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Abstract

Human Immunodeficiency Virus type-1 (HIV-1) is the causative agent of AIDS. Its entry step is 

mediated by the envelope glycoprotein (Env). During the entry process, Env vastly changes its 

conformation. While non-liganded Env tends to have a closed structure, receptor-binding of Env 

opens its conformation, which leads to virus-cell membrane fusion. Single-molecule fluorescence 

resonance energy transfer (smFRET) imaging allows observation of these conformational changes 

on the virion surface. Nascent HIV-1 particles incorporate multiple host transmembrane proteins, 

some of which inhibit the entry process. The Env structure or its dynamics may determine 

the effectiveness of these antiviral mechanisms. Here, we review recent findings about the Env 

conformation changes on virus particles and inhibition of Env activities by virion-incorporated 

host transmembrane proteins.

Introduction

Human Immunodeficiency Virus type-1 (HIV-1) is the causative agent of Acquired 

Immunodeficiency Syndrome (AIDS). Currently over 38 million people in the world 

are living with HIV-1 (2020 https://www.who.int/news-room/fact-sheets/detail/hiv-aids). 

Combination antiretroviral therapy has allowed the control of viral loads in infected 

individuals and thereby the steady decrease of new HIV-1 infection and mortality. However, 

in the absence of effective vaccines and cure regimens, the emergence of drug-resistant 

mutant viruses and long-term effects of the current anti-HIV-1 drugs remain as major 

challenges to human health and society. The HIV-1 entry, mediated by the viral envelope 

glycoprotein Env, is one of the promising targets for the development of new antiretrovirals 

due to its importance in HIV-1 replication cycle. Detailed understanding of the native 

structure and dynamics of Env, the sole viral protein exposed on the surface of infectious 
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virus particles, is intensely pursued to help the efforts to develop vaccines and small 

compounds that block HIV-1 entry.

Overview of HIV-1 Entry

HIV-1 is a retrovirus that infects CD4+ T cells [1], macrophages [2], and dendritic cells [3]. 

HIV-1 entry consists of attachment of a virus particle to target cells and subsequent fusion of 

viral and target cell membranes. Both virus attachment and fusion are driven by Env. Env is 

synthesized as a precursor protein, gp160 and processed into the surface glycoprotein gp120 

and the transmembrane glycoprotein gp41. Heterodimers of gp120 and gp41 form the trimer, 

which is a functional unit on the surface of infectious virus particles [4]. Virus attachment is 

mediated by several cellular factors, but binding of gp120 to the host receptor CD4 is central 

to the attachment process on the surface of target cells [5]. The binding between gp120 

and CD4 triggers conformational changes in Env that allow for a subsequent interaction of 

gp120 with coreceptors CCR5 or CXCR4 [6–8]. This interaction induces extension of gp41 

and insertion of its N-terminal fusion peptide to the target cell membrane. Finally, gp41 

refolds into a hairpin-like conformation in a six-helix bundle structure, leading to fusion of 

viral and host cell membranes [7–9].

Coreceptor usage determines HIV-1 cell tropism. In early studies, HIV-1 strains efficiently 

replicating in T cell lines and macrophages were called T cell-tropic and macrophage-tropic 

(M-tropic) strains, respectively. Later, it was found that the viruses that grow efficiently in 

T cell lines use CXCR4 as the coreceptor, whereas M-tropic viruses utilize CCR5. Thus, 

the classification of HIV-1 into two types, X4 T cell-tropic and R5 M-tropic viruses, had 

been commonly used. However, since CCR5-using viruses also grow in primary CD4+ T 

cells, and not all CCR5-dependent virus isolates efficiently infect macrophages, the binary 

link between coreceptor usage (CXCR4 versus CCR5) and cell tropism (T cell versus 

macrophage) is no longer accepted. Currently, HIV-1 is classified into three types: (i) R5 

T cell-tropic, (ii) X4 T cell-tropic, and (iii) R5 M-tropic [10]. Most of HIV-1 isolated 

at early stages of infection is R5 T-tropic virus [11]. This type of viruses requires high 

levels of CD4 on the surface of target cells for fusion. Therefore, the major target of 

these viruses is CD4+ T cells but not macrophages, which express a low density of CD4 

compared to CD4+ T cells [12]. X4 T cell-tropic viruses emerge at late stages of HIV-1 

infection in a proportion of HIV-1-infected patients. This coreceptor switch correlates with 

disease progression and immune activation as evident from the increase in HLA-DR+ and 

HLA-DR+CD38+ populations in CD4+ T cells [13–16]. R5 M-tropic viruses are mainly 

detected in brain tissues and the cerebrospinal fluid [17,18]. These viruses are able to enter 

cells expressing a low density of CD4 on the surface (i.e. macrophages) efficiently [10]. 

To enable efficient entry into CD4low target cells, Env derived from these viruses binds to 

CD4 with a high affinity [19,20]. Thus, the adaptation to the low CD4 density determines 

the cell tropism of R5 viruses for macrophages versus primary CD4+ T cells. As for the 

choice of coreceptors (i.e. R5 versus X4), the gp120 V3 loop, which is exposed upon 

Env-CD4 binding [21,22] and forms a part of the interface in Env-coreceptor binding [23], 

is a major molecular determinant [24]. Mechanistic aspects of Env-coreceptor binding had 

been hampered due to the lack of structural information, but recent studies finally revealed 

the details of the gp120-coreceptor interactions [21,23,25,26].
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HIV-1 fusion takes place at multiple sites [27]. Early studies suggested that HIV-1 entry 

takes place at the plasma membrane based on the observations, among others, that HIV-1 

can fuse with target cells at neutral pH and that mutagenesis of the CD4 cytoplasmic tail that 

impairs ligand-induced internalization does not block HIV-1 infection [1,28,29]. However, 

more recent evidence obtained through inhibition of clathrin-mediated endocytosis, time

course analysis of surface accessibility of cell-associated viruses versus virus-cell fusion, 

and/or live cell imaging supports the contribution of virion endocytosis to HIV-1 infection 

[30–35]. Yet, whether endocytosis plays a role in productive HIV-1 entry into CD4+ T cells 

is still debated due to the contradictory results obtained with this cell type [30,35–37]. The 

cell activation status also seems to affect the frequency of virus fusion at endosomes in 

primary CD4+ T cells [30]. Macropinocytosis, a form of clathrin-independent endocytosis, 

has been shown to contribute to HIV-1 entry into macrophages [38,39], but the details 

remain to be elucidated [27].

Considering the importance of the HIV-1 entry step in virus replication cycle and hence in 

development of therapeutic and preventive strategies, it is not surprising that a tremendous 

amount of research has been performed on many aspects of HIV-1 entry. For more 

comprehensive understanding on HIV-1 entry, Env structures, and strategies to block the 

entry process, readers are directed to recent excellent reviews [5,40–42]. In the subsequent 

sections, we will highlight recent findings in two aspects of the entry process, the 

conformational dynamics of Env and the effects of virus-incorporated host proteins.

Conformational dynamics of Env

The Env trimer on the surface of infectious native virions is structurally flexible. Pre

fusion Env trimers are thought to adopt a closed structure, which, along with sequence 

variations and heavy glycosylation, is likely to allow HIV-1 to evade the host immune 

system because key functional regions of Env are hidden [43]. Once Env binds to CD4, the 

closed structure transitions toward an open conformation to expose the co-receptor binding 

site [21,22,44–47] (also see above). However, unliganded Env trimers also spontaneously 

transition between closed, open, and intermediate conformations.

Single-molecule fluorescence resonance energy transfer (smFRET) imaging performed 

using the total internal reflection fluorescence microscopy has allowed real-time monitoring 

of this conformational change of Env on the surface of native virions occurring in the 

milliseconds-to-seconds range [48–51]. Non-liganded Env on the native virions shows three 

distinct conformations, low-FRET (State 1), intermediate-FRET (State 3), and high-FRET 

(State 2) conformations (Figure 1) [48,52,53]. State 1 likely represents the pre-triggered 

closed conformation. State 2 is an intermediate conformation, which is also observed for 

the non-CD4-bound Env protomer in an asymmetric Env trimer where other protomer(s) is 

bound to CD4. State 3 is observed with the Env protomer bound to CD4 and hence likely to 

be in an open conformation.

Notably, non-liganded Env proteins of primary isolate strains JR-FL and BG505 display the 

signal for State 1 conformation more abundantly than Env of a lab-adapted HIV-1 strain 

NL4–3 [48,52]. Therefore, compared to the lab-adapted HIV-1 Env, Env trimers of the 
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primary isolates likely spend a longer time in closed structures in the absence of ligands. 

The dynamic nature of Env structures has implications in development of vaccines aimed at 

eliciting broadly neutralizing antibodies (bNAbs). As noted in the tier classification of HIV-1 

neutralization phenotypes [54], Env trimers that have open conformation as observed for 

lab adapted strains are readily blocked by non-bNAb antibodies (Tier 1A). In contrast, Env 

trimers of most circulating strains, which are the high priority target for bNAb vaccines, are 

associated with a predominantly closed conformation (Tier 2/3). Antibodies that neutralize 

Tier 1A viruses are often unable to neutralize Tier 2/3 viruses.

Transition of Env conformational states is likely to be mediated by various amino acid 

residues in gp120. Introducing an amino acid substitution in the V1/V2 loop or the β20-β21 

region of JR-FL gp120 reduces State 1 conformation and increases State 2 and State 3 

conformations [55,56]. These data in combination with the outcomes of other approaches 

indicate that the V1/V2 loops and the β20-β21 element, which are located at the trimer 

apex and near the CD4 contact site, respectively, play a role in maintaining the closed 

structure of Env. In addition, substitutions of specific amino acids in several regions of 

gp120 prevent transitioning of Env conformation from State 1 to State 2 and State 3 even 

when gp120 is bound to CD4 [57]. These and single particle cryoEM results identify the 

gp120 allosteric network that is involved in conformational changes of Env upon CD4 

binding. The smFRET assay has also revealed the conformational states of Env that is bound 

to bNAbs or HIV-1 entry inhibitors [48,53]. Binding of Env with most of bNAbs stabilizes 

State 1 conformation despite the fact that the bNAbs recognize different epitopes. Similarly, 

BMS-626539, one of HIV-1 entry inhibitors, also increases State 1 conformation of Env. 

Therefore, stabilization of State 1 and/or inhibition of the transition of Env from State 1 to 

downstream conformations is a promising strategy for inhibition of HIV-1 entry.

Inhibition of HIV-1 entry by virion-incorporated host transmembrane 

proteins

In addition to Env, HIV-1 particles incorporate various host transmembrane proteins 

during the assembly at the plasma membrane. When incorporated into virions, some 

of the transmembrane proteins, such as ICAM-1, can promote HIV-1 entry through 

interactions with receptors on the surface of target cells [58]. HIV-1 also incorporates 

transmembrane proteins that inhibit the HIV-1 entry step. Earlier studies showed that 

tetraspanin proteins, which are efficiently incorporated into HIV-1 particles and inhibit 

cell-cell fusion [59,60], suppress post-virus attachment entry step(s) in a strain-specific 

manner [61]. Recent studies have identified an increasing number of virion-incorporated 

host transmembrane proteins that inhibit HIV-1 entry process (Figure 2), including serine 

incorporators (SERINCs) [62,63], interferon inducible transmembrane (IFITM) proteins 

[64–66], P-selectin glycoprotein ligand-1 (PSGL-1), and CD43 [67,68].

SERINCs.

SERINCs are multipass transmembrane proteins. It was originally reported that these 

proteins play a role in serine incorporation and promoting phosphatidylserine (PS) and 

sphingomyelin biosynthesis [69]. At least SERINC3 and 5 are known to prevent HIV-1 
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infection, and SERINC5 has the stronger antiviral activity than SERINC3 [62,63]. SERINCs 

are counteracted by Nef, one of accessary proteins of HIV-1. In the absence of Nef, 

SERINCs are incorporated into progeny virions. The virion-incorporated SERINCs restrict 

HIV-1-cell fusion [62,63]. Although the exact molecular mechanism(s) by which SERINCs 

inhibit HIV-1 infection remains to be determined, SERINC5 reduces HIV-1 infectivity 

in a manner dependent on Env [62,63,70]. A correlation between the openness of Env 

trimer and the sensitivity to SERINCs (or Nef dependence) has been observed when 

Envs from different strains are compared [70–72]. Moreover, CD4, which induces open 

Env conformation (see above), was observed to sensitize a Tier 3 Env to SERINC5 [72]. 

Furthermore, the cytoplasmic tail (CT) of Env is required for the sensitivity to SERINC5 

[73]. Upon deletion of the CT, which is known to alter Env conformation [74], HIV-1 

is completely insensitive to SERINC5 [73]. Based on the sensitivity to neutralization by 

antibodies, the authors suggested that the CT-deleted Env may display a more closed 

conformation and thereby evade SERINC5-mediated inhibition [73]. However, the Env 

trimer propensity to adopt an open conformation as assessed by antibody neutralization does 

not appear to be the sole determinant for the SERINC sensitivity [75].

Approaches based on antibody binding also revealed that SERINC5 modifies the 

conformation of SERINC-sensitive Env on the surface of virions [76,77]. The changes in 

Env conformation include ones in gp41, perhaps leading to suppression of the fusion pore 

formation between viruses and target cells as well as spontaneous inactivation of Env [78]. 

Suppression of fusion pore formation by SERINCs is further examined in detail using the 

cryo-electron tomography of giant plasma membrane vesicles, which enabled observation of 

each step in the HIV-1 fusion process. This approach demonstrated that virion-incorporated 

SERINC3 and 5 stall HIV-1 fusion at the hemifusion and abnormal early fusion steps 

and inhibit opening of fusion pores [79]. Another line of investigation suggests a role for 

interactions between Env trimers; a 3D superresolution microscopy technique showed that 

SERINC5 blocks the formation of Env clusters on the surface of virus particles, which 

promotes efficient HIV-1 entry [80], without affecting Env incorporation [81]. The deletion 

of Env CT alters the distribution pattern of Env clusters [80], and Env clustering requires 

its interactions with cholesterol on the virus particles through the CT [82]. Therefore, 

considering that the CT-deleted Env is insensitive to SERINC5 [73], SERINC5 might affect 

the interactions of the Env CT with cholesterol directly or indirectly via changes in other 

lipids that interact with cholesterol. Nevertheless, the two restriction mechanisms, that is, 

the modification of Env conformation and the inhibition of Env clustering, are unlikely 

to require altering lipid composition of virus particles because lipid mass spectrometry 

revealed that SERINC5 does not affect steady-state lipid composition of virus-producing 

cells and virions [83]. However, SERINCs may still affect lipid clustering or inter-leaflet 

distribution in the viral envelop membrane. In addition, it is currently unknown whether 

these mechanisms postulated for the antiviral function of SERINC5 are mutually exclusive 

or not.

IFITMs.

IFITM proteins are small transmembrane proteins consisting of a transmembrane domain, 

a hydrophobic intra-membrane-associated domain, and an intervening highly conserved 
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intracellular loop [84,85]. Among IFITM proteins, IFITM1, 2, and 3 inhibit HIV-1 infection 

[84–86]. Earlier studies suggested that these IFITM proteins modulate fluidity or rigidity 

of target cell membranes, resulting in inhibition of virus-cell fusion [87–90]. Notably, 

it has been reported that CXCR4- and CCR5-dependent HIV-1 strains show different 

sensitivity to IFITM1 versus IFITM2/3; CXCR4-dependent viruses are more sensitive to 

IFITM2/3, whereas CCR5-requiring viruses are more susceptible to IFITM1 [91]. Since 

IFITM proteins show different subcellular localization patterns [91–93], it was suggested 

that the site of coreceptor-triggered HIV-1 fusion might correlate with the sensitivity to each 

IFITM protein [91]. Of note, endocytosis inhibitors diminish the inhibitory effect of IFITM2 

and 3 on infection of primary isolates, suggesting that the viruses utilize endocytosis for 

entry and that IFITM2 and IFITM3 could inhibit fusion to the endosomal membrane [91]. 

Transmitted/founder (T/F) viruses, which are isolated from recently infected patients and 

CCR5-dependent, are shown to be resistant to all IFITM proteins expressed in target cells 

[91,94,95]. However, the sensitivity of T/F viruses to restriction by IFITM proteins is a 

matter of debate; a more recent study showed that IFITM proteins in target cells inhibit 

infection of T/F viruses [96].

In addition to the role of IFITM proteins in target cells, IFITM proteins in virus-producing 

cells also attenuate HIV-1 fusion through inhibition of Env processing or when these 

proteins are incorporated into virions [64–66,97]. Therefore, IFITM proteins suppress HIV-1 

fusion in either target cells or virus-producing cells. Similar to SERINC5 [70], Env, in 

particular the V3 loop, determines the sensitivity to IFITM3 [94]. However, it appears that 

IFITM3 and SERINC5 target Envs that may differ in sampling of conformations. When a 

panel of Env isolates is compared for sensitivities to a CD4 blocking antibody and soluble 

CD4 (sCD4), which inform about the Env-CD4 binding affinity, SERINC5-sensitive Envs 

tend to show stronger CD4 binding, whereas no such correlation is observed between the 

IFITM3 sensitivity and CD4 binding [98]. Moreover, upon binding to a CD4 mimetic 

that stabilizes the open conformation [99], an Env isolate resistant to both SERINC5 and 

IFITM3 is sensitized markedly to SERINC5 but only modestly, if any, to IFITM3 [98]. 

The mechanism(s) by which the presence of IFITM proteins in virus-producing cells and/or 

progeny virus particles inhibits entry of progeny virions remains to be determined. While a 

reduction in virion-associated Env levels upon IFITM3 expression in virus-producing cells 

has been observed in some studies [94,97,100,101], others did not detect a difference in 

Env incorporation using different experimental systems [64,66,91,102]. Furthermore, even 

in the study where reduced Env incorporation is observed, the impact of IFITM3 on virion 

infectivity cannot be fully explained by the Env quantity in virions [100,101]. Whether 

virion-incorporated IFITM proteins affect viral membrane rigidity, as is shown to occur in 

target cells [89,90,101] or whether they alter other properties of the envelope membrane 

is unknown. However, virion incorporation of IFITM3 increases the sensitivity of Env to 

several neutralizing antibodies [102], suggesting that IFITM3 directly or indirectly affects 

the Env conformation on the virus particle surface.

PSGL-1 and CD43.

PSGL-1 is a mucin-like type I transmembrane glycoprotein, and CD43 is a sialomucin 

type I transmembrane glycoprotein [103–105]. These proteins are primarily expressed on 
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the surface of lymphocytes, mediating cell tethering and rolling through interactions with 

selectin family proteins to promote cell migration into inflamed tissue [106]. Both PSGL-1 

and CD43 are also known to prevent cell-cell interactions via its extended extracellular 

domains estimated to be 45–50 nm long [107–110]. We previously showed that PSGL-1 

and CD43 associate with HIV-1 structural protein Gag at the plasma membrane of virus

producing cells and get incorporated into nascent virions [111–113]. Later, both PSGL-1 

and CD43 were identified as antiviral factors that reduce infectivity of progeny virions 

when it is expressed by virus-producing cells [114,115]. These proteins share some of 

characteristics of restriction factors, such as a signature of positive selection during primate 

evolution [114,115] and downregulation upon HIV-1 infection [67,68,115–117]. Therefore, 

PSGL-1 and CD43 could potentially be classified as restriction factors. More recently, Fu 

et al. and our group discovered that virion-incorporated PSGL-1 and CD43 inhibit the 

HIV-1 entry step [67,68]. These studies revealed that unlike SERINCs and IFITM proteins 

in virus particles, PSGL-1 and CD43 suppress virus entry at the step of virus attachment 

to target cells and that they inhibit the attachment regardless of molecules mediating virus

cell binding. This inhibition requires the intact extended extracellular domain at least for 

PSGL-1. Since these extracellular domains are longer than combined length of receptor 

and ligand pairs mediating HIV-1-cell binding, these results suggest that virion-incorporated 

PSGL-1 and CD43 create a physical barrier that sterically prevents HIV-1 from binding to 

target cells or inserting its fusion peptide into the target cell membrane. Indeed, the cryo 

electron tomography in the presence of fusion inhibitors revealed that the distance between a 

target cell and cell-attached HIV-1 by extended pre-hairpin intermediate Env is 15.6±2.8 nm 

[118], that is, ~3 fold shorter than the lengths of PSGL-1 and CD43. Extracellular domains 

of PSGL-1 and CD43 are highly O-glycosylated [104,105,119], and the O-glycosylation is 

thought to contribute to the maintenance of the extended structure [120]. Other mucins and 

mucin-like proteins, such as CD164, PODXL1, PODXL2, CD34, TMEM123, and MUC1, 

have a similar structure, that is, highly O-glycosylated extended extracellular domains. 

These proteins, collectively termed SHREK proteins, are also incorporated into progeny 

HIV-1 and reduce HIV-1 infectivity at least in overexpression experiments [121]. These 

observations support the possibility that virion-incorporated transmembrane proteins that 

have the elongated extracellular domains can sterically hinder virus attachment to target 

cells.

As an additional mechanism, PSGL-1-mediated inhibition of Env incorporation into nascent 

virions at the plasma membrane has been proposed based on the experiments in which 293T 

or Jurkat cells were used as virus-producing cells [67,122]. Consistent with this possibility, 

in virus-producing Jurkat cells, PSGL-1 interacts with Env gp41 and alters the localization 

of gp41. However, in another study in which HIV-1 is produced from PBMCs, amounts of 

virion-incorporated PSGL-1 do not inversely correlate with amounts of Env in the virions 

[123]. Therefore, whether PSGL-1 affects Env incorporation into virions in primary CD4+ T 

cells warrants future investigation. Likewise, another proposed antiviral mechanism in which 

PSGL-1 inhibits actin depolymerization in the virions, thereby reducing virion infectivity 

[122], awaits validation using primary CD4+ T cells. Finally, PSGL-1 in target cells 

was suggested restrict HIV-1 reverse transcription through inhibition of actin disassembly 

[115,122]. However, another group observed that PSGL-1 expression in target cells did not 
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block any early HIV-1 replication step including reverse transcription [67]. Therefore, it 

remains to be determined which aspect of experimental conditions caused this discrepancy 

and to what extent PSGL-1 expressed in target cells inhibits reverse transcription under 

physiological conditions.

Concluding remarks

Understanding of conformational dynamics of Env on the virions is important not only 

for the development of neutralizing antibodies and antiretrovirals but also for elucidating 

the action of host-encoded antiviral proteins. The smFRET approach visualized real-time 

conformational dynamics of non-liganded and CD4-bound, antibody-bound, or small 

compound-bound Env trimer on the surface of native virions and defined the predominant 

conformation of the Env trimer in the milliseconds-to-seconds time scale. This technique 

identified the previously uncharacterized asymmetric intermediate state, key Env residues 

regulating the conformational transitioning of Env, and the conformational state of bNAb

bound or entry inhibitor-bound Env. The presence of asymmetric intermediate State 2 

suggests that Env trimers more intricately rearrange the conformation upon receptor and 

coreceptor binding during HIV-1 entry than we previously imagined. Further understanding 

of detailed mechanism(s) regulating conformational changes within an Env protomer and 

between protomers, the latter using different approaches [124], will potentially allow us to 

develop new entry inhibitors and vaccine strategies. It is also important to determine the 

high-resolution structure of State 1 Env, since it may explain the mechanisms of inhibition 

by bNAbs and an entry inhibitor, which stabilize this state. Notably, high-resolution 

structures of gp120 obtained thus far are largely based on a soluble Env trimer engineered 

for stabilization (SOSIP) [21,22,44,125–131], which was found to be in the State 2 

conformation [53].

Various virion-incorporated host transmembrane proteins that inhibit HIV-1 entry were 

recently identified. However, the molecular mechanism(s) by which these proteins suppress 

HIV-1 entry remain to be determined. For example, how SERINCs affect Env conformation 

and clustering is unclear. Whether IFITM proteins act on the behavior of Env trimers on 

the virus surface and whether they target Env in a specific conformation remain to be 

determined. Whether PSGL-1 and CD43 inhibit HIV-1 binding to target cells due to lengths 

or chemical properties of these proteins, for example, increased negative charge or heavy 

glycosylation, needs to be addressed. In addition, how these proteins get incorporated into 

infectious virus particles warrants future investigation. Elucidation of these mechanisms 

could offer insights into new therapeutic strategies.
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Figure 1. Conformational dynamics of the Env trimer.
smFRET imaging revealed three conformational states of Env protomers (State 1, State 2, 

and State 3). State 1 Env is likely to represent a non-liganded conformation in pre-triggered 

trimers that have a closed structure. State 2 represents an intermediate conformation, which 

is observed for the non-CD4-bound Env protomer in an asymmetric Env trimer where other 

protomer(s) is bound to CD4. State 3 Env is observed with the Env protomer bound to 

CD4, which has an open conformation. In non-liganded Env, the V1/V2 loop masks the V3 

loop that binds to coreceptors, CCR5 and CXCR4. Once CD4 binds to Env, the V3 loop 

is exposed. High-resolution structure of State 1 Env has not been determined. Created with 

BioRender.com.
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Figure 2. Inhibitory effect of antiviral proteins to HIV-1 entry steps.
SERINCs and IFITM proteins prevent fusion, and PSGL-1, CD43, mucins, and mucin-like 

proteins inhibit virus attachment to target cells. For clarity, coreceptors are not shown. 

Created with BioRender.com.
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