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Abstract

Drug addiction remains a key biomedical challenge facing current neuroscience research. In 

addition to neural mechanisms, the focus of the vast majority of studies to date, astrocytes 

have been increasingly recognized as an “accomplice.” According to the tripartite synapse 

model, astrocytes critically regulate nearby pre- and postsynaptic neuronal substrates to craft 

experience-dependent synaptic plasticity, including synapse formation and elimination. Astrocytes 

within brain regions that are implicated in drug addiction exhibit dynamic changes in activity 

upon exposure to cocaine and subsequently undergo adaptive changes themselves during chronic 

drug exposure. Recent results have identified several key astrocytic signaling pathways that are 

involved in cocaine-induced synaptic and circuit adaptations. In this review, we provide a brief 

overview of the role of astrocytes in regulating synaptic transmission and neuronal function, 

and discuss how cocaine influences these astrocyte-mediated mechanisms to induce persistent 

synaptic and circuit alterations that promote cocaine seeking and relapse. We also consider the 

therapeutic potential of targeting astrocytic substrates to ameliorate drug-induced neuroplasticity 

for behavioral benefits. While primarily focusing on cocaine-induced astrocytic responses, we also 

include brief discussion of other drugs of abuse where data are available.
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Introduction

The term glia is derived from “glue” in Greek, but glia functions go far beyond simply 

providing structural and metabolic support to neurons. The abundance of glial cells 

progressively and substantially increases along both evolutionary phylogeny and brain 
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complexity1. For example, the astrocyte-to-neuron ratio in human brains (~1–1.4:1) is 

higher than that in rodents (~0.4:1) or C. elegans (~0.2:1)2–5. While human brains have 

higher metabolic demands, such a high ratio would appear to be an excessive number of 

astrocytes for just structural and metabolic support. Indeed, astrocytes—the most prevalent 

type of glia—are substantially larger in human brains, with more sophisticated morphologies 

that contact more synapses than any other species6, 7. Furthermore, the propagation speed 

of intracellular Ca2+ waves in human astrocytes is ~4-fold faster than in rodents6. Human-

originated astrocytes maintain their enhanced cellular features when engrafted and induced 

in the mouse brain, resulting in enhanced experience-dependent synaptic plasticity and 

improved learning in these chimeric mice8. Such results suggest that astrocytes not only 

participate in brain metabolism and stability, but also are key substrates defining the brain’s 

cognitive capacity9–13.

Astrocytes are broadly known for their role in neurotransmitter and ionic homeostasis, 

synaptic and neuronal modulation, and blood-brain barrier maintenance. Astrocytes exhibit a 

complex morphology, with primary branches extending and elongating into delicate terminal 

leaflets, called peripheral astrocyte processes. Such perisynaptic processes enwrap the pre- 

and postsynaptic components of synapses, and these interactions occur at a distance as 

small as 10 nm, indeed closer than the width of some synaptic clefts14–16. An array of 

neurotransmitter receptors and transporters are expressed in astrocytes, highlighting that 

astrocytes may respond directly to neuronal signals17–22. Astrocytes can release substances 

into the extracellular space via anion channels, unpaired hemichannels of gap junctions, 

transporters or exchange antiporters, and other forms of non-vesicular release23–26. On 

the other hand, components of the basic machineries that mediate Ca2+-dependent 

vesicular release by exocytosis have been detected in astrocytes, including vesicular 

glutamate transporters (VGLUT1/2) and the SNARE protein cellubrevin27. While the exact 

mechanisms and physiological relevance remain under debate28, 29, vesicular release of 

substances from astrocytes has been detected in many experimental conditions30–34. Among 

astrocyte-secreted factors, some are classic neurotransmitters and neuromodulators, such 

as glutamate and adenosine triphosphate (ATP), while others are unique to astrocytes. 

With these mechanisms, astrocytes are thought to reciprocally communicate with neurons 

and regulate synaptic transmission35 through a structural complex, termed the “tripartite 

synapse” (Figure 1), composed of a presynaptic nerve terminal and a postsynaptic 

dendritic spine enveloped by astrocyte processes, now viewed as the basic unit of synaptic 

transmission35, 36. Increasing evidence suggests that astrocytes display significant regional 

heterogeneity and specificity in the brain37, although much remains to be learned about the 

molecular and cellular basis, and functional consequences, of such regional differences.

Delineating the precise mechanistic underpinnings of drug addiction remains a key research 

goal for the neuroscience community. A defining feature of drug addiction in humans is 

the high rate of relapse even after prolonged drug abstinence, which is often triggered by 

re-exposure to environmental cues that were previously associated with drug experience. 

Rodent studies reveal that cue-induced cocaine seeking and relapse are mediated in part by 

altered glutamatergic synaptic transmission within the nucleus accumbens (NAc), a brain 

region that has been critically implicated in reward learning and motivated behaviors38–41. 

The vast majority of studies of cocaine’s action on the brain have concentrated on neurons. 
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However, increasing evidence suggests that astrocytes play a dynamic role in the formation 

and maintenance of maladaptive changes at glutamatergic synapses in the NAc and related 

limbic regions during cocaine experience, promoting cocaine seeking and relapse after drug 

withdrawal42–45. Here, we discuss cellular features of astrocytes and their involvement in 

addiction-related neuronal changes at the synapse and circuit levels.

Basic features of astrocytes

Ca2+-mediated astrocyte activity

Astrocytes do not generate action potentials. Rather, information sensing and signaling 

output by astrocytes is thought to be mediated in part by intracellular Ca2+ transients46, 47. 

These transients can be mediated through G protein-coupled receptors (GPCRs) and their 

activation of IP3-activated type 2 receptors (IP3R2) on the endoplasmic reticulum (ER) of 

astrocytes, resulting in ER release of Ca2+ and elevation of intracellular Ca2+ levels (Figure 

1)48–52. In addition, ionotropic receptors may mediate Ca2+ influx into astrocytes (Figure 

1)53, 54. Through these various types of mechanisms, astrocytes respond to neuron-derived 

signaling molecules and generate several patterns of intracellular Ca2+ waves in a finely 

graded and subcellularly heterogeneous manner. In contrast to neural networks that are 

composed of spatially separated neurons, astrocytes can directly couple with neighboring 

astrocytes via gap junctions55, 56. In this manner, up to dozens of astrocytes are connected 

to form an electrically low-resistance reticular system called a syncytium. This network 

of coupled astrocytes is a key feature of astrocyte biology, which is found throughout the 

central nervous system and across many species56, 57. Interestingly, not all neighboring 

astrocytes directly couple, for example, astrocyte networks within the somatosensory cortex 

largely follow a single barrel56. Regardless, an astrocyte syncytium can cover the space of 

hundreds of microns in diameter with millions of synapses contained therein. Depending 

on the physiological condition, the Ca2+ waves can be restricted within one astrocyte or, 

alternatively, propagate to other astrocytes via the syncytium for synchronous network 

effects58, 59.

Early studies focused on astrocytic Ca2+ activities within the cell soma, since ER storage 

was viewed as the predominant source of Ca2+ for the entire astrocyte28, 60. Improvements 

in the spatiotemporal detection of Ca2+ now demonstrate active Ca2+ signals throughout an 

astrocyte—with subcellular localizations and microdomains that exhibit dynamic features 

of these Ca2+ transients29, 61, 62. In fact, Ca2+ signals are detected in far distal astrocytic 

processes62, and can be independent of somatic Ca2+ sources61, 63.

One potential consequence of these localized Ca2+ events is ‘gliotransmission’61. 

Ca2+ signaling in astrocytes is far from straightforward, however. While Ca2+-induced 

gliotransmission and resulting synaptic regulation have been observed frequently64–70, it 

has also been shown that Ca2+ elevations in astrocytes are not always associated with 

the release of gliotransmitters71, suggesting a subtle and complex relationship between 

astrocytic Ca2+ levels and gliotransmission28, 62, 72. While the mechanistic link between 

astrocytic Ca2+ and gliotransmitter release has not to date been fully characterized, it 

is clear that the process is distinctly different from presynaptic neurotransmitter release 

in neurons. Nonetheless, astrocytes do exhibit diverse Ca2+ activities in distinctive sub-
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compartments73–75. The result of this activity may be the release of a variety of transmitters 

via several different mechanisms23, 70, 76, 77. Of note, a single astrocyte can release different 

types of gliotransmitters, which cause multi-phasic synaptic responses in nearby neurons78. 

Furthermore, the type of released gliotransmitters is correlated with the duration and 

frequency of neural activities nearby, suggesting that astrocytes can sense and process 

spatiotemporal information from neurons78.

Reciprocal communication between astrocytes and neurons

A single mature astrocyte can contact up to 140,000 synapses in rodents, and upwards of 

2 million in humans7, 79. Of note, the enwrapment of synapses by astrocytes is crucial 

for a range of astrocyte functions, including the sensing and modulation of neuronal 

activity, preventing neurotransmitter spillover from synapses, as well as the stabilization 

of synapses themselves. Furthermore, an individual astrocyte can contact synapses from 

multiple, different neurons, resulting in a term now coined “astrocyte-defined synaptic 

islands”80. Neurons within a synaptic island spread out up to 200 μm81, thereby poising 

astrocytes to potentially contribute to the activity of neuronal ensembles.

Glutamate is an example of a neurotransmitter through which astrocytes and neurons 

communicate bidirectionally. Elevation of astrocytic Ca2+ levels can result in a SNARE 

protein–dependent vesicular release of glutamate82. Independent of vesicular release, 

glutamate can diffuse out from astrocytes via nonspecific ion channels upon activation 

of G-protein-signaling83, 84, or be transported out of astrocytes via a cystine-glutamate 

exchanger85. Nonetheless, astrocyte-released glutamate activates extrasynaptic GluN2B-

containing NMDA receptors (NMDARs) on neurons, resulting in slow inward currents 

that depolarize these neurons synchronously86, 87. Astrocyte-released glutamate may also 

activate pre- and postsynaptic glutamatergic receptors, influencing both presynaptic release 

and postsynaptic responsiveness88, 89. Conversely, astrocytes respond to neuronal-released 

glutamate via metabotropic glutamate receptors (mGluRs) or ionotropic glutamate receptors. 

Among the eight known mGluRs, mGluR3 and 5 have been detected in astrocytes90, 91. 

mGluR3, which is Gi/o-coupled, is expressed predominantly in adult astrocytes and is 

presumed to inhibit adenylyl cyclase with no direct influence on Ca2+ activity. Indeed, 

little to no Ca2+ activity is recorded in cortical or hippocampal astrocytes in responses to an 

mGluR3 agonist92, 93. However, a robust Ca2+ signal is detected in striatal astrocytes93.

In contrast, activation of mGluR5 increases Ca2+ levels in astrocytes through the Gq/11-

linked activation of PLCβ-IP3R2-PKC or other signaling pathways94–96. There has been 

an interesting debate related to the existence and functional importance of mGluR5 in 

mature astrocytes. Using immunostaining combined with electron microscopy, it was 

demonstrated in the hippocampus and cortex that astrocytic expression of mGluR5 decreases 

to very low levels after development97. In line with this result, mGluR5 agonists fail to 

induce Ca2+ elevations in adult astrocytes within these brain regions93, 97. These results 

suggest that mGluR5-mediated astrocytic responses decline substantially after development. 

However, albeit at very low levels, mGluR5 is detected in other preparations, raising the 

possibility that mGluR5 activity is still present, particularly in distal processes where Ca2+ 

signals may be too weak to be detected based on traditional bulk-loaded fluorescent Ca2+ 
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dyes. Highlighting astrocyte heterogeneity and regional specificity, it is also important to 

note that expression of mGluR5 in astrocytes differs substantially among different brain 

regions93. Indeed, in the NAc of 2–6 weeks old mice, activation of mGluR5 initiates 

Ca2+ oscillations in astrocytes95. In addiction-oriented studies, administration of mGluR5 

antagonists, especially via intra-NAc infusion, decreases cocaine taking during cocaine self-

administration and cocaine seeking after drug withdrawal98–101. It is important to determine 

whether these behavioral responses to mGluR5 manipulations are mediated by mGluR5 

located in astrocytes or neurons.

Another molecule that may act as both a neuro- and gliotransmitter is ATP102. ATP 

can be released from astrocytes through a Ca2+-dependent mechanism involving SNARE 

proteins103, 104. In these experiments, a variety of stimulations that induce astrocytic Ca2+ 

waves can trigger ATP release65, 105, 106. In the cerebral cortex, synaptically-released 

glutamate induces astrocytic ATP release via activation of astrocytic NMDARs, presumably 

also involving Ca2+-mediated processes107, 108. As well, astrocytic release of ATP is 

mediated via mechanisms independent of Ca2+ or SNARE proteins109, 110. Astrocytes 

respond to neuronal or astrocytic release of ATP through several purinergic P2 class ATP 

receptors (Figure 1). Both in vitro and in vivo data demonstrate that astrocyte-released ATP 

induces Ca2+ waves in nearby astrocytes106, 111. Through ATP-purinergic signaling, Ca2+ 

waves initiated in one astrocyte can propagate to nearby astrocytes111, 112 in a regenerative 

and neural activity-independent manner113. P2Y1 receptor-mediated ATP signaling has been 

shown to induce glutamate release from astrocytes114.

Once released, ATP is quickly (within 200 ms) hydrolyzed to adenosine by 

ectonucleotidases within the extracellular matrix115. Thus, in addition to ATP receptors, 

ATP-derived adenosine influences neural activities by binding neuronal A1 receptors 

(A1Rs) (Figure 1). Through A1Rs, adenosine originating from astrocytes enhances basal 

glutamatergic synaptic transmission and reduces the magnitude of LTP65, effects that might 

be related to the action of astrocytic adenosine on synaptic expression of NMDARs116.

Dopamine is a neuromodulator that regulates synaptic and circuit activities and has been 

implicated in many psychiatric disorders117–120. D1 and D2 dopamine receptors (D1Rs and 

D2Rs), which are coupled to distinct intracellular signaling cascades121, are both detected in 

astrocytes122–125. While activation of D1Rs leads to an elevation of astrocytic levels of Ca2+ 

and activation of cAMP-PKA signaling123, 126–129, the effects of dopamine on astrocytes 

also appear to be mediated by D2Rs and other mechanisms. Specifically, incubation of 

cultured astrocytes with dopamine induces stellation of astrocyte processes, which is only 

partially mediated by cAMP signaling130. In hippocampal brain slices, superfusion of 

dopamine induces a fast onset elevation of astrocytic levels of Ca2+, which is followed by 

a more sustained decrease131. Application of a mixture of D1R and D2R antagonists blunts 

these biphasic dopamine-induced effects, while D1R antagonists alone selectively prevent 

the first phase elevation of astrocytic Ca2+ levels, suggesting D2Rs as a key in decreasing 

astrocytic Ca2+ level during the second phase following dopamine131. Consistent with this 

interpretation is the finding that application of D2R agonists decreases astrocytic levels of 

Ca2+ in PFC slices124. Dopamine also influences astrocytes in the ventral tegmental area 

(VTA) and NAc, work discussed in the next section.
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In addition to responding to dopamine, astrocytes regulate extracellular levels of 

dopamine via astrocytic dopamine, norepinephrine, and other transporters132–135. After 

reuptake, dopamine in astrocytes is metabolized by monoamine oxidase, and the resulting 

oxygen species increase intracellular levels of Ca2+136, thus providing a D1R- and 

D2R-independent mechanism underlying dopamine-mediated regulation of astrocyte Ca2+ 

activity. Interestingly, vesicular monoamine transporter 2 is detected in astrocytes, and 

genetic deletion of VMAT2 in PFC astrocytes results in impaired LTP and behavior137, 138, 

suggesting the possibility that dopamine can be packaged for vesicular release in astrocytes. 

If this or similar astrocytic dopamine release exists, which requires confirmation, astrocytes 

may serve a noncanonical source of dopaminergic signaling.

Astrocytes regulate synaptic plasticity and synaptogenesis

Experience-dependent synaptic plasticity serves a key cellular mechanism for learning and 

memory139–143. In the classical Hebbian model, manipulation of pre- and postsynaptic 

activities alone is sufficient to induce many forms of LTP or LTD at glutamatergic 

synapses. However, more recent evidence suggests that astrocytes are also integral to 

some forms of LTP and LTD. In response to LTP induction, the astrocytic coverage 

of synapses increases144. This morphological change may effectively increase astrocyte-

mediated regulation of synaptic transmission via stabilization of synapses themselves as 

well as via preventing neurotransmitter synaptic spillover. Additionally, direct astrocytic 

stimulation66 or elevation of astrocytic Ca2+ levels145 transiently increases presynaptic 

release probability at hippocampal glutamatergic synapses. Furthermore, when astrocytic 

Ca2+ elevation is paired with postsynaptic depolarization, the increased presynaptic release 

probability becomes persistent, resulting in an LTP-like effect at these synapses145. These 

results raise the important possibility that, without presynaptic conditioning, coincidental 

activities of postsynaptic neurons and their neighboring astrocytes are sufficient to induce 

synaptic plasticity. Correspondingly, electrophysiological or pharmacological suppression of 

astrocytic activities impairs the induction of the classic NMDAR-dependent hippocampal 

LTP146, 147. In a form of spike timing-dependent LTD (t-LTD), in which coincident 

postsynaptic release of endocannabinoids (eCBs) and presynaptic activation of NMDARs 

are essential, astrocytes serve as a lynchpin; postsynaptically-released eCBs activate CB1 

receptors on adjacent astrocytes, which, in turn, release glutamate to activate presynaptic 

NMDARs, accomplishing the induction process148. Furthermore, adenosine signaling 

originating from astrocyte-released ATP coordinates adjacent synapses such that both 

monosynaptic LTP and heterosynaptic LTD are induced simultaneously65. These findings 

describe an active role of astrocytes in the induction and possibly also maintenance of 

Hebbian plasticity.

Synaptogenesis requires participation of both pre- and postsynaptic neurons149, 150, 

with increasing evidence suggesting that this process also requires the participation of 

astrocytes151. During development, astrocytes and neurons share the same precursor 

cells, but astrogenesis occurs in postnatal stages, after the bulk of neurogenesis is 

accomplished152–154. Importantly, robust synaptogenesis only occurs after the emergence 

of astrocytes, particularly during the first 2 to 3 postnatal weeks in rodents, which is a 

major maturation window for astrocytes151, 155. Evidence suggests that astrocytes actively 
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and directly contribute to both the structural and functional aspects of synaptogenesis 

and synapse maturation. Most prominently studied are synaptogenic factors derived from 

astrocytes. Neuronal cultures devoid of astrocytes form far fewer synapses than in 

neuron-astrocyte co-cultures156, and those synapses appear to be functionally immature157. 

Treating these astrocyte-free cultures with astrocyte-conditioned medium induces the 

formation of new synapses, suggesting that astrocytes secrete soluble factors to promote 

synaptogenesis158–162.

This review focuses on one set of soluble astrocyte-derived factors, thrombospondins 

(TSPs). For a comprehensive review of astrocytes and synaptogenesis and maturation, 

we refer the reader to a recent review155. Through activation of their neuronally-located 

target, α2δ−1, astrocyte-secreted TSPs promote synaptogenesis during development158, 163. 

TSPs are multimeric, multidomain glycoproteins that, by binding to proteases, cytokines, 

growth factors, and other components of the extracellular matrix, facilitate cell attachment, 

migration, cytoskeletal dynamics, and angiogenesis164, 165. TSP-induced synapses appear 

structurally normal—with pre- and postsynaptic specializations, normal amounts of 

presynaptically-docked vesicles, and regular dimensions of postsynaptic densities—but are 

postsynaptically “silent” in that they do not contain functionally stable AMPA glutamate 

receptors (AMPARs)158. This AMPAR-labile feature is consistent with immature, AMPAR-

silent glutamatergic synapses found in the developing brain, some of which subsequently 

mature and become fully functional by recruiting AMPARs166–169. Of note, synapses 

generated in astrocyte-present neuronal cultures do express stable postsynaptic AMPARs, 

highlighting that astrocyte-derived signaling molecules other than TSPs are involved in 

synapse maturation158.

α2δ−1, described originally as an auxiliary subunit of voltage-gated calcium channels 

(VGCCs) located at both axons and dendrites170–172, has been identified as one of 

the key neuronal targets for TSP-mediated synaptogenesis. Overexpression of α2δ−1 

augments TSP-induced synaptogenesis, while expression of a dominant-negative form 

of α2δ−1 impairs TSP-induced synaptogenesis163. Gabapentin, an α2δ−1 antagonist 

that is used clinically to treat chronic pain, binds to the α2 domain of α2δ−1, 

the same binding site as TSPs173, 174, but the binding does not alter Ca2+ currents 

conducted by VGCCs175. Administration of gabapentin prevents astrocyte- and TSP-induced 

synaptogenesis, identifying α2δ−1 as an essential component in this developmental 

synaptogenic signaling163. However, despite its intimate relationship with VGCCs, α2δ−1-

mediated synaptogenesis is independent of VGCC function163. The key cellular steps from 

TSP-α2δ−1 binding to synapse formation have not been elucidated176. The small GTPase 

Rac1 has been implicated in this process177, and Rac1 is also known to influence synapse 

plasticity following cocaine exposure178, 179. In addition to α2δ−1, TSPs also interact 

with other synaptic proteins, such as neuroligins, to refine the synaptogenic process180. 

Beyond TSPs, astrocytes secrete hevin and sparc, which, among other molecules, facilitate 

synaptogenesis as well160, 181, 182. These and other results depict a critical role of astrocytes 

in synapse formation during development.

Cooperatively operating with synaptogenesis in forming new circuits, synapse elimination is 

essential for the refinement of neural circuits in the developing brain as well as remodeling 
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of neural circuits and the turnover of synapses in the adult brain. Similar to microglia, 

astrocytes can engulf large synaptic components (i.e., synaptosomes), and direct them to 

lysosomes for ultimate degradation183, 184. A key form of such astrocyte-mediated synapse 

elimination is mediated by astrocyte phagocytic receptors, such MERTK (a type of protein 

tyrosine kinase) and MEGF10 (an epidermal growth factor-domain family protein), which 

can sense “eat-me” signals (e.g., phosphatidylserine) that are presented by targeted debris 

to execute the engulfment185–187. As such, this form of phagocytosis is not random, but, 

rather, driven by neuronal activities and mediated by precise signaling exchange between 

neurons and astrocytes. Astrocytes also release cytokines, such as TGF-β, which can tag 

synapses for microglia-mediated synapse elimination188, 189. Detailed discussion of these 

and other forms of astrocyte-mediated synapse elimination can be found in several excellent 

reviews183, 184, 190.

Astrocytes in neural adaptations after exposure to drugs of abuse

Astrocytes in the VTA-NAc reward circuit respond directly to dopamine

Dopamine’s involvement in the reward pathway and in substance abuse and other psychiatric 

disorders is well documented117–120, 191–205. Exposure to natural rewards or to drugs 

of abuse like cocaine induces bursting activity of VTA dopamine neurons, leading to a 

transient increase in extracellular dopamine levels in the NAc and other limbic forebrain 

regions191, 192. In contrast, withdrawal from cocaine or other drugs of abuse decreases 

extracellular dopamine levels in these brain regions196–199, whereas re-exposure to the 

drug or to drug-predicting cues after drug withdrawal increases such levels200–205. It is 

noteworthy, as mentioned above and detailed below, that astrocytes in several brain regions 

associated with the reward circuitry respond directly to the dynamics of extracellular 

dopamine.

In vivo optogenetic stimulation of VTA dopaminergic nerve terminals within the NAc 

induces dopamine release and, concomitantly, increases Ca2+ activity in roughly half of 

NAc astrocytes, lasting for several seconds206. This dopamine-elicited astrocytic response 

appears to be mediated at least in part by D1Rs on astrocytes and, potentially through 

ATP/adenosine signaling, contributes to transient inhibition of nearby glutamatergic synaptic 

transmission206. In concert with these results, superfusion of cocaine, which elevates 

extracellular dopamine levels in NAc slices207, 208, increases both the frequency and 

total number of astrocytic Ca2+ transients209. Paradoxically, AAV-mediated deletion of 

D1Rs in NAc astrocytes increases basal Ca2+ activity in this brain region206. In the 

VTA and surrounding ventral midbrain areas, activation of D2Rs on astrocytes revealed 

a blunted Ca2+ response210. These findings, coupled with distinct responses of astrocytes in 

hippocampus and PFC to dopamine (see above), again highlight the regional heterogeneity 

of astrocytes and implicate a far more complex dopamine-mediated regulation of astrocytes 

than previously understood.

Astrocytes in the NAc

Transcriptomic analyses211 reveal that striatal astrocytes (encompassing NAc and dorsal 

striatum) express high levels of K+ channels, setting their equilibrium membrane 
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potential at ~−85 mV, which is more hyperpolarized than astrocytes in many other brain 

regions212, 213. Striatal astrocytes also express high levels of gap-junction proteins, allowing 

for synchronized activities among connected astrocytes93. Interestingly, this astrocytic 

syncytium can spread across brain regions such that a dye infused into a single striatal 

astrocyte can eventually diffuse into cortical astrocytes214. Basal spontaneous Ca2+ activities 

in striatal astrocytes are insensitive to TTX, suggesting that they are relatively independent 

of ongoing neuronal activities93.

Striatal GABAergic medium spiny neurons (MSNs) comprise >90% of the local neuronal 

population and represent the sole projection neurons of this region215. MSNs can be divided 

into two subpopulations: one that expresses predominantly D1Rs and the neuropeptides 

dynorphin and substance P, and another that expresses D2Rs and enkephalin216. In the 

dorsal striatum, subpopulations of astrocytes show selective responsivity to the activity 

of either D1 or D2 MSNs217. Such cell-type specific neuron-astrocyte interactions may 

contribute to the heterogeneous responses of D1R versus D2R NAc MSNs to cocaine, 

such as selective generation of silent synapses in D1R MSNs after noncontingent cocaine 

exposure218. Compared to noncontingent procedures, astrocytic adaptations to contingent 

(volitional) exposure to cocaine are likely more complex than previously believed given that 

astrocytes respond both to neuronal activity and directly to dopamine. Much of this work 

to date has focused on dorsal striatum, with studies of NAc specifically now being a high 

priority.

Extinction is a training procedure in rodent models of drug relapse, in which the learned 

drug taking and seeking are diminished in the absence of anticipated reinforcement. 

Extinction requires new reinforcement learning that involves remodeling of glutamatergic 

transmission in the NAc219–223. After extinction of cocaine self-administration, NAc 

expression of glial fibrillary acidic protein (GFAP) as well as the overall surface area 

and volume of astrocytes are decreased, effects accompanied by reduced co-localization of 

astrocyte processes with the presynaptic nerve terminal marker, synapsin-1224. Importantly, 

without extinction training, the synapse-astrocyte proximity remains largely unchanged 

in the NAc after cocaine self-administration, selectively linking this form of astrocytic 

adaptation to extinction225. Furthermore, this extinction-related astrocytic adaptation is only 

detected in the NAc and not in the PFC or basolateral amygdala (BLA), indicating the 

unique response of NAc astrocytes in extinction learning225. Similar extinction-related 

changes in NAc astrocytes are also observed after extinction from methamphetamine226 

or heroin227 self-administration. Importantly, re-exposure to heroin-associated cues after 

extinction transiently restores the reduced synapse-astrocyte proximity227, suggesting a 

dynamic role of NAc astrocytes in response to cue-induced drug seeking after drug 

extinction. DREADD-mediated activation of NAc astrocytes after drug extinction decreases 

subsequent cue-induced cocaine228 and methamphetamine226 seeking, possibly through 

restoring astrocyte-mediated glutamate homeostasis in the NAc (see below).

Unlike psychostimulants, opioids initiate their primary pharmacological effects by activating 

μ opioid receptors (MORs)229. NAc astrocytes express MORs230 that can be activated 

upon opioid administration. In acutely prepared NAc slices, superfusion of morphine 

increases astrocytic Ca2+ levels through IP3R2-mediated release from intracellular stores231. 
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Activation of MORs induces astrocytic glutamate release, which, in turn, induces NMDAR-

mediated slow inward currents in nearby neurons231. Considering that an individual striatal 

astrocyte contacts ~20 neuronal somas93, morphine-induced slow inward currents may be 

present throughout NAc MSNs. In drug-naïve animals, intra-NAc infusion of astrocyte-

conditioned medium, which contains a variety of soluble astrocytic factors, acutely enhances 

the rewarding effect of morphine232. Furthermore, intra-NAc infusion of such media 

from morphine-pretreated astrocytes results in a stronger preference for drug-associated 

environments than infusions of media from astrocytes without morphine pretreatment232. 

Albeit preliminary, these results suggest a clear link between NAc astrocytes and opioid-

induced behaviors.

Astrocytes regulate glutamate homeostasis

Cortical glutamatergic projections to the NAc regulate general reward seeking under 

physiological conditions233–235. Proper functioning of this projection is maintained, in part, 

by homeostatic regulation of glutamate at both synaptic and extrasynaptic sites. Disruption 

to this homeostasis during drug experience contributes to drug seeking and relapse236.

A key element to this disruption is GLT-1, a glutamate transporter expressed in perisynaptic 

astroglial processes that contributes to >90% of glutamate reuptake21, 22, 237–242. Chronic 

exposure to either psychostimulants or opioids reduces the expression of GLT-1 in the NAc 

at both the mRNA and protein levels243, 244. Furthermore, chronic drug exposure reduces the 

overlap of perisynaptic astroglial processes with synaptic markers, suggesting decreased 

astrocytic insulation of synapses224–227. Both of these changes impair the clearance 

of synaptic glutamate, facilitating spill-over to perisynaptic regions, and establishing 

an inter-synaptic crosstalk245–248 (Figure 2). Glutamatergic synaptic transmission within 

the NAc is pathophysiologically upregulated after withdrawal from many classes of 

drugs of abuse233, 249–251. The diminished reuptake of glutamate through GLT-1 may 

exacerbate this pathophysiology. Moreover, glutamate spillover can activate glutamatergic 

receptors such as NMDARs and mGluRs in neighboring synapses146, 252–254, resulting in 

nonspecific neuronal activity not observed in drug-naïve subjects. Indeed, administration 

of mGluR5 antagonists decreases cocaine seeking after drug withdrawal98–101. Multiple 

pharmacological approaches that normalize GLT-1 function in cocaine-exposed animals 

have proven useful in reducing cue-induced reinstatement of cocaine seeking in animal 

models243, 255, 256, raising the hope for treating drug relapse by targeting astrocyte-

maintained glutamate homeostasis.

While astrocytic GLT-1 regulates synaptically-released glutamate, the cystine/glutamate 

(xCT) exchanger in astrocytes maintains ambient levels of glutamate within the extracellular 

space257. xCT functions via the exchange of one extracellular cystine for one intracellular 

glutamate258. xCT therefore contributes to the extracellular tone of glutamate, which, in 

turn, modulates activity of presynaptic group II mGluRs (e.g., mGluR2/3) that control 

levels of synaptically-released glutamate257. This xCT-mediated regulation of glutamate 

is impaired after drug experience236. After withdrawal from cocaine or nicotine self-

administration, levels of xCT in the NAc core are reduced, contributing to the drug 

withdrawal-associated reduction of extracellular glutamate85, 255, 259–261. A basal level 
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of extracellular glutamate is needed for tonic activation of presynaptic group II mGluRs 

(e.g., mGluR2/3) to limit glutamate release from presynaptic terminals262. As such, 

decreased levels of ambient glutamate compromises this inhibitory control of presynaptic 

glutamate release and promotes glutamate overflow, a cellular maladaptation that contributes 

to drug seeking263 (Figure 2). In fact, astrocytic h3Mdq-DREADD-mediated reductions 

cocaine seeking (see below) are ameliorated with concomitant administration of mGluR2/3 

antagonists228.

A therapeutic approach to targeting xCT has also been tested with the use of N-

acetylcysteine, a cysteine prodrug and substrate of xCT. Administration of N-acetylcysteine 

restores the compromised function of xCT following chronic cocaine exposure and 

decreases drug- and cue-induced relapse to cocaine seeking259. N-acetylcysteine also 

restores GLT-1 expression in the NAc and is thought to ameliorate extrasynaptic glutamate 

spillover following cocaine extinction and reinstatement243. This might be due to the 

restoration of plasticity at PFC-to-NAc synapses known to be impaired after cocaine 

self-administration264. Furthermore, after withdrawal from cocaine self-administration, 

administration of N-acetylcysteine enhances the sensitivity of rats to the punishment 

that induces extinction of drug seeking, suggesting multi-angled anti-relapse effects of 

N-acetylcysteine265. In early clinical studies, administration of N-acetylcysteine reduces 

cocaine craving and thus decreases the risk of relapse in individuals during drug 

abstinence266. Beyond cocaine, N-acetylcysteine also reduces the number of cigarettes 

consumed in active smokers261 and exhibits beneficial effects on PTSD patients267, 268.

As discussed above, by decreasing the function or protein expression of GLT-1 and 

xCT, cocaine experience simultaneously increases spillover of synaptically-released 

glutamate and decreases ambient glutamatergic tone in the NAc, both of which 

promote cocaine seeking243. This line of results raises several interesting considerations. 

For example, mGluR activity at cortical glutamatergic projection terminals versus 

dopaminergic projection terminals are linked to the effects of GLT-1 versus xCT, 

respectively257, 263, 269, 270. If both of these effects are mediated by the same 

astrocytes, the astrocyte microdomains or processes that are close to glutamatergic versus 

dopaminergic synapses are likely to operate independently. This is not surprising, as such 

compartmentalized responses of astrocytes to different forms of stimulation has been 

demonstrated271, 272. However, this potentially domain-oriented functioning of astrocytes 

indicates that a more nuanced investigation of astrocyte-neuron partnership is needed. 

Furthermore, decreased function of GLT-1 after extinction of cocaine self-administration 

increases the likelihood of glutamate spillover, resulting in increases of glutamate in 

neuropil. This effect may somewhat compensate for the reduction of ambient glutamate 

in the NAc upon diminished expression of xCT. As such, homeostatic mechanisms may exist 

in NAc astrocytes43, 273, functioning in part through GLT-1 and xCT to balance synaptic 

versus ambient glutamate. Emerging evidence suggests that such homeostatic regulation or 

dysregulation between GLT-1 and xCT may be organized by cascades of epigenetic changes 

following extinction from cocaine self-administration274.
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Astrocyte-mediated synaptogenesis

The neural rejuvenation hypothesis of drug addiction275 proposes that “repeated exposure 

to drugs of abuse induces plasticity mechanisms that are normally associated with brain 

development within the brain’s reward circuitry, which mediate the highly efficient 

and unusually stable memory abnormalities that characterize addiction.” Astrocytes 

promote synapse formation during development, but these astrocyte-mediated synaptogenic 

mechanisms become much less active after postnatal week 3 in rodents when the major 

wave of synapse formation is accomplished276. Cocaine experience generates AMPAR-

silent synapses in the adult NAc, and these synapses exhibit several features consistent 

with nascent glutamatergic synapses observed during development277, 278. Recent results 

demonstrate that cocaine-induced generation of silent synapses in the adult NAc is mediated, 

in part, by an astrocyte-derived developmental synaptogenic mechanism, namely, TSP-

α2δ−1 signaling209. TSPs are abundantly expressed during early developmental stages, 

but decline to low levels in most brain regions during adulthood279. Albeit at low levels, 

basal expression of TSP1/2 is detected in the adult NAc, where neuronal expression 

of α2δ−1 remains robust at this time point209, 280. In acutely prepared NAc slices, 

superfusion of cocaine increases Ca2+-mediated activities in astrocytes209. Within the dorsal 

striatum, DREADD-mediated activation of Gi/o-coupled GPCRs increases Ca2+ activity 

in astrocytes with the subsequent release of TSP1281. While the underlying mechanisms 

remain largely unclear, these studies suggest that the cocaine-induced release of TSP2 

from astrocytes may reflect a direct effect of dopamine on astrocytic GPCR signaling and 

downstream elevations in intracellular Ca2+ levels. Administration of gabapentin, which 

as noted earlier disrupts the binding of TSP2 to α2δ−1163, 177, prevents cocaine-induced 

generation of silent synapses and cocaine-induced spinogenesis in the NAc, suggesting 

the involvement of TSP-α2δ−1 signaling209. Additionally, selective knockdown of either 

α2δ−1 in neurons or TSP2 in astrocytes prevents cocaine-induced generation of silent 

synapses in the NAc, indicating that astrocyte-derived TSP2, and α2δ−1 on MSNs, form 

a synaptogenic signal to generate silent synapses de novo in response to cocaine209, by 

analogy to what is observed during development158, 163 (Figure 3). These results—in line 

with the neural rejuvenation hypothesis—suggest that cocaine experience utilizes astrocyte-

mediated synaptogenic mechanisms to “re-develop” NAc circuits, potentially generating 

new connectivity patterns that support cocaine-associated memories.

After drug withdrawal, some cocaine-generated silent synapses mature by recruiting 

AMPARs, which may stabilize the remodeled NAc circuits and result in the consolidation 

of cocaine memories179, 218, 235, 282–284. These synapses appear to remain dynamic, as 

retrieval-induced destabilization and reconsolidation of cue-associated cocaine memories are 

influenced by the re-silencing and re-maturation of these synapses, respectively, following 

re-exposure to cocaine-associated cues179, 285. Thus, the generation of silent synapses is a 

key mechanism through which astrocytes can influence NAc circuits to promote cue-induced 

cocaine seeking. It is therefore not surprising that selectively disrupting astrocytic TSP-

α2δ−1-signaling during cocaine self-administration, preventing cocaine-induced generation 

of silent synapses and therefore silent synapse-mediated NAc remodeling, results in 

both decreased cue-induced cocaine seeking after cocaine withdrawal and decreased cue-

induced reinstatement of cocaine seeking after cocaine extinction209. Importantly, intra-
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NAc disruption of TSP-α2δ−1-signaling does not prevent animals from acquiring operant 

responding to cocaine in the first place209, indicating that astrocyte-mediated synaptogenesis 

in the NAc is selectively involved in the formation of cue-associated cocaine memories 

without affecting basic instrumental learning.

In addition to synaptogenesis during cocaine exposure, TSP-α2δ−1 signaling may 

contribute to withdrawal-associated neural adaptations. Selectively inhibiting NAc α2δ−1 

only after extinction from cocaine self-administration decreases cocaine priming-induced 

reinstatement of drug seeking280. This finding indicates that TSP-α2δ−1 signaling and 

presumably other astrocytic mechanisms are critically involved in neural adaptations 

that mediate multiple phases of drug-associated behaviors. Furthermore, chemogenetically 

upregulating NAc astrocyte activity after drug extinction acutely decreases subsequent 

cocaine228 and methamphetamine226 seeking, suggesting that, in addition to adaptive 

changes, NAc astrocytes also influence ongoing NAc circuit function that controls drug-

seeking behaviors.

Concluding Remarks

Astrocytes are increasingly recognized as key players in brain function under physiological 

and pathophysiological conditions. We highlight some recently identified mechanisms 

through which astrocytes regulate synapses and neural circuits to promote addiction-related 

behaviors. Additionally, in cocaine-trained animals, manipulating astrocytes prevents drug-

induced neural adaptations and ameliorates addiction-related behavioral abnormalities. 

These findings not only establish astrocytes as promising cellular targets to explore 

novel mechanisms underlying drug addiction, but also specify several future directions. 

First, a wide range of astrocytic substrates responds to neural activities and external 

stimuli. GLT-1 and xCT likely represent the tip of the iceberg of astrocytic substrates 

that undergo adaptive changes following repeated drug experience. It is important for 

future studies to systematically screen and identify key astrocytic substrates that are 

changed by drug experience to influence behaviors. Second, while this manuscript focuses 

on the NAc, many other brain regions are also critically involved in drug-induced 

behaviors. For example, similar to the NAc, cocaine self-administration increases the 

density of dendritic spines expressed by pyramidal neurons in the prefrontal cortex 

(PFC), suggesting a similar synaptogenic process286, 287. However, astrocytes in the NAc 

and PFC are highly heterogeneous, and their differential responses to cocaine are only 

beginning to be elucidated225. It is critical for future studies to characterize such regional 

specificity, neuronal-partner selectivity, and domain-specific specializations, and how these 

features influence drug-induced alterations. Third, drug exposure, withdrawal, extinction, 

reinstatement, and other related conditions constitute different aspects of the drug-related 

experience that contribute differentially to the addicted state. Astrocytes influence both 

synaptogenesis during drug exposure and dysregulation of glutamate homeostasis after drug 

withdrawal, indicating a phasic involvement of astrocytes. It is important to determine 

the astrocytic contributions across these phases to influence neural and behavioral 

consequences. The role of astrocytes in addiction is likely defined both by the direct actions 

of drugs of abuse on astrocytes as well as by astrocytic dysregulation that occurs as a 

consequence of dynamic neuron-astrocyte interactions during drug withdrawal, abstinence, 
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and relapse. These divergent mechanisms underscore the need to elucidate the increasingly 

complex role of astrocytes in the brain under normal and pathophysiological conditions. 

Pursuing these and other questions will provide a new angle to understanding the cellular 

and circuit mechanisms underlying drug-induced behavioral abnormalities.
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Figure 1. Astrocyte-mediated regulation of transmission at the tripartite synapse.
A Electron microscopic image showing a tripartite synapse in the NAc, in which a 

glutamatergic axospinous synapse is wrapped by astrocyte processes (scale bar corresponds 

to 0.5 μm). B Diagram illustrating astrocytic mechanisms of glutamate homeostasis at 

glutamatergic synapses. Specifically, GLT-1 on astrocytes removes synaptically released 

glutamate, which can be converted to glutamine within astrocytes and transported back 

into presynaptic terminals. xCT located at perisynaptic astrocytic processes maintains 

extracellular levels of ambient glutamate. C Diagram showing mechanisms of increasing 

Ca2+ in astrocytes, including ER-derived Ca2+ release or entry via ionotropic receptors, that 

play a key role in the signaling pathways employed by astrocytes to regulate glutamate 

transmission, including ATP-P2Y1, adenosine-A1R, glutamate-mGluR5, and glutamate-

mGluR2/3 signaling pathways.
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Figure 2. Dysregulation of NAc extracellular glutamate after cocaine experience.
A In drug naïve animals, GLT-1 is a key astrocytic glutamate transporter that maintains low 

levels of glutamate at synaptic and perisynaptic locations, while xCT is a key astrocytic 

glutamate antiporter that maintains ambient glutamate levels for tonic activities of mGluRs 

in the NAc. B After withdrawal from cocaine self-administration, astrocytes retract from 

synapses and both GLT1- and xCT-mediated regulation of glutamate is compromised, 

resulting in increased levels of synaptic and perisynaptic glutamate but decreased levels 

of ambient, extracellular glutamate.
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Figure 3. Astrocyte-mediated synaptogenesis after cocaine self-administration.
A Astrocytic TSP2 and neuronal α2δ−1 constitute a synaptogenic signaling pathway in the 

developing brain to promote formation of glutamatergic synapses. Both astrocytic TSP2 

and neuronal α2δ−1 are present in the adult NAc in drug naïve animals. B Cocaine self-

administration induces formation of nascent, AMPAR-silent synapses in the NAc, which 

is mediated in part by TSP2-α2δ−1 signaling. These nascent synapses are thought to 

have relatively immature spine morphology. C,D After cocaine withdrawal, some of these 

newly formed, immature AMPAR-silent synapses are maintained (C) and, by recruiting and 

stabilizing AMPARs, gradually transform into fully mature synapses, resulting in long-term 

changes of circuit connectivity (D).
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