF (bottom).

Tritt et al. Page 17

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



APPENDIX C

Profiling Lazy Data Load

All tests for lazy data load were performed on a MacBook Pro with macOS 10.14.3, a 

4-core, 3.1 GHz Intel Core i7 processor, a 1TB SSD hardrive, and 16GB of main memory.

A. Profiling Memory Usage for Lazy Data Load

Fig. C.1: 
Evaluating the memory usage for lazy data load for the files listed in Tab. II.

Tritt et al. Page 18

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Profiling Time for Lazy Data Load

Fig. C.2: 
Evaluating read time for lazy data load for the files listed in Tab. II.

Tritt et al. Page 19

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



APPENDIX D

Profiling Chunking Performance

Fig. D.1: 
Code used to test chunking performance

Tritt et al. Page 20

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. D.2: 
Timing results for reading blocks in time with and without chunking.

Tritt et al. Page 21

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



APPENDIX E

Iterative Data Write

Fig. E.1: 
Code used to test iterative data write performance

Tritt et al. Page 22

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. E.2: 
Memory profiling results for iterative data write

Fig. E.3: 
File size comparison for writing of sparse data

APPENDIX F

ZarrIO Implementation Details

Similar to HDF5, Zarr allows us to directly map groups, datasets, and attributes from a 

format specification to corresponding storage types. Specifically, groups are mapped to 

folders on the filesystem, datasets are mapped to folders storing a flat binary file for 

each array chunk, and attributes are stored as JSON files. The latter requires that we take 

particular care when creating attributes to ensure the data is JSON serializable.

As Zarr does not natively support links and references, we define the ZarrReference class 

to store the path of the source file and referenced object. On write, we then determine 

the required paths for each reference and serialize the ZarrReference objects via JSON. To 

identify and resolve reference on read, we define the reserved attribute zarr_type.

Tritt et al. Page 23

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To support per-dataset I/O options (e.g, for chunking), we define ZarrDataIO. Like 

H5DataIO for HDF5, ZarrDataIO implements the HDMF DataIO class to wrap arrays for 

write to define I/O parameters.

Finally, NWBZarrIO extends our generic ZarrIO backend to setup the build manager and 

namespace for NWB.

APPENDIX G

Resources

All software and the majority of the data files used in the manuscript are available online. 

Here we summarize these resources.

A. Software

All software described in the manuscript is available online:

• HDMF: https://hdmf-dev.github.io/

• PyNWB: https://github.com/NeurodataWithoutBorders/pynwb

• ZarrIO: The Zarr I/O backend for HDMF and PyNWB are available online as 

part of the following pull requests:

– HDMF: https://github.com/hdmf-dev/hdmf/pull/98

– PyNWB: https://github.com/NeurodataWithoutBorders/pynwb/pull/

1018

B. Data

Datasets D1, D2, and D3 (see Tab. II) are available online from the Allen Institute for Brain 

Science at: http://download.alleninstitute.org/informatics-archive/prerelease/. Here we used 

the following files from this collection:

• (D1): ecephys_session_785402239.nwb is a passive viewing extracellular 

electrophysiology dataset,

• (D2): H19.28.012.11.05–2.nwb is an intracellular in-vitro electrophysiology 

dataset,

• (D3) behavior_ophys_session_783928214.nwb is a visual behavior calcium 

imaging dataset.

Dataset D4 refers to R70_B9.nwb from the Neural Systems and Data Science Lab 

(NSDS) led by Kristofer Bouchard at Lawrence Berkeley National Laboratory https://

bouchardlab.lbl.gov/. D4 is not available publicly yet.

In the case of (D2) as available online, compression is used for several datasets to reduce 

size. To gather data sizes without compression we used the h5repack tool available with the 

HDF5 library to remove compression from all datasets via h5repack -f NONE. To illustrate 

the potential impact of compression on file size we then used the h5repack to apply GZIP 

Tritt et al. Page 24

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://hdmf-dev.github.io/
https://github.com/NeurodataWithoutBorders/pynwb
https://github.com/hdmf-dev/hdmf/pull/98
https://github.com/NeurodataWithoutBorders/pynwb/pull/1018
https://github.com/NeurodataWithoutBorders/pynwb/pull/1018
http://download.alleninstitute.org/informatics-archive/prerelease/
https://bouchardlab.lbl.gov/
https://bouchardlab.lbl.gov/


compression to all datasets via h5repack -f GZIP=4. This approach allows us to assess the 

expected impact of compression on file size. Using h5repack provides us with a convenient 

tool to test compression settings for existing HDF5 files. In practice, when generating new 

data files, users will typically use HDMF directly to specify I/O filters on a per-dataset basis, 

which has the advantage that it allows us to optimize storage layout independently for each 

dataset.

References

[1]. Behzad B, Byna S, Prabhat, and Snir M. Optimizing i/o performance of hpc applications with 
autotuning. ACM Trans. Parallel Comput, 5(4):15:1–15:27, 3. 2019.

[2]. Ben-Kiki O, Evans C, and Ingerson B. Yaml ain’t markup language (yaml) version 1.2. yaml. org, 
Tech. Rep, page 23, 10 2009.

[3]. Bray T, Paoli J, Sperberg-McQueen C, Maler E, and Yergeau F. Extensible markup language 
(xml), 2008. [URL] http://www.w3.org/TR/2008/REC-xml-20081126/.

[4]. Clarke J and Mark E. Enhancements to the extensible data model and format (xdmf). In DoD 
High Performance Computing Modernization Program Users Group Conference, 2007, pages 
322–327, 6 2007.

[5]. Date and time format - ISO 8601 - An internationally accepted way to represent dates and times 
using numbers, 2019.

[6]. JSON: JavaScript Object Notation, 1999 – 2015. [URL] http://json.org/.

[7]. Klosowski P, Koennecke M, Tischler J, and Osborn R. Nexus: A common format for the exchange 
of neutron and synchroton data. Physica B: Condensed Matter, 241:151–153, 1997.

[8]. Maia FR. The coherent x-ray imaging data bank. Nature methods, 9(9):854–855, 2012. [PubMed: 
22936162] 

[9]. Nam B and Sussman A. Improving access to multi-dimensional self-describing scientific datasets. 
In CCGrid 2003. 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid, 
2003. Proceedings, pages 172–179, 5 2003.

[10]. Rew R and Davis G. NetCDF: an interface for scientific data access. Computer Graphics and 
Applications, IEEE, 10(4):76–82, 7 1990.

[11]. Rübel O, Dougherty M, Prabhat, Denes P, Conant D, Chang EF, and Bouchard K. Methods for 
specifying scientific data standards and modeling relationships with applications to neuroscience. 
Frontiers in Neuroinformatics, 10:48, 2016. [PubMed: 27867355] 

[12]. Rübel O, Greiner A, Cholia S, Louie K, Bethel EW, Northen TR, and Bowen BP. Openmsi: 
A high-performance web-based platform for mass spectrometry imaging. Analytical Chemistry, 
85(21):10354–10361, 2013. [PubMed: 24087878] 

[13]. Rübel O, Tritt A, Dichter B, Braun T, Cain N, Clack N, Davidson TJ, Dougherty M, Fillion
Robin J-C, Graddis N, Grauer M, Kiggins JT, Niu L, Ozturk D, Schroeder W, Soltesz I, Sommer 
FT, Svoboda K, Lydia N, Frank LM, and Bouchard K. NWB:N 2.0: An Accessible Data Standard 
for Neurophysiology. bioRxiv, 2019.

[14]. Rübel O, Tritt A, and et al. NWB:N Format Specification V 2.0.1, 7 2019. https://nwb
schema.readthedocs.io/en/latest/index.html [2019–0729].

[15]. Sarawagi S and Stonebraker M. Efficient organization of large multidimensional arrays. In 
Proceedings of 1994 IEEE 10th International Conference on Data Engineering, pages 328–336, 2 
1994.

[16]. Shasharina S, Cary JR, Veitzer S, Hamill P, Kruger S, Durant M, and Alexander DA. VizSchema–
Visualization Interface for Scientific Data. In IADIS International Conference, Computer 
Graphics, Visualization, Computer Vision and Image Processing, page 49, 2009.

[17]. Stoewer A, Kellner CJ, and Grewe J. NIX, 2019. [URL] https://github.com/G-Node/nix/wiki.

[18]. Tang H, Byna S, Harenberg S, Zou X, Zhang W, Wu K, Dong B, Rubel O, Bouchard K, Klasky 
S, and Samatova NF. Usage pattern-¨ driven dynamic data layout reorganization. In 2016 16th 

Tritt et al. Page 25

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.w3.org/TR/2008/REC-xml-20081126/
http://json.org/
https://nwb-schema.readthedocs.io/en/latest/index.html
https://nwb-schema.readthedocs.io/en/latest/index.html
https://github.com/G-Node/nix/wiki


IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 
356–365, 5 2016.

[19]. The HDF Group. Hierarchical Data Format, version 5, 1997–2015. [URL] http://
www.hdfgroup.org/HDF5/.

[20]. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, 
Boiten J-W, da Silva Santos LB, Bourne PE, et al. The fair guiding principles for scientific data 
management and stewardship. Scientific data, 3, 2016.

[21]. Dev Zarr. Zarr v. 2.3.2, 2019. [URL] https://zarr.readthedocs.io.

Tritt et al. Page 26

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://zarr.readthedocs.io


Fig. 1: 
Software architecture of HDMF (blue box). HDMF is designed to facilitate the creation of 

formal data standards (orange), advanced application APIs (top), and flexible integration 

with modern data storage (bottom right).

Tritt et al. Page 27

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2: 
Overview of the HDMF object mapping API. Object Mappers map between containers and 

builders while the Type Map maintains the mapping between data types and containers and 

containers and object mappers. Finally, the Build Manager manages the mapping process to 

construct containers and builders and memoizes builders and containers.

Tritt et al. Page 28

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: 
Example showing: (a) convert of dataset D2 (Tab. II) from HDF5 to Zarr and (b,c) use of the 

two files for analysis.

Tritt et al. Page 29

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4: 
Left: Visualization of the cortical surface of the brain showing the location of the electrodes 

of the ECoG recording device. Right: Format extension for storing a triangle mesh of the 

cortical surface.

Tritt et al. Page 30

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5: 
Example illustrating the creation of an extension for storing a mesh describing the cortical 

surface of the brain.

Tritt et al. Page 31

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6: 
Write (top) and read (bottom) ECoG extension data.

Tritt et al. Page 32

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7: 
Example applications of iterative data write.

Tritt et al. Page 33

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tritt et al. Page 34

TABLE I:

Defining and reusing types in a format specification.

data_type_inc data_type_def Description

not set not set Define a dataset/group without a type (the name must be fixed)

not set set Define a new type

set not set Include an existing type (i.e., composition)

set set Define a new type that inherits components of an existing type

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tritt et al. Page 35

TABLE II:

Overview of four NWB neurophysiology data files (top rows) stored in i) HDF5 without compression and with 

gzip compression enabled for all datasets, ii) Zarr, and iii) Zarr-C with automatic chunking enabled for all 

datasets.

(D1)
Allen
EPhys

(D2)
Allen
ICEphys

(D3)
Allen
OPhys

(D4)
NSDS
EPhys

Content

#Groups 30 142 41 33

#Datasets 49 604 83 69

#Attributes 251 1565 408 283

#Links 8 127 12 6

HDF5

#Files 1 1 1 1

Size 705MB 168MB 1,569MB 57,934MB

Size (gzip=4) 533MB 49MB 704MB 49,057MB

Zarr

#Folders 79 731 124 102

#Files 198 2045 320 263

Size 696MB 165MB 1565MB 57,925MB

Zarr-C

#Folders 79 731 124 102

#Files 622 2383 1153 12,799

Size 709MB 167MB 1584MB 59,579MB

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2021 October 08.


	Abstract
	Introduction
	Related Work
	File Formats
	Data Standards

	Requirements
	Software Architecture
	Format Specification
	Primitives:
	Defining Reusable Data Types:
	Data Referencing:
	Namespaces:
	Specification API:
	Tools:

	Storage and I/O
	Builder:
	HDMF I/O:
	HDF5 I/O:

	User APIs
	Containers:
	Dynamic Containers:
	Data Validation:

	Object Mapping
	Advanced Data I/O
	Lazy Data Load:
	Data I/O Wrappers:
	Iterative Data Write:
	Parallel I/O:
	Append:
	Modular Data Storage:


	Evaluation
	Format Specification
	Data Storage
	Data API
	NWBFile:
	TimeSeries:
	DynamicTable:

	Extensions
	Data I/O
	Lazy Data Load:
	Chunking:
	Compression:
	Iterative Data Write:
	Append:
	Modular Data Storage:


	Conclusion
	APPENDIX A
	Fig. A.1:
	APPENDIX B
	Fig. B.1:
	APPENDIX C
	Fig. C.1:
	Fig. C.2:
	APPENDIX D
	Fig. D.1:
	Fig. D.2:
	APPENDIX E
	Fig. E.1:
	Fig. E.2:
	Fig. E.3:
	APPENDIX F
	APPENDIX G
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	Fig. 6:
	Fig. 7:
	TABLE I:
	TABLE II:

