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Abstract

Secretion of cellular components across the plasma membrane is an essential process that enables 

organisms to interact with their environments. Production of extracellular vesicles in bacteria 

is a well-documented but poorly understood process. Outer membrane vesicles (OMVs) are 

produced in gram-negative bacteria by blebbing of the outer membrane. In addition to their roles 

in pathogenesis, cell-to-cell communication, and stress responses, OMVs play important roles in 

immunomodulation and the establishment and balance of the gut microbiota. In this review, we 

discuss the multiple roles of OMVs and the current knowledge of OMV biogenesis. We also 

discuss the growing and promising biotechnological applications of OMV.
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1. Introduction

Secretion of cellular components across the plasma membrane is an essential process that 

occurs in all life-forms, enabling organisms to interact with their environments. One way 

cells accomplish this is by secreting vesicles, which are spherical, nanosized structures 

derived from lipid membranes of the cell surface (21, 39). Production of extracellular 

vesicles is a well-documented process that takes place in gram-positive and gram-negative 

bacteria. Outer membrane vesicles (OMVs), which are released from the cell envelope of 

gram-negative bacteria, have been studied for more than 50 years. However, little is known 

about OMV biogenesis. In this review, we discuss the current knowledge of the biogenesis 

of OMVs in gram-negative bacteria, consider their roles in bacterium-host interactions, and 
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discuss their biotechnological applications. Finally, we briefly address some of the reasons 

why some researchers remain skeptical about the physiological roles of OMVs.

1.1. OMV Secretion and Its Discovery

OMV production was first observed in 1965 in an auxotrophic Escherichia coli strain that 

released significant amounts of cell-free lipopolysaccharides (LPS) under lysine-limiting 

growth conditions (17). Later, Knox and collaborators showed by electron microscopy that 

these secreted cell-free LPS elements were part of membrane structures and proposed 

that these vesicles were derived from the outer membrane (OM) (87). Rothfield & 

Pearlman-Kothencz (124) followed up these observations and showed that chloramphenicol 

exposure and amino acid starvation promote the secretion of these OM blebs in E. coli. 
Subsequent studies reported the observation and isolation of OMVs from different gram

negative bacteria, like Veillonella parvula (106), Vibrio cholerae (29), and Salmonella 
typhimurium (124). Despite the increasing evidence of OMV production by bacteria, OMVs 

were considered mere growth artifacts or cell lysis by-products for several years. Later, 

OMVs were observed in cerebrospinal fluid samples from patients with acute meningitis, 

suggesting that OMVs were not generated only in lab conditions (42). Since then, the 

biogenesis of OMVs and their roles have gained interest.

OMVs range between 20 and 300 nm and function as a versatile secretion and transport 

mechanism for bacterial cells (64). OMV composition in several species has been described 

and includes lipids, LPS and OM proteins as well as encapsulated periplasmic content. The 

presence of cytoplasmic elements, like DNA and RNA, has also been reported, but it is 

unclear how these elements are transported into the periplasm to be packed into OMVs (18, 

37). Analysis of OM and OMV fractions from different microorganisms revealed a distinct 

enrichment of proteins and lipids in each fraction (1, 45, 63, 66, 72, 78, 93, 105, 121, 131). 

These findings favor the hypotheses that bacteria possess specific sorting mechanisms and 

that OMV formation is a directed process and not the result of cell lysis.

2. OMV Roles

OMVs have been implicated in an array of physiological processes, including intracellular 

and extracellular communication, quorum sensing, horizontal gene transfer, interbacterial 

killing, toxin delivery, polysaccharide hydrolysis, and stress responses (64, 67, 102, 129) 

(Figure 1).

2.1. OMVs in Pathogenesis

OMVs have been linked to pathogenesis. They can serve as long-distance delivery 

vehicles that can promote host colonization and immune evasion. They carry an array 

of immunogenic molecules, such as LPS, flagellin, and peptidoglycan, which stimulate 

the host immune system through Toll-like receptors (TLRs) (13, 23a). OMV-associated 

molecules include virulence factors related to adherence, invasion, antimicrobial resistance, 

and modulation of host immunity. To highlight the role of OMV in pathogenesis, we discuss 

examples in further detail below.
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Enterotoxigenic E. coli (ETEC) is an important diarrheal pathogen that secretes several 

toxins, including heat-labile enterotoxin (LT) (72, 144). This toxin disrupts the electrolyte 

balance in the gut endothelium and has been detected in OMVs (72, 86). ETEC OMVs can 

also deliver the pore-forming cytotoxic protein cytolysin A (ClyA) (143). ClyA incorporated 

into OMVs has higher cytotoxicity compared to the purified toxin in a mammalian cell 

model (143). This finding has been attributed to an effect of the redox environment within 

the vesicles that allows ClyA oligomerization (143). Cytotoxic necrotizing factor type 1 

(CNF1) is a virulence factor produced by uropathogenic E. coli contained in OMVs (88). 

Once this toxin reaches the host cells, it alters actin cytoskeleton and promotes bacterial 

invasion of endothelial cells of the blood–brain barrier.

Early studies in the human dental pathogen Porphyromonas gingivalis also linked OMV 

secretion to pathogenesis. The main virulence factors of P. gingivalis, gingipains, are 

enriched in OMVs, which contributes to impairment of host cell function (66, 142). 

Moreover, hemagglutinins and heat shock proteins, which are mainly involved in host 

cell attachment and invasion, are also secreted as OMV cargo (10a). Consequently, OMV 

production increases bacterial adherence to host cells, stimulating bacterial aggregation and 

leading to the formation of dental plaque (46, 63, 80).

Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections 

mainly in immunocompromised patients (97). Its OMVs carry multiple virulence factors, 

including degradative and pore-forming molecules such as peptidoglycan hydrolase, 

phospholipase C, alkaline phosphatase, protease, elastase, and hemolysin (34, 78). 

Additionally, P. aeruginosa OMVs facilitate bacterial competition during infection, being 

able to kill gram-negative and gram-positive competitors in cocultures (79). Furthermore, P. 
aeruginosa elicits a potent destructive inflammatory response via combined sensing of both 

LPS and protein components (48). In vitro assays carried out in macrophages showed that 

OMVs led to a significant increase of MIP-2, TNF-α, IL-1, and IL-6 transcriptional levels 

compared to exposure to LPS alone.

S. typhimurium, the leading cause of gastroenteritis, also exploits OMVs to transport 

virulence factors. This bacterium is able to produce OMVs even during its intracellular life, 

secreting OMVs packed with cytolethal distending toxin inside infected epithelial cells (65). 

Interestingly, OMV biogenesis in S. typhimurium inside infected macrophages is triggered 

by the two-component system PhoPQ (44).

V. cholerae, the causative agent of cholera, produces cholera toxin (CT) as its main virulence 

factor (28). Although CT is primarily secreted by the type II secretion system (T2SS), 

OMVs serve as a secondary mechanism by which CT is secreted (28). In addition to CT, 

several other virulence factors have been linked to OMVs, such as the pore-forming toxin 

Vibrio cytolysin (117) as well as various serine proteases and metalloproteases (58, 123). 

These compounds were found to cause cytotoxicity and induce an inflammatory response in 

host cells (108). Moreover, this bacterium can alter the immunogenicity of OMV cargo by 

decreasing the expression of virulence factors through quorum sensing (16).
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2.2. OMVs in Commensalism

Gut microbiota–derived vesicles are an emerging topic of study and were first reported 

less than ten years ago (81, 130). The functionality of microbiota-derived OMVs varies 

greatly depending on the species releasing them. Proteomic studies on OMVs from gut 

commensal strains suggest that OMV-associated proteins contribute to modulating host 

immunity, promote host colonization, and act as public goods by degrading various carbon 

sources in the gut (1, 45, 119, 147).

Bacteroides is well known for secreting large amounts of OMVs and actively contributing to 

gut symbiosis (69, 130). These bacteria secrete glycosylases and proteases, which degrade 

complex polysaccharides and mucins (45, 69, 119). The generated degradation products can 

then be utilized as nutrient sources by any other members of the gut microbiota (45, 69, 

119). Thus, OMVs are considered public goods: Once OMVs are released, any member of 

the gut microbiota can benefit from their degradative activity. However, not all the OMV 

cargo fulfills this altruistic role. Recently, a family of peptide toxins that has broad-spectrum 

activity against Bacteroides has been found as OMV cargo. The genes encoding these toxins 

are widely distributed throughout the human gut microbiota (30, 36).

OMVs from commensal bacteria can also modulate the host innate immune system. 

For example, Bacteroides fragilis polysaccharide A triggers TLR-mediated signaling that 

attenuates host immune responses and promotes commensal gut colonization (103, 125). 

The constant and controlled immune stimulation mediated by OMVs from commensals in 

the gut is linked to intestinal health (23a, 107). This cross talk between microbiota and host 

cells constitutes a key process in maintaining gut homeostasis.

2.3. Production of OMVs by Plant Pathogens

OMVs have been investigated primarily in human pathogens and commensals. However, 

recent studies show that OMVs produced by plant pathogens perform similar functions (73, 

84, 134). Plant pathogens deliver virulence factors, such as T2SS effectors and xylanase, as 

OMV cargo (73, 111, 134). The innate immune system of plants recognizes and responds to 

purified OMVs from plant pathogens (7). Thus, when Arabidopsis thaliana seedlings were 

incubated with OMVs purified from several Xanthomonas species, three defense responses 

(defense gene activation, reactive oxygen species burst, and medium alkalinization) were 

modulated (7). Still, it remains unexplored whether OMVs play a role in plant symbiosis or 

in interkingdom cell-to-cell cross talk.

2.4. Other OMV Roles

OMV production is increased when cells are subjected to physical or chemical stress 

(3, 62, 96, 104). E. coli mutants lacking the proteases DegS and DegP exhibited a 

hypervesiculating phenotype, and the amount of vesicles released correlated with the level 

of protein accumulated in the cell envelope (104). Furthermore, the increased vesiculation 

enhanced bacterial survival upon challenge with stressing agents. These observations led 

to the hypothesis that vesicle overproduction is linked to the maintenance of the cell 

envelope (104, 136). Temperature is another factor that can modulate the amount of OMVs 

generated. In vitro, Serratia marcescens produced significant amounts of vesicles at 22°C 
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or 30°C, whereas it produced negligible quantities at 37°C (130). Moreover, inactivation 

of the synthesis of the enterobacterial common antigen resulted in hypervesiculation in 

this strain, and this hypervesiculating phenotype was reverted upon inactivation of the 

response regulator RcsB (130). Nutrient limitations have been also associated as a trigger for 

OMV production. For example, under sulphate-depleted conditions, Neisseria meningitidis 
increased its OMV biogenesis, while Haemophilus influenzae, V. cholerae, and E. coli 
increased OMV production under iron-limited conditions (57, 121).

OMVs can also act as decoys to confront and attenuate antibiotic activity. E. coli 
OMVs contributed to protection against the membrane-targeting antibiotics colistin and 

melittin (91). The protective effect was not limited to E. coli, as these purified E. coli 
OMVs provided protection against those antibiotics to P. aeruginosa and Acinetobacter 
radioresistens strains (91). However, the protective effect of the OMVs could not be 

extended to other antibiotics, like ciprofloxacin, streptomycin, and trimethoprim, indicating 

that OMVs appear to protect the bacterial community mainly against antibiotics targeting 

the membranes (91), possibly by sequestering and reducing the availability of the antibiotic. 

P. aeruginosa and other bacteria also secrete antibiotic-degrading enzymes like β-lactamases 

in OMVs (35, 59). Similarly, OMVs secreted by V. cholerae acted as decoys to increase 

resistance to antimicrobial peptides, such as polymyxin B and LL-37 (43). Furthermore, 

OMVs act as decoys during phage infections. OMVs irreversibly bind the phage, highly 

reducing their ability to infect the bacterial cell (96, 101).

Recent studies have suggested that OMVs can harbor DNA and different types of RNAs, 

mostly noncoding RNAs (18, 37, 60, 133). Intriguingly, many of these sequences align to 

intergenic noncoding regions of human DNA (27). The delivery of bacterial RNA through 

OMVs could exert epigenetic changes in host transcription (27). However, it remains unclear 

how these RNA molecules reach the periplasm prior to being packed inside OMVs.

OMVs are also pivotal in bacterial communication. Certain bacteria can regulate gene 

expression in response to quorum sensing. P. aeruginosa is able to secrete quinolone 

signal compounds [Pseudomonas quinolone signal (PQS)] through OMVs, which provide 

a protective environment to these highly hydrophobic molecules (102). PQS simultaneously 

stimulates OMV production by intercalating into the OM, generating a positive-feedback 

loop (51). As PQS is found at high concentrations in OMVs, the fusion of a single 

vesicle with a bacterial cell is enough to trigger the quorum sensing response. Hydrophobic 

signal molecules related to quorum sensing were also detected as OMV cargo in other 

microorganisms (20), thus suggesting a novel OMV-based mechanism for hydrophobic 

signal molecule trafficking.

3. Regulation and Biogenesis of Bacterial OMVs

Bacterial OMVs have been studied extensively for decades. However, researchers have not 

yet elucidated a definitive or universal mechanism to explain OMV production. Here, we 

address several biogenesis mechanisms proposed to explain how OMVs are formed (Figure 

2).
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3.1. Membrane Cross-Links and OMV Production

One of the earliest models for OMV formation linked OMV biogenesis to a decrease 

in OM–peptidoglycan cross-links at the site of vesicle formation (Figure 2b). Braun’s 

lipoprotein (Lpp), outer membrane protein A (OmpA), and components of the Tol–Pal 

complex are OM proteins found to be involved in this process. Lpp is an abundant OM 

protein in some bacteria that acts as a molecular staple, linking the OM to the peptidoglycan 

layer. Inactivation of lpp results in increased OMV production in P. aeruginosa, E. coli, and 

S. typhimurium (12, 145). However, lpp mutants have defects in the integrity of their OMs, 

so it is difficult to distinguish OMV production from cell damage.

OmpA is another OM protein that associates noncovalently with the underlying 

peptidoglycan layer. OmpA is a common component of OMVs (113, 139, 145). Regulation 

of OmpA impacts OMV production, and its deletion induces hypervesiculation in many 

bacterial species (113, 139, 145). In V. cholerae, the small noncoding RNA VrrA is 

suggested to modulate OMV production by acting as a negative regulator of OmpA. vrrA 
mutants were found to display a hypervesiculation phenotype likely due to decreased OM–

peptidoglycan interactions (135).

The Tol–Pal complex spans the inner membrane and OM of gram-negative bacteria and 

consists of five proteins, TolA, TolB, TolQ, TolR, and Pal (56). TolA, TolQ, and TolR form 

a complex in the inner membrane, whereas TolB is a periplasmic protein that interacts 

with Lpp, OmpA, and Pal (146). Pal is localized to the inner leaflet of the OM, where it 

interacts directly with the peptidoglycan layer and promotes membrane stability (56, 146). 

The Tol–Pal complex is proposed to have many functions; however, its best-characterized 

role is in cell division (56, 146). Tol–Pal proteins localize at invagination sites during cell 

division, and inactivation of the genes encoding these proteins leaves the cell unable to 

divide (56, 146). However, Tol–Pal mutants displayed increased bleb formation rates around 

invagination sites. It has been reported that the Tol–Pal complex is involved in producing 

OMVs at sites of cell division and that these OMVs are distinct from those generated at 

other sites on the cell (40).

3.2. Periplasmic Accumulation and OMV Production

It has been proposed that accumulation of periplasmic contents can induce vesicle formation 

(Figure 2a). For example, peptidoglycan fragments liberated in the periplasm during 

growth could exert turgor pressure on the OM, leading to vesicle production (149). 

Studies in P. gingivalis demonstrated that mutants lacking an autolysin displayed increased 

OMV production. Researchers explained this phenotype by claiming that the absence of 

the autolysin activity prevented P. gingivalis from degrading periplasmic peptidoglycan 

fragments, which accumulated in the periplasms, and were therefore expelled via OMVs 

(68). Misfolded proteins might also induce OMV production by exerting force on the 

membrane of bacteria with mutations in envelope stress pathways, since these cells were 

unable to degrade the proteins (128). This claim was supported by the fact that mutants 

grown at lower temperatures (30°C or 34°C), which cause less protein misfolding, produced 

OMVs at comparable rates to wild-type cells (104).
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3.3. Lipopolysaccharide Remodeling and OMV Production

Several reports have shown that altering LPS content impacts OMV production (Figure 2c). 

P. aeruginosa produces two LPS types containing different O-polysaccharides, the A-band 

LPS (neutral charge) and the B-band LPS (anionic charge). Remarkably, only B-band LPS 

has been detected in the vesicles (78). This finding has led to the hypothesis that OMVs are 

generated in regions where B-band LPS is more abundant and that the OM bends to alleviate 

the charge repulsion between them (78). Mutants that only produce B-band LPS were found 

to produce more OMVs than wild-type organisms and mutants only able to produce A-band 

LPS (114). However, the OMVs secreted by the wild-type and these mutant strains are 

different sizes, which indicates that the overproduction of OMVs by strains producing only 

the B-band LPS could be the result of an envelope stress–coping mechanism (110).

P. gingivalis also synthesizes two different O-antigen chains, the A-LPS (anionic charge) 

and the O-LPS (neutral charge). Contrary to LPS in P. aeruginosa, both LPS types are 

packed into P. gingivalis OMVs (66). Mutations affecting A-LPS synthesis or attachment 

of both O-antigens onto the lipid A core did not affect OMV biogenesis, and all bacteria 

with LPS mutations produced OMVs comparable in size to wild-type OMVs (66). Even 

though P. gingivalis packs both types of LPS into OMVs, the lipid A compositions of 

the OM and OMVs are different (66). The lipid A sorted into OMVs is deacylated 

compared to those in the OM, suggesting that OMVs are generated in specific OM 

regions because of compartmentalization or remodeling of the OM (67). In this model, 

lipid A deacylation alters the configuration of LPS, increasing the membrane curvature 

and consequently inducing OMV production. When the lipid A deacylase PagL was 

overexpressed in S. typhimurium, deacylated lipid A was preferentially packed into OMVs, 

which subsequently increased OMV production (44). PagL is tightly regulated and is 

expressed inside macrophages (112). Upon macrophage infection, PagL is required for 

OMV formation by intracellular S. typhimurium (44). Given that most lipid A–modification 

enzymes, such as PagL, are not expressed in the lab, which is where samples are extracted 

for lipid A analysis, it is possible that other bacteria produce OMVs with deacylated lipid A 

during infection.

3.4. OMV Production and the Bilayer-Couple Model

The bilayer-couple model describes a mechanism where membrane curvature is initiated by 

the insertion of biomolecules into the outer leaflet of the OM (Figure 2d,e). This is proposed 

to cause the outer leaflet to expand faster than the inner leaflet, resulting in blebbing of the 

OM and formation of OMVs (126). This model has been extensively studied in P. aeruginosa 
(Figure 2e); however, a similar mechanism involving VacJ/Yrb ATP-binding cassette (ABC) 

transport has been investigated in other species (Figure 2d).

As previously mentioned, the molecule PQS is enriched in OMVs produced by P. 
aeruginosa, and reduced OMV production was found in PQS-deficient mutants (102). 

Subsequent studies found that PQS stimulates OMV production when it is secreted from 

the cell and intercalated into the OM (51). PQS insertion causes the OM to expand rapidly, 

resulting in vesicle formation (126) (Figure 2e). This mechanism appears to be limited to P. 
aeruginosa and related species that produce PQS (71).
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V. cholerae OMVs are enriched in phospholipids and carry large amount of enzymes 

associated with phospholipid biosynthesis (121). It has been proposed that OMVs are 

formed as a result of accumulation of phospholipids in the OM, forcing blebbing of 

the membrane (121). The VacJ/Yrb ABC transport system is involved in the carriage of 

phospholipids from the OM (99). Disruption of this system promotes OMV overproduction 

(99, 121). Similar results have been reported for Chromobacterium violaceum, where 

VacJ/Yrb mutants hypervesiculated (10). Loss of VacJ/Yrb causes an accumulation of 

phospholipids in the outer leaflet of the OM, which leads to OM expansion and, 

subsequently, vesicle formation (121) (Figure 2d). Accordingly, OMVs from VacJ/Yrb 

mutants contain twice as many phospholipids as wild-type OMVs (121). In addition, during 

iron-limited conditions, the VacJ/Yrb ABC transporter is downregulated by the ferric uptake 

regulator, causing a hypervesiculation phenotype in H. influenzae, V. cholerae, and E. coli 
(121). Moreover, regulation of VacJ/Yrb modulated OMV production in the presence of 

the bile salt sodium taurocholate (38, 49). Since the VacJ/Yrb pathway has been shown to 

impact OMV production under various conditions and in various organisms, this mechanism 

of OMV biogenesis could serve as a general way to stimulate OMV production.

3.5. Proposed OMV Cargo Selection Mechanisms

Enrichment of specific protein and lipid cargo is an essential characteristic of OMVs. 

Vesicles from pathogenic bacteria like P. aeruginosa, V. cholerae, P. gingivalis, and 

ETEC have been shown to selectively pack virulence factors (19, 72, 78). OMVs from 

commensal Bacteroides are enriched with glycoside hydrolases that enable the degradation 

of environmental polysaccharides (45). Similarly, those from the predatory bacterium 

Myxococcus xanthus are enriched in acidic hydrolases and alkaline phosphatases, which aid 

the microbe in killing other environmental bacteria (11). The observed OMV cargo selection 

requires extensive OM compartmentalization to generate patches in the OM regions from 

which OMVs are secreted. In P. gingivalis, intact LPS is required to achieve proper cargo 

selection (66). Mutant strains deficient in the synthesis of A-LPS produced OMVs with 

aberrant cargo, packing a few additional proteins. Interactions of proteins with A-LPS 

could shape the OM by partitioning proteins into OMVs or excluding them from OMVs 

(66). This interaction may be direct, in which case the OMV-specific proteins could have 

a domain to recognize and interact with the O-antigen, promoting compartmentalization 

of the OM. Alternatively, the interaction could be mediated by a yet unknown sorting 

factor, which would recruit the protein to the O-antigen-enriched region in the OMV. 

This proposed mechanism has an uncanny resemblance to the role of galectin in protein 

sorting in exosomes (41). In agreement with the sorting model, B. fragilis and Bacteroides 
thetaiotaomicron utilize conserved protein sequences to specifically direct proteins to OMVs 

(45). The OMVs of these organisms are enriched in a large subset of OMV-unique proteins, 

which were found to be acidic lipoproteins (negatively charged), while the majority of the 

OM proteins, β-barrel proteins, are positively charged (45). In Bacteroidetes, lipoproteins 

enriched in OMVs were found to contain a conserved, negatively charged amino acid motif 

known as the LES (lipoprotein export signal) domain (140). This domain is required for 

surface exposure of lipoproteins in Bacteroidetes (94). When it was mutated, lipoproteins 

were less efficiently packaged into OMVs and were retained in the OM fraction (140). 

Although many studies have analyzed the OMV proteomes from different bacteria, this is 
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the first time that a specific signal was shown to be linked to an OMV protein-sorting 

mechanism (140).

4. Mechanisms of OMV Entry into Host Cells

OMVs are long-distance delivery systems; however, the molecular mechanisms underlying 

OMV internalization and cargo delivery into host cells are not fully understood. Two 

pathways have been proposed: (a) direct cargo delivery via fusion to host cell membranes 

and (b) OMV internalization via the endocytic pathway (19, 53, 86, 115). During direct 

cargo delivery, OMV fusion to host cell lipid rafts induces actin remodeling to allow OMV 

soluble cargo to diffuse directly into the host cytoplasm. This is the mechanism proposed for 

P. aeruginosa, Legionella pneumophila, and Aggregatibacter actinomycetemcomitans OMVs 

(19, 75a, 122). Alternatively, delivery of OMVs is facilitated by diverse mechanisms of 

endocytosis, including clathrin-mediated endocytosis, caveola-mediated endocytosis, and 

clathrin- and caveola-independent endocytosis. After OMVs have bound to lipid rafts, 

they are internalized through one of many endocytic pathways (19, 53, 86, 116). The 

pathway employed is organism-, or even strain-dependent (19, 53, 86, 116). For example, 

OMVs derived from Helicobacter pylori, E. coli O157, non-O157 Enterohemorrhagic E. coli 
(EHEC), and nonpathogenic E. coli strains are internalized by clathrin-mediated endocytosis 

(15, 49a, 92), whereas the internalization of OMVs from ETEC, V. cholerae, P. aeruginosa, 

and A. actinomycetemcomitans depends on caveola-mediated endocytosis (19, 28, 82, 86, 

122). Finally, P. gingivalis OMVs are internalized via clathrin- and caveola-independent 

endocytosis (53). Upon entry, the OMV can follow multiple fates inside the host trafficking 

network. ETEC OMVs containing LT accumulate in nonacidified compartments (86), 

whereas P. gingivalis and E. coli O157 OMVs and nonpathogenic OMVs are routed to 

the early endosome, followed by sorting to lysosomal compartments (14, 53, 75).

OMV size and cargo could determine which mechanism(s) of entry into the host cells 

is employed (76, 83, 104, 137). OMVs from pathogenic E. coli strains are internalized 

approximately 30% more rapidly and efficiently than those of nonpathogenic E. coli strains 

(116). Similarly, OMVs produced and secreted by mutant strains lacking one virulence 

factor, such as LT, Cif, or gingipains, cannot fuse with or enter host cells (19, 53, 86). 

Furthermore, a reduced OMV entry ratio was observed in strains lacking O-antigen (116). 

Smaller OMVs preferentially enter epithelial cells via caveola-mediated endocytosis (137). 

These findings suggest that the kinetics of entry are cargo dependent; proteins and/or LPS 

carried by OMVs probably interacts with or bind to receptors present on the lipids rafts that 

promote OMV attachment and entry (19, 53, 86, 116).

5. OMVs as a Platform for Biotechnological Applications

In recent years, OMVs have gained attention as a platform for biotechnological applications. 

Such applications take advantage of the fact that OMVs contain bacterium-derived 

antigens and multiple pathogen-associated molecular patterns (PAMPs) and can modulate 

the immune system. The best-known biotechnological application is the use of OMVs 

as vaccines (141)(106a). However, other applications have been proposed, such as drug

delivery systems (95).
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5.1. OMVs as Vaccines

By mimicking a pathogen but not causing the related diseases, vaccines induce humoral 

(antibody-mediated) and/or cellular (immune cell– and cytokine-mediated) immunity and 

dramatically decrease infection and illness rates. As OMVs are non-replicative entities that 

mimic immunogenic properties of the producing bacteria, they are an attractive vaccine 

platform. Further advantages of OMVs are their size, which enables their entry into lymph 

vessels and uptake by antigen-presenting cells (APCs) (48). In addition, OMVs have 

natural adjuvant properties that strongly stimulate the innate and, more importantly, the 

adaptive immune responses (47, 141). The high stability of OMVs upon exposure to high 

temperatures and several chemical treatments further points to them as attractive vaccine 

candidates (4). Two types of OMV-based vaccines have been described: natural OMV and 

bioengineered OMVs.

5.1.1. Naturally secreted OMV-based vaccines.—The vaccines against N. 
meningitidis group B (MenB) are the most representative and successful OMV-based 

vaccines developed to date. In the last 25 years, these vaccines have been developed and 

employed to combat outbreaks in various countries (70) (see the sidebar titled Overview of 

OMV-Based MenB Vaccines). OMV-based vaccines against V. cholerae, S. typhimurium, 

and Shigella flexneri have been investigated in animal models, but none has progressed to 

clinical trials (2, 23, 127).

OMVs have the intrinsic capacity to act as adjuvants. The immunogenic properties of OMV 

cargo lead to protective mucosal and systemic bactericidal antibody responses. OMVs can 

easily be phagocytized and processed by APCs, including dendritic cells (48). Then, the 

OMV-delivered antigens are presented by APCs to CD4+ T cells, leading to the generation 

of antigen-specific B cell responses (47, 141)(100, 106a). LPS, a major component of 

OMVs, is a potent activator of immune cells, such as monocytes/macrophages. Specific 

recognition by the TLR4/MD2 receptor on these cells triggers NF-κB- and IRF3-dependent 

gene expression (98, 100). However, this inflammatory activation can also result in high 

vaccine reactogenicity. In addition to LPS, OMVs carry lipoproteins that are recognized by 

TLR2 and also modulate and activate innate immunity (89, 100).

Despite a few successful examples, some disadvantages of vaccines based on naturally 

released OMVs need to be overcome before they are widely employed. The main concern 

is safety. OMVs contain lipid A, an endotoxic component of LPS that can provoke a 

severe, even lethal, inflammatory response in the host (112). Furthermore, OMV cargo 

varies between strains, which may in some cases limit their applicability to a specific 

subset of strains. Finally, many strains secrete low amounts of OMVs, which means that 

large volumes of pathogenic bacteria are needed. In the last decade, bioengineering of 

OMV-producing bacteria has substantially progressed to address these concerns.

5.1.2. Bioengineered OMV–based vaccines.—Bioengineered OMV–carrying, 

heterologous recombinant proteins expressed in lab strains have shown potential. One 

strategy to effectively direct heterologous antigens to the surface of the OMV is to fuse 

them with native OMV proteins. Many groups have selected ClyA from E. coli as the 
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fusion partner to deliver exogenous proteins to OMVs (31, 55, 143). For example, ClyA 

has been fused to green fluorescent protein (GFP), to the ectodomain of the influenza 

A matrix protein 2 (M2), and to the domain 4 moiety of Bacillus anthracis protective 

antigen (31, 55, 120). As an alternative, antigens can be overexpressed and directed to the 

periplasmic space, where they will be entrapped and packed into the OMV lumen (85, 

109). Several proteins from Streptococcus have been fused to the signal peptide of E. coli 
OmpA, and once in the periplasm, they were successfully packed into OMVs (50). A similar 

approach was employed to generate E. coli OMVs carrying the Chlamydia muridarum 
protein HtrA (9). Even though these proteins were not surface exposed, they were able to 

elicit antigen-specific antibody responses (9, 50, 109). The IgG antibodies generated had 

excellent functional activity in terms of bacterial opsonophagocytic killing and protection in 

murine lethal infectious challenge assays (50, 109).

Capsular polysaccharides (CPS) and LPS, which decorate the cell surfaces of pathogenic 

bacteria, are also good vaccine antigens. Unfortunately, vaccines consisting solely of 

polysaccharides typically promote T cell–independent immune responses, which do not 

include IgM-to-IgG class switch and fail to generate immunological memory (6). A common 

strategy to trigger immunological memory is to covalently couple the polysaccharide to a 

carrier. Capsule and O-antigen biosynthesis gene clusters from pathogenic bacteria can be 

transferred into E. coli lab strains. These glycoengineering techniques can be employed 

to display the glycans of choice as recombinant LPS in nonpathogenic bacteria. The 

glycoengineered OMVs can be purified and employed directly as conjugate vaccines. 

Streptococcus pneumoniae capsule (Sp-CPS) gene cluster was expressed in E. coli. There, 

Sp-CPS was attached to the lipid A core and displayed on the bacterial surface and 

glycoengineered OMVs (118). These glycoengineered OMVs raised specific IgG antibodies 

against Sp-CPS in immunized mice and were shown effective in opsonophagocytosis assays 

(118). In another example, the Francisella tularensis O-antigen polysaccharide gene cluster 

was also successfully expressed in E. coli to produce glycoengineered OMVs decorated 

with F. tularensis O-antigen (32). Mice immunized with these F. tularensis glycoengineered 

OMVs were protected against lethal challenge with several strains of F. tularensis (32). 

Furthermore, to highlight the versatility of this vaccine technology, glycosyltransferases 

and the enzymes required for the synthesis of nucleotide-activated sugars from various 

organisms can be expressed in E. coli cells to produce customized glycoengineered OMVs 

(138).

5.1.3. OMV-based vaccine detoxification alternatives.—Several strategies have 

been developed to obtain OMVs with a low level of LPS toxicity. The first method is 

to reduce LPS content by treating purified OMVs with detergents, such as deoxycholate 

and polyoxyethylene 10 oleyl ether (Brij-96) (70, 141). However, this approach has the 

disadvantage of a loss of lipoproteins, which are TLR agonists, thus reducing the adjuvant 

properties of OMVs (100). A second detoxification method is based on the fact that 

less-acylated lipid A has reduced toxicity (132). Monophosphoryl lipid A is a safe and 

effective vaccine adjuvant that is approved by the US Food and Drug Administration for 

human use (25). Some naturally occurring Neisseria strains produce penta-acylated LPS 

due to a mutation in the lipid A biosynthesis lauroyl acyltransferase, encoded by lpxL1. 
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Their secreted OMVs do not need the detergent extraction step because of low endotoxic 

activity of the penta-acylated lipid A (52). Therefore, by modifying genes responsible for 

lipid A synthesis, it is possible to obtain genetically detoxified strains and, consequently, 

detoxified OMVs (100, 112). Inactivation of the genes encoding lipid A acyltransferases, 

such as msbA, msbB, lpxL1, and lpxM, and/or overexpression of genes encoding lipid 

A deacyltransferases, such as pagP, results in lipid A lacking an acyl chain and the 

concomitant reduced activation of TLR4/MD2 (5, 44, 74, 112). An additional fine-tuning 

step can be accomplished by introducing lipid A phosphatases, such as LpxE, to generate 

monophosphorylated penta-acylated lipid A (32, 112). Another alternative is to engineer 

nonpathogenic bacteria that naturally produce OMVs that only pack monophosphorylated 

penta-acylated lipid A. Bacteroides OMVs contain only monophosphorylated penta-acylated 

lipid A moieties, and these organisms can be engineered to deliver antigens and drugs (24, 

45). A balanced response that generates sufficient adjuvant activity but prevents harsh side 

effects can be achieved by adopting any of the methods described above.

5.2. OMVs as Cancer Immunotherapy Agents

In the last decades, multiple preclinical and clinical studies involving cancer vaccines have 

been performed. Unfortunately, these vaccines have had an overwhelmingly low rate of 

efficacy (less than 5%) (148). However, promising results for the use of liposomes have 

been reported lately (90). Considering the immunomodulatory role of OMVs, they can be 

engineered to express cancer-specific epitopes or to carry small noncoding RNAs (61, 148). 

Furthermore, OMVs induced a durable antitumor immune response that inhibited tumor 

growth in multiple tumor models (33, 148). The caveat, again, is the toxic effect of LPS. 

However, some of the detoxification methods mentioned above are promising and worthy of 

exploration to improve the cancer therapies available.

6. Skepticism about OMVs and their Physiological Relevance

OMVs were described for the first time in the 1960s (17, 87). However, for several reasons, 

a number of scientists are still skeptical about their biological relevance. The story of OMVs 

resembles that of eukaryotic extracellular vesicles, or exosomes, which have also been a 

matter of controversy. Many concerns stem from the fact that despite more than 50 years of 

research, we have yet to elucidate the mechanism(s) for their formation. Pieces of the puzzle 

regarding OMV biogenesis have been uncovered in different species, however, and none of 

the working models has been confirmed to be universal.

It has been proposed that DNA and RNA are packed inside OMVs (18, 37, 133). None 

of the current models for OMV biogenesis specifically accounts for the packing of nucleic 

acids, as these molecules would need to be translocated into the periplasm and across the 

peptidoglycan layer to be included in an OMV. On the contrary, RNA and DNA are released 

upon cell lysis and could easily contaminate OMV preparations. A feasible explanation for 

how DNA or RNA is transported into the bacterial periplasm would support the biological 

function of these molecules in OMVs.

Multiple mutant strains presenting hypervesiculating phenotypes have been described (104, 

116, 139, 145). Although some of these mutations appear to regulate OMV formation, many 
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mutations also affect membrane stability. Consequently, the material produced by these 

strains that is considered OMVs may result from lysis or membrane destabilization. No 

mutants unable to produce OMVs have been identified. Those who believe in the relevance 

of OMVs explain this by postulating the essentiality of OMV biogenesis. Because vesicles 

formed as by-products of lysis have the same composition as the membrane from which 

they are derived, the fact that protein and lipid cargo selection has been shown argues 

against the notion that OMVs are simply bacterial debris. Many secreted proteins, such as 

flagellins, pilins, and T3SS effectors, may aggregate and copurify with OMVs. Therefore, 

claims of cargo selection have to be considered with caution when these are the proteins 

that are presumably enriched n OMV preparations. In any case, cargo selection has been 

conclusively demonstrated in a few bacterial species, with proteomics indicating that, at 

least in these species, OMVs do not result from lysis (19, 45, 66, 72, 78, 140, 142).

Numerous functions have been proposed for OMVs. OMVs, when reported, are purified 

from bacteria cultured in large volumes under standard lab conditions with regard to media, 

temperature, and aeration (28, 48, 92, 96a, 108, 133). In some studies, OMVs were obtained 

from up to 1.5 L of culture and concentrated by a factor in the hundreds before their 

biological properties were tested. Although this might suggest that OMVs are produced in 

negligible amounts, OMV biogenesis is likely stimulated in vivo. However, the results of 

these experiments have to be carefully interpreted, as the composition of OMVs produced 

during infection can be very different from that of OMVs produced in culturing media.

Part of the problem is that the vesicle biogenesis process is very difficult to investigate. Bona 

fide OMVs and lysis-derived vesicle-like structures are extremely difficult to differentiate 

by biophysical and biochemical methods. We recognize the limitations of current studies 

involving the biogenesis and functions of OMVs. It is possible that some of the published 

works contain artifacts. However, there is substantial evidence to assert that at least some 

bacteria under particular conditions produce bona fide OMVs as a result of an orchestrated 

process. Given recent technical advances in mass spectrometry and microscopy, it will be 

possible to investigate the vesiculation process in relevant clinical strains and in infection 

models to decipher OMV biogenesis mechanisms and establish their true biological 

significance.
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SIDEBAR 1: OVERVIEW OF OMV-BASED MenB VACCINES

For most N. meningitidis serogroups, the available vaccines consist of CPS coupled 

to a carrier protein. However, the serogroup B capsule is homologous to molecular 

structures present in the human brain, making it impossible to produce a glycoconjugate 

vaccine for this serogroup (70). Thus, OM proteins such as PorA were considered as 

vaccine candidates. PorA, the main immunogenic protein in N. meningitidis and also 

present in OMVs, is highly variable between strains (70). To overcome the problem of 

strain specificity, a novel MenB vaccine using OMVs derived from bioengineered strains 

expressing multiple PorA variants has been developed in the Netherlands (70, 141). 

Most available OMV-based MenB vaccines (VA-MENGOC-BC, MenBvac and MeNZB) 

succeeded in combating specific outbreaks of MenB-caused meningitis in Cuba, Norway, 

and New Zealand, with an efficacy of at least 70% (70). In 2016, the BEXSERO vaccine 

was been approved for human use by the European Medicines Agency and the FDA as 

this vaccine provides protection against endemic disease (70).
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SUMMARY POINTS

1. Outer membrane vesicles (OMVs) constitute a universal secretion system that 

is found in all gram-negative bacteria and that results from a directed and 

selective cellular process.

2. OMV composition can be differentiated from that of the outer membrane, as 

OMVs are enriched with a specific subset of proteins and lipids.

3. At least five mechanisms have been proposed to explain OMV formation.

4. OMVs can have offensive and defensive roles in bacterium–bacterium and 

bacterium–host interactions.

5. Engineered OMVs carrying customized cargo and detoxified 

lipopolysaccharide could be used to improve current vesicle-based vaccines 

and drug-delivery platforms.
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FUTURE ISSUES

1. Is there a universal mechanism for OMV biogenesis?

2. How is protein cargo selected?

3. What is the composition of the cargo of OMVs secreted in vivo?
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Figure 1. 
Different roles of outer membrane vesicles in Gram-negative bacteria. Roles of outer 

membrane vesicles in gram-negative bacteria. OMVs, which are released from the cell 

envelope, range between 20 and −300 nm and function as a versatile secretion and transport 

mechanism. OMV roles include intracellular and extracellular communication, quorum 

sensing, horizontal gene transfer, interbacterial killing, toxin delivery, nutrient hydrolysis, 

and stress responses.
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Figure 2. 
Mechanisms of OMV production in gram-negative bacteria. (a) Curvature of the OM is 

induced by the local accumulation of peptidoglycan fragments or misfolded proteins in the 

periplasm. (b) Removal of proteins anchoring the OM to the underlying peptidoglycan 

increases OM fluidity, enabling the membrane to bend and form vesicles. (c) Owing 

to charge repulsion, local enrichment of LPS species with anionic charges induces 

curvature of the OM and subsequent vesicle formation. Enrichment in deacylated LPS 

species also promotes membrane curvature because lipid A deacylation changes the shape 
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of LPS from cylinder-like to an inverted cone. (d) The VacJ/Yrb ABC transporter is 

involved in retrograde transport of phospholipids from the OM. Downregulation of this 

transporter leads to the accumulation of phospholipids in the outer leaflet of the OM. 

This causes the outer leaflet to expand rapidly compared to the inner leaflet, which leads 

to membrane curvature and vesicle formation. (e) Once PQS is produced, it is secreted 

from the cell and subsequently intercalated into the outer leaflet of the OM owing to its 

interaction with LPS and phospholipids. Insertion of PQS into the OM causes outer leaflet 

expansion that increases OMV production. Abbreviations: ABC, ATP-binding cassette; LPS, 

lipopolysaccharide; OM, outer membrane; OMV, OM vesicle; PQS, Pseudomonas quinolone 

signal.
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