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Learning from error is often a slow process. In machine learning,
the learning rate depends on a loss function that specifies a cost
for error. Here, we hypothesized that during motor learning, error
carries an implicit cost for the brain because the act of correcting
for error consumes time and energy. Thus, if this implicit cost could
be increased, it may robustly alter how the brain learns from error.
To vary the implicit cost of error, we designed a task that combined
saccade adaptation with motion discrimination: movement errors
resulted in corrective saccades, but those corrections took time
away from acquiring information in the discrimination task. We
then modulated error cost using coherence of the discrimination task
and found that when error cost was large, pupil diameter increased
and the brain learned more from error. However, when error cost
was small, the pupil constricted and the brain learned less from the
same error. Thus, during sensorimotor adaptation, the act of correct-
ing for error carries an implicit cost for the brain. Modulating this cost
affects how much the brain learns from error.

cost of error | sensorimotor adaptation | saccadic adaptation | implicit
learning | modulation of learning

In machine learning, the error in the output of an artificial neural
network is evaluated by a loss function that depends on the

difference between the output and the desired one. This loss
function is a mathematical description of the cost of error, which
in turn is the principal driver of how much the network learns
from error. In analogy to machine learning, during sensorimotor
tasks human learning also depends on a loss function (1) that tends
to grow with error magnitude (2). This implies that in principle,
altering the landscape of the sensorimotor loss function should
affect the rate of learning. However, it has been difficult to find
ways to modulate the sensorimotor loss function.
Previous approaches have considered inducements such as

money (for humans) and food (for animals), thus associating an
explicit cost to the movement error. For humans, associating error
magnitude with monetary gains or losses can be effective in some
cases (3–5) but not others (6, 7). More recent results suggest that
when there is an effect of reward on the rate of learning, it acts
primarily through recruitment of the explicit, cognitive component
of adaptation not the implicit, unconscious component (8). On the
other hand, in monkeys the presence of reward for one direction
of saccade but not another (9), or one target of visual pursuit but
not another (10), tends to increase the rate of learning for the
rewarded direction or target.
Here, we began with the idea that if an error occurs during a

movement, that error often engages a reflexive response that at-
tempts to correct for the error, which in turn consumes time and
energy. Thus, an implicit cost of the erroneous act is the penalty of
time and energy paid during correction. For example, if a saccadic
eye movement misses the target, the resulting error is followed by
a corrective saccade. However, corrective movements carry a cost
because they delay the acquisition of reward (11). Thus, a natural
loss function for movement error is the time that is expended in
the act of producing the correction. If this time could be linked
with a utility, then the landscape of the loss function may be al-
tered, resulting in modulation of learning rates.

Here, we designed a paradigm that combined saccade adap-
tation with decision-making in a random dot motion discrimina-
tion task. Like traditional saccade adaptation tasks, subjects
made a saccade toward a visual target and experienced an error
that encouraged a corrective movement. However, unlike tradi-
tional tasks, the corrective saccade carried a cost: it consumed
time needed to acquire information for the decision-making task.
We varied this cost via coherence of the moving dots and found
that increasing the error cost robustly increased how much the
brain learned from error.

Results
Subjects made center-out horizontal saccades to a visual target (a
green dot, 0.5° × 0.5°) at ±15°. At the conclusion of their primary
saccade, they viewed an image that contained random dot motion
(Fig. 1A). Their objective was to detect the direction of motion of
the dots, which was either upward or downward and was reported
by making a vertical saccade. After this vertical saccade, feedback
was provided regarding decision accuracy.
In the baseline block, the random dot image was centered at

the target (Fig. 1B). However, during the adaptation block the
image was centered 5° away from the target, resulting in a gain-
down form of adaptation (Fig. 1C). Thus, during adaptation the
subjects made a saccade to the target and then followed that with
a corrective saccade to a location near the center of the image
(SI Appendix, Fig. S1). Importantly, the movement error and the
resulting corrective saccade carried a cost because the subject had
only 300 ms from the end of their primary saccade to view the image.
Thus, if the subject learned from movement error and adapted
their primary saccade, the corrective saccade would consume less
time, allowing them to view the random dots for a longer period
and therefore arrive at a more accurate decision.

Significance

Improving the process of learning from error can play a critical
role in applied settings such as rehabilitation. Previous work
has generally focused on reward as a variable that may mod-
ulate learning. However, in response to an erroneous move-
ment, the nervous system often engages a reflex that corrects
for that error, thus expending time and energy. Here, we
modulated this cost of error and found that increasing the cost
increased how much the brain learned from error. Thus, the
landscape of the loss associated with the act of correcting for
error regulates the rates of sensorimotor learning.
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In order to modulate the landscape of the loss function, we
varied the coherence of the random dots. As the subjects viewed
the random dots, their brain accumulated evidence for each pos-
sibility (upward or downward motion). Evidence accumulation
(Fig. 1D) is roughly the temporal integral of the instantaneous
difference between the number of dots that move upward versus
downward. This means that evidence grows faster when the motion is
more coherent (more of the dots move in a single direction). Because
time is lost for correcting for error (reaction time plus movement
duration of the corrective saccades), for the low-coherence image this
loss will impose a large cost and produce a significant reduction
in decision accuracy. In contrast, for the high-coherence image,
the same loss will have little or no effect on decision accuracy
(12). Thus, by varying motion coherence, we varied the cost of
error, which we hypothesized would change learning rates.
In summary, when the target was presented to one side of the

screen, coherence of the image was low, making the corrective sac-
cade costly because it took precious time away from viewing the
image. However, when the target was presented to the other side
of the screen, coherence was high, making the corrective saccade
less costly. Critically, the probability of success (reward) was greater
for the stimulus that had high coherence, and task difficulty (at-
tention) was greater for the stimulus that had low coherence. Thus,
we performed a series of experiments (Fig. 1E) to disentangle the
effects of cost of error, task difficulty, and reward.

Cost of Error Increased Both the Rate and the Asymptote of Adaptation.
In Experiment 1 (Exp. 1, n = 20 subjects, Fig. 2A), during adap-
tation trials one target was always associated with large error cost
(low image coherence) and the other target was always associated
with small error cost (high image coherence). During baseline
trials, as well as during adaptation, the probability of a correct
decision was much higher for the small-cost target (Fig. 2F, Linear

Mixed Models, trials 401 to 650, within-subject effect of cost,
F(1,72.375) = 6.144, P = 0.016). Yet, the subjects learned more
from errors that carried a large cost (Fig. 2B), as indicated by the
fact that adaptation rate was faster for the low-coherence image
(Linear Mixed Models on amplitude change, trials 51 to 400,
within-subject effect of trial F(1,279.258) = 840.866, P < 0.0005,
and trial by cost interaction F(1,114.807) = 4.867, P = 0.029).
Following a block of adaptation, we imposed a block of error-

clamp trials that eliminated movement error. As expected, without
errors to sustain adaptation, saccade amplitude returned toward
baseline (Fig. 2B, Linear Mixed Models, trials 651 to 800, within-
subject effect of trial, F(1,169.059) = 22.689, P < 0.0005, no trial
by cost interaction, F(1,78.921) = 0.022, P = 0.882). Following the
error-clamp block, further training brought performance toward
a plateau (Fig. 2B, trials 951 to 1,250). However, adaptation
remained higher for the side with the larger error cost (Linear
Mixed Models, trials 951 to 1,250, within-subject effect of cost
F(1,130.828) = 5.466, P = 0.021).
Thus, the rate of adaptation, as well as the asymptote of ad-

aptation, was greater toward the target that carried a large cost of
error, not the target that carried a greater probability of success.

Increasing the Cost of Error Rescued Low Adaptation. If error cost is
a causal mechanism that modulates learning from error, then a
change in error cost should produce a change in adaptation. Be-
cause Exp. 1 had established that the asymptote of adaptation was
greater for the large error cost stimulus, we checked whether we
could rescue adaptation by increasing its cost.
In Exp. 2, subjects (n = 20) began with stimuli that were iden-

tical to Exp. 1: large error cost to one side, small error cost to the
other. However, at trial 951 (Fig. 2A, switch cost), without warning
the side that previously displayed large-cost images (low coher-
ence) switched to displaying small-cost images (high coherence).
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Similarly, the side that previously displayed small-cost images
switched to displaying large-cost images.
During the initial phase of the experiment (trials 101 to 650),

adaptation rate was faster toward the side that carried a large
error cost (Fig. 2C, Linear Mixed Models, trial by cost interaction,
F(1,105.689) = 8.000, P = 0.006), thus confirming the findings of Exp.
1. However, the switch from small to large cost produced conver-
gence of saccade amplitudes for the two sides (Fig. 2C, Linear
Mixed Models, trials 801 to 1,250, trial by cost interaction
F(1,234.931) = 9.050, P = 0.003). We compared saccade ampli-
tude in Exp. 1 when there was no switch in cost (during trials 801
to 1,250), with the condition in which the cost switched (Exp. 2).
The switch in cost rescued a zero slope learning curve to one that
exhibited further learning (Fig. 2D, Linear Mixed Models, trial
(within-subject) by switch (between-subject) interaction,
F(1,147.996) = 7.138, P = 0.008).
It is noteworthy that adaptation rate was greater for the large-

cost stimulus, despite the fact that the stimulus on the opposite
side was more rewarding (Fig. 2F, Linear Mixed Models on prob-
ability of success, trials 101 to 650, Exp. 1, within-subject effect of
cost F(1,196.654) = 165.725, P < 0.0005, as well as a trial by cost
interaction F(1,195.069) = 27.166, P < 0.0005). The consequences of

greater reward for the small-cost stimulus was readily present in
the reaction time of the primary saccades: as in many previous
experiments (13–19), saccades toward the more rewarding stim-
ulus exhibited a shorter reaction time (SI Appendix, Fig. S2, Linear
Mixed Models, trials 101 to 650, Exp. 1, within-subject effect of
trial by cost interaction, F(1,339.649) = 5.320, P = 0.022). That is,
greater reward was associated with greater vigor (earlier reaction
time), but not better adaptation. Rather, adaptation rate was
higher for the stimulus that carried a greater cost.
We assumed that the time spent correcting for error carried a

cost that depended on stimulus coherence (Fig. 1D). To check
the validity of our assumption, we quantified the relationship be-
tween decision accuracy (Fig. 2F) and viewing time (Fig. 2E) for
each stimulus. For the high-coherence stimulus, a change in the
viewing period produced little or no change in decision accuracy
(Fig. 2G). On the other hand, for the low-coherence stimulus a
change in viewing period produced large changes in decision ac-
curacy (Fig. 2G, interaction of viewing period by decision accu-
racy, F(1,69.680) = 5.872, P = 0.018). This confirmed that the time
spent correcting for the movement error carried little or no cost
for the high-coherence stimulus (small cost), whereas the same
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expenditure was quite costly for the low-coherence stimulus
(large cost).
In summary, adaptation rate was greater toward the stimulus

that carried a greater error cost, not the stimulus that was more
rewarding. When the error cost increased (switch cost), so did
the asymptote of performance, suggesting a causal relationship
between the cost of error and adaptation.

Cost of Error Increased Learning from Error and Not Retention. The
fact that cost of error modulated the rate of adaptation as well as
the asymptote of performance raised the question of whether
this cost affected sensitivity to error, trial-to-trial retention, or
both. To consider these possibilities, in Experiment 3 we imple-
mented a spontaneous recovery paradigm and then analyzed the
results using a state-space model of adaptation (20).
In Exp. 3 (Fig. 3A), subjects (n = 20) began with stimuli that

were identical to Exps. 1 and 2: large error cost to one side, small
error cost to the other. We again observed that adaptation was faster
toward the stimulus with large error cost (Fig. 3B, Linear Mixed
Models, trials 51 to 400, trial by cost interaction, F(1, 105.334) =
4.635, P = 0.034). After the initial adaptation period, we reversed
the direction of movement errors (trials 651 to 750) to induce
“extinction,” resulting in a sharp change in saccade amplitude
toward baseline. Following error reversal, subjects experienced a
long period of error-clamp trials (trials 751 to 1,200). As expected
(21), during the error-clamp period saccade amplitude exhibited
spontaneous recovery toward the adapted state (Fig. 3B, trials 751

to 850, Linear Mixed Models, within-subject effect of trial,
F(1,151.553) = 6.019, P = 0.015).
We next applied a state-space model and estimated error

sensitivity and trial-to-trial retention. When the cost of error was
large, error sensitivity was elevated for both the slow (Fig. 3C,
permutation n = 10,000, P = 0.0202, one-tailed) and the fast
state (Fig. 3C, P = 0.0088, one-tailed). In contrast, cost of error
did not appear to affect trial-to-trial retention (Fig. 3C, slow
state, permutation n = 10,000, P = 0.0770, one-tailed; fast state,
P = 0.1345, one-tailed).
To check the robustness of this result, we reconsidered the

data during the adaptation period in Exp. 1, 2, and 3 (SI Appendix,
Fig. S3A), with the caveat being that because this data set did not
contain a spontaneous recovery period, we did not have sufficient
power to consider a two-state model and thus fitted a single-state
set of equations. We again found that error sensitivity was larger
for the large-cost target (SI Appendix, Fig. S3D, permutation n =
10,000, P = 0.0167, one-tailed), with no significant effect on the
trial-to-trial retention (SI Appendix, Fig. S3D, permutation n =
10,000, P = 0.4671, one-tailed).
In summary, cost of error increased sensitivity to error, not

retention.

Faster Adaptation Provided More Time for Decision-Making. We had
assumed that adaptation would afford subjects more time to view
the image and thus help them make more accurate decisions. To
check for this, we combined the data for the three experiments
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(n = 60 subjects). As expected, large error cost coincided with a
faster rate and a greater extent of adaptation (SI Appendix, Fig.
S3A, Linear Mixed Models, trials 51 to 400, within-subject effect
of trial, F(1,805.341) = 2,375.814, P < 0.0005, trial by cost in-
teraction, F(1,325.928) = 11.707, P = 0.001, and trials 401 to 650,
within-subject effect of cost, F(1,314.388) = 7.305, P = 0.007).
This increased rate of adaptation for the large-cost stimulus pro-
vided more time to view the moving dots (SI Appendix, Fig. S3B,
Linear Mixed Models, trials 101 to 400, within-subject effect of
trial, F(1,777.619) = 474.593, P < 0.0005, trial by cost interaction,
F(1,315.380) = 8.398, P = 0.008, and trials 401 to 650, within-
subject effect of cost, F(1,286.550) = 5.409, P = 0.021). Finally,
as saccades adapted and the viewing period increased, so did de-
cision accuracy (SI Appendix, Fig. S3C). The impact of increased
viewing period on decision accuracy was much greater when time
was more valuable (i.e., low-coherence stimulus, SI Appendix, Fig.
S3C, trials 101 to 400, trial by cost interaction, F(1,218.776) =
15.681, P < 0.0005).

Control Experiments: Eliminating the Error Cost Equalized Rates of
Adaptation. There are potential confounds in our interpreta-
tion. First, the task was harder for the low-coherence stimulus,
making it possible that learning rate was not driven by the cost of
error but rather the greater attention or cognitive load required for
the more difficult task. Second, the probability of reward (success)
was lower for the low-coherence stimulus. It is conceivable that the
increased reward impaired adaptation rates. Thus, we performed a
series of additional experiments (Fig. 1E).
To test for the effect of task difficulty, we performed an ex-

periment (Control 1) in which the cost of error was equal for the
two stimuli, but task difficulty was greater for one of them. Sub-
jects (n = 20) made a primary saccade to targets at ±15° and again
were presented with an image that was centered 5° away (Fig. 4A).
However, unlike the main experiments, here the subjects were
provided with 300 ms to view the random dot image regardless of
their primary saccade amplitude. That is, the time allowed to view
the image did not start until eye position was within 2° of the
center of the image (Fig. 4B). With this subtle change, we removed
the cost associated with movement error: now the time expended
during error correction did not affect the period available to view
the image.
As before, decision accuracy was greater for the side that

contained the high-coherence image, confirming that on one side
the task remained more difficult than the other (Fig. 4D, Linear
Mixed Models, trials 401 to 650, within-subject effect of coherence,

F(1,81.687) = 30.455, P < 0.0005). Indeed, decision accuracy at
both start and end of adaptation was similar among Control 1
and the main experiment groups (Linear Mixed Models, no
between-subject effect of experiment type, F(2,294.000) = 2.258,
P = 0.106, or trial by experiment type interaction, F(2,294.000) =
2.035, P = 0.133). However, while saccade amplitude exhibited
adaptation (Fig. 4C, Linear Mixed Models, trials 51 to 400, within-
subject effect of trial, F(1,280.370) = 808.509, P < 0.0005), we
found no significant within-subject difference between the low-
and high-coherence stimuli (Fig. 4C, Linear Mixed Models, trials
401 to 650, no within-subject effect of coherence, F(1,94.522) =
0.650, P = 0.422, trials 51 to 400, no trial by coherence interac-
tion, F(1,116.255) = 2.548, P = 0.113). Furthermore, we found
no significant within-subject difference in the asymptotic learn-
ing between the two types of stimuli (Fig. 4C, Linear Mixed
Models, trials 951 to 1,250, no within-subject effect of coherence,
F(1,108.028) = 0.189, P = 0.665).
To check for the influence of reward independent of both the

cost of error and task difficulty, we performed a second control
experiment. In Control 2 (SI Appendix, Fig. S4), the primary target
was always a noisy image. However, when this image appeared to
one side, there was a 50% probability that following the onset of
the primary saccade it would be replaced with the image of a face,
thus producing a positive reward prediction error (15). When it
appeared on the other side, it remained the same noisy image. We
found that both the primary saccade (SI Appendix, Fig. S4 B,
Lower plot, Linear Mixed Models, trials 1 to 650, within-subject
effect of reward prediction error, F(1,308.942) = 4.362, P = 0.038)
and the corrective saccade (SI Appendix, Fig. S4C, Linear Mixed
Models, trials 101 to 650, within-subject effect of reward predic-
tion error, F(1,266.928) = 18.103, P < 0.0005) had shorter reaction
times for the stimulus that was paired with positive reward pre-
diction errors. However, the increased reward had no significant
effect on adaptation rates (SI Appendix, Fig. S4 B, Upper plot,
Linear Mixed Models, trials 51 to 400, no within-subject effect of
trial by reward prediction error interaction, F(1,85.624) = 1.130,
P = 0.291, trials 401 to 650, no effect of reward prediction error,
F(1,106.906) = 0.866, P = 0.354).
Another limitation of our main experiments was that while one

direction of movement experienced a high error cost, another di-
rection experienced a low cost. Can error cost be used to increase
learning for all directions? To answer this question, we performed a
multiday experiment (Exp. 4, n = 16 subjects, SI Appendix, Fig.
S5A). During one session, all targets were paired with a high error
cost, but on a different session (a week apart) this cost was removed.
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We found that the increased cost of error enhanced the learning
rate (SI Appendix, Fig. S5C, main group, Linear Mixed Models,
trials 41 to 320, within-subject effect of trial by cost interaction,
F(1,117.319) = 5.895, P = 0.017, trials 241 to 320, within-subject
effect of cost, F(1,44.825) = 4.859, P = 0.033). In addition, during
a control experiment (SI Appendix, Fig. S5C, control group, n =
14 subjects, Linear Mixed Models, trials 41 to 320, within-subject
effect of trial by cost interaction, F(1,137.468) = 5.752, P = 0.018,
trials 241 to 320, within-subject effect of cost, F(1,52.387) =
5.237, P = 0.026) in which one direction of movement was paired
with cost of error while the other direction was not, we again
confirmed the findings of our main experiments.
In summary, eliminating the cost of error while maintaining

task difficulty eliminated the effects on the learning rates. Increasing
the reward rate while keeping task difficulty and cost of error con-
stant produced no changes in learning rates. Thus, among the three
variables that we considered (cost of error, task difficulty, and re-
ward rate), cost of error alone was a robust factor in modulating the
learning rates.

Pupil Dilation Coincided with Increased Cost of Error.What might be
the neural mechanism that links cost of error with adaptation?
To approach this question, we considered pupil dilation as a
proxy for activation of the brainstem neuromodulatory system
(22). We measured pupil diameter as subjects fixated the center
target and found that at the onset of each block the pupil was
dilated but then progressively constricted as the trials continued
(Fig. 5A). Following a set break, the pupil once again dilated.
These patterns were present in the main experiments, as well as
in Control 1 (Fig. 5A, Linear Mixed Models, trials 101 to 600,
within-subject effect of trial, main experiments: F(1,1728.945) =
476.108, P < 0.0005; Control 1: F(1,568.797) = 244.765, P <
0.0005). If we view pupil diameter as a proxy for arousal, then it
appears that there was a general decline in arousal within each
block of trials, followed by sharp recovery due to set breaks.
Next, we asked how the conditions of each trial affected pupil

diameter. For each subject and each trial, we compared pupil
size at center fixation (trial onset) to the fixation at the onset of
the next trial before the target was displayed. This within-trial
response served as our proxy for how the neuromodulatory sys-
tem reacted to the events that had transpired during that trial.

We found that in the baseline block, the trials that were more
difficult (low coherence) produced pupil dilation, whereas trials
that were easy (high coherence) produced pupil constriction
(Fig. 5B). The difference in the pupil response to the stimulus
content of each trial was present in the baseline block of both the
main group and the control group (Fig. 5B, Linear Mixed Models,
trials 1 to 100, within-subject effect of coherence, main experiments:
F(1,330.466)= 55.835, P < 0.0005; control experiment: F(1,106.150) =
5.191, P = 0.025). Thus, as has been noted before (23), when the
trial included a more difficult decision-making process, requiring
a greater cognitive load, it produced greater pupil dilation.
In the main experiments, as the adaptation blocks began the

pupil continued to dilate in trials that were difficult and had large
cost (Fig. 5B, Linear Mixed Models, trials 101 to 650, within-subject
effect of cost, F(1,1256.571) = 111.057, P < 0.0005). In the Control
1, the trials were still more difficult for the low-coherence stimu-
lus, but the error cost was equalized between the two stimuli.
Interestingly, in the control experiment the pupil response to trial
difficulty appeared to dissipate (Fig. 5B, Control 1, Linear Mixed
Models, trials 101 to 650, no within-subject effect of coherence,
F(1,507.790) = 1.224, P = 0.269). We were concerned that this
difference in the two groups may have been because of the larger
group size in the main experiments. However, the statistical
pattern was also present in each of the main experiments (Linear
Mixed Models, trials 101 to 650, within-subject effect of cost,
Exp. 1: F(1,424.491) = 91.192, P < 0.0005; Exp. 2: F(1,404.040) =
19.123, P < 0.0005; Exp. 3: F(1,435.689) = 21.073, P < 0.0005). In
addition, comparing the within-subject difference in within-trial
pupil dilation between Exp. 1 and Control 1 showed an effect of
experiment type (Linear Mixed Models, trials 101 to 650, between-
subject effect of experiment type, F(1,1316) = 20.427, P < 0.0005).
In summary, the pupil progressively constricted during each

block of trials, suggesting a waning of attention but then dilated
following each set break, suggesting partial recovery. The pupil also
responded to the conditions of each trial: in more difficult trials (low
coherence), the pupil dilated. However, cost of error modulated this
response; the within-trial change in pupil diameter was greater when
the trial was both difficult and incurred a large error cost.

Discussion
When movements produce an unexpected outcome, the nervous
system often produces a reflexive response that corrects for error.
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This corrective movement consumes time and energy, providing
an implicit loss that may affect learning. Here, we used saccade
adaptation as a model of sensorimotor learning and explored
whether imposing a cost on the time spent correcting for error could
modulate learning from error.
To impose a cost on error, we combined decision-making with

adaptation. In the resulting paradigm, it was costly to make a
movement that ended with a large error because both visual
acuity and the ability to detect differential motion drops rapidly
with distance from the fovea (24). Thus, the erroneous saccade
was followed by a corrective movement that placed the image on
the fovea but took time away from the limited period available to
acquire information and make an accurate decision. By modu-
lating the value of time, we modulated the cost of error and
found that an increased error cost robustly increased the rates of
sensorimotor adaptation.
However, imposing a cost of error also changed other aspects

of the task: its difficulty, and its reward rate. For example, errors
that were more costly occurred in trials in which decision-making
was more difficult and thus the reward rate was lower. To find
the effects of error cost independently of task difficulty and re-
ward rate, we performed two control experiments. In Control 1,
we maintained the disparity in difficulty and the rate of reward
but removed the error cost. This eliminated the effects on the
learning rates. In Control 2, we maintained the disparity in the
rate of reward but removed task difficulty and error cost. This
also eliminated the effects on the learning rates. Thus, error cost
stood out as the critical factor that modulated learning rates.
Earlier studies have considered the effects of explicit induce-

ments on retention of motor memories (3, 25, 26). For example,
Abe et al. (25) showed that monetary reward was effective in
improving retention of motor memories during a force-tracking
task. Galea et al. (3) also found that during a visuomotor rotation
task presence of reward was associated with greater retention. In
contrast, Steel et al. (27) reported that during serial-reaction-time
and force-tracking tasks, neither reward nor punishment benefitted
retention. We implemented a spontaneous recovery paradigm and
assessed the effects of error cost on both error sensitivity and
trial-to-trial retention. We found that while error cost increased
error sensitivity, it did not have a significant effect on retention.
Meermeier et al. (28) examined effects of implicit reward on

saccade adaptation by using neutral (noise) or highly engaging
images. They found that adaptation rates were not affected when
the time allowed to view the images was unrestricted. Our Control
2 experiment confirmed this finding. However, Meermeier et al.
(28) observed that when they limited the time that the subjects had
to view the highly engaging images, the result was an increase in
the learning rates. If we view their results in the framework of cost
of error, we see that while increasing reward had no effect on
adaptation rates, imposing a cost on the corrective saccade (lim-
iting the time available to view the valuable image) increased the
rate of adaptation.
There are of course other factors that influence how much the

brain learns from error (2, 29–31). For example, Marko et al. (2)
and Hanajima et al. (32) noted that error sensitivity was relatively
high for small errors and low for large errors. Herzfeld et al. (33)
and Leow et al. (34) showed that in environments where errors
were likely to be consistent, subjects increased their error sensi-
tivity. Albert et al. (35) observed that large variability in the
trial-by-trial sequence of errors tended to suppress learning from
error. Conscious of these potential pitfalls, we kept the pertur-
bation size consistent over the course of the experiment and also
controlled the statistics of the error that the subjects experienced
as they made saccades. Despite this, the rate of learning was
greater toward the stimulus that carried a greater error cost.
We found that increasing the cost of error rescued low ad-

aptation, suggesting a potentially causal relationship between the
cost of error and adaptation rates. Previous studies (35, 36) have

also found that modulating error sensitivity affected the asymp-
tote of performance during motor learning.
In our saccade task, the pupil progressively constricted as the

trials wore on within a block of trials, suggesting a decline in
arousal (37), but then dilated following the set break at the start
of the next block, suggesting a partial recovery. The resulting
saw-tooth pattern in pupil diameter was reminiscent of behav-
ioral changes during adaptation in many other experiments:
rapid adaptation that follows set breaks, and gradual adaptation
that ensues with progression of trials (21, 38–40).
Within each trial, during the baseline block the pupil dilated in

response to stimuli that required greater mental effort (low-coherence
stimuli) and constricted in response to stimuli that required
smaller effort (high-coherence stimuli). During the adaptation
block, when the stimuli carried an error cost the pupil continued
to dilate in response to the high-cost, greater mental effort stimuli.
However, when the error cost was equalized in the control ex-
periment, the dilation in response to stimuli that required greater
mental effort waned. These results raise the possibility that pupil
dilation is not only a correlate of attention and mental effort
invested in the task but also a correlate of learning from error.
The potential link between pupil diameter and learning from

error is noteworthy because it may highlight one pathway with
which the brain modulates learning. Changes in pupil size are
due to a band of muscles that surround the pupil, which in turn
are controlled by motoneurons that reside in the Edinger–
Westphal nucleus in the brainstem. Neurons in the intermediate
layers of the superior colliculus project to this nucleus (41). As a
result, weak microstimulation of the intermediate layers of the
superior colliculus can produce a transient increase in pupil di-
ameter that reaches its peak at around 300 to 500 ms (42, 43).
Notably, some superior colliculus neurons project to the con-
tralateral inferior olive (44), which provide climbing fibers that
carry error information to Purkinje cells of the cerebellum. For
example, the climbing fiber carries information regarding the
visual error following conclusion of a saccadic eye movement (45–48),
which in turn guides plasticity in Purkinje cells and affects
trial-to-trial learning (49). Notably, the amount that the cerebellum
learns from error may be related to the state of the superior col-
liculus: in trials in which collicular neurons respond more strongly
to the visual error, there is greater trial-to-trial learning (50, 51).
Thus, on the one hand the superior colliculus contains the neural
machinery to control pupil size and on the other hand, it pro-
vides information to the cerebellum regarding saccade-related
visual errors.
Improving how we learn from our erroneous movements is a

critical factor in applied settings such as rehabilitation (6). Pre-
vious work has generally focused on reward as a variable that
may modulate learning. Here, we took advantage of the fact that
movements that contain an error are often followed by corrective
actions. By imposing a cost on this corrective action, we found a
way to help the brain learn faster.

Methods
Subjects. A total of n = 128 healthy subjects (18 to 54 y of age, mean ± SD =
23 ± 7, 66 females) participated in our study. The procedures were approved
by the Johns Hopkins School of Medicine Institutional Review Board. All
subjects signed a written consent form.

Data Collection Procedure. We considered three factors that could influence
motor learning: cost of error, task difficulty, and reward. Our experiment
design is summarized in Fig. 1E and SI Appendix, Fig. S5B.

In main experiments (1 to 3), control 1, and control 2, participants sat in
front of an LED (light-emitting diode) monitor (27-inch, 2,560 × 1,440 pixels,
light gray background, refresh rate 144 Hz) placed at a distance of 35 cm
while we measured their eye position at 1,000 Hz (Eyelink 1000+). Each trial
began with presentation of a fixation point (a green dot, 0.5° × 0.5°) that
was drawn near the center of the screen; the fixation point was placed
randomly in a virtual box at −1° to +1° along the horizontal axis and −1° to
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+1° along the vertical axis, where (0, 0) refers to center of the screen. After a
random fixation interval of 250 to 750 ms (uniform distribution), the fixation
point was erased, and a primary target was placed at 15° to the right or left
along the horizontal axis.

In the main experiments (1 to 3), removal of the central fixation and
presentation of the primary target (a green dot, 0.5° × 0.5°) served as the go
signal for the primary saccade. After detecting primary saccade onset, the
primary target was erased and a random dot image was displayed. The
image was a 3° × 3° box with invisible borders containing a 0.5° × 0.5° green
dot at the center and 100 0.1° × 0.1° white dots moving at 5°/s either up-
wards or downward with a predefined coherence.

The coherence was implemented via the portion of the dots that were
moving either upwards or downward (the rest of the dots were moving in a
random direction). For example, if the coherence was 75% in upward di-
rection, 75 points moved at 90° at 5 °/s speed and 25 points moved at 25
randomly assigned directions with 5 °/s speed. The locations of the 100 dots
were assigned randomly at the beginning. When a dot hit one of the in-
visible borders, its position got reset to the opposite border while main-
taining its angle and speed. The source code for generating the random dot
image is available for download from the project’s OSF (Open Science
Framework) repository (https://doi.org/10.17605/osf.io/H24J8, ESN_Mo-
ving_Dots.c). In addition, a Matlab version of the code was included along
with the c-code (ESN_Moving_Dots.m).

The location of random dot image was defined based on the trial type:
during baseline trials the image was centered at primary target location.
During perturbation trials, the image was centered at 5° from the primary
target toward the center of the screen. During error-clamp trials, the image
was centered at the location of the primary saccade offset.

During adaptation trials, following completion of the primary saccade
subjects produced a corrective saccade to place the random dot image on
their fovea. This corrective movement carried a cost because it reduced the
time available for the subject to view the image. This is because following
detection of primary saccade offset, the image was available for only a
limited time. The limited availability of the information and the fact that
corrective saccade’s reaction time and execution time took away time from
viewing this image were key factors in our experiment design.

In the main experiments (1 to 3), the image was present for only 300 ms
after primary saccade offset. This was the only time available to view the
image and decide on the direction of motion of the random dots. Following
this 300-ms period, the image was erased, and two targets were displayed at
5° above and below the image. Subjects reported their perceived direction
of motion by making an upward or downward saccade. Following this de-
cision, they received feedback regarding their decision accuracy via an au-
ditory tone: a 1,000 Hz (beep) 30-ms long sound for a correct decision and a
500 Hz (boop) 30-ms long sound for an incorrect decision. At the end of this
period, the decision targets were removed, and the center fixation point
appeared at a random location near the center of the screen, in the
bounding box defined above.

Modulating Cost of Error. During the adaptation phase of the main experi-
ments, the viewing period was set to be up to 300 ms from primary saccade
offset, but in practice, at the beginning of learning it was around 150 ms due
to reaction time and duration of the corrective saccade. Thus, by adapting the
primary saccade (reducing the size of the corrective saccade), subjects would
have more time to view the image, increasing the accuracy of perceiving the
direction of motion. To vary the cost of error, trials consisted of two types of
stimuli. For targets on one side of the screen, coherence of the random dots
was low (65 to 75%), imposing a large cost on the error; the corrective saccade
took precious time away from viewing the moving dots. For targets on the
other side of the screen, coherence of the randomdots was high (95 to 100%).
Here, the error cost was small: the time consumed by the corrective saccade
was relatively inconsequential for the ability to perceive motion of the dots.

In a control experiment (Control 1, described below), subjects received
300 ms to view the random dot image irrespective of the level of the ad-
aptation. This served to remove the cost of error for the low- and high-
coherence stimuli.

Experiments 1 to 3. The logic of these experiments is illustrated in Fig. 1E. n =
60 subjects participated in Exp. 1 to 3 (20 subjects in each). Each experiment
started with 50 familiarization trials (no perturbations). During these trials,
the images appeared at the primary target location at various coherence
levels to familiarize the participants with the saccadic task and motion dis-
crimination paradigm. The collected data during the familiarization period
was excluded from analysis.

After the familiarization block, the baseline block commenced. The
baseline consisted of 100 trials and ended with a 30-s set break. In this block,
subjects experienced 50 low-coherence trials on one side of the screen and
50 high-coherence trials on the other side. The coherence side was coun-
terbalanced between subjects. Since each subject experienced both type of
stimuli (low versus high coherence), we used a within-subject comparison for
all statistical analysis.

Next, subjects experience 550 gain-down perturbation trials (trials 101 to
650), during which the random dots image was displayed 5° away from the
primary target toward the center of the screen. The consistent experience of
this perturbation gradually resulted in adaptation of the primary saccades.
We asked how does cost of error modulated the rate of adaptation.

All experiments included an error-clamp period. In these trials, the per-
turbation was removed, and the image was centered at the end position of
the primary saccade.

Control 1. This experiment (n = 20 subjects) removed cost of error but
maintained task difficulty and reward as factors that could influence the
rate of learning. In contrast to Exp. 1 to 3 in which the time to view the
image was reduced because of the corrective saccade, in this control ex-
periment (Fig. 4B) the timer did not start until the eye landed around (4° ×
4°) the random dot image (3° × 3°). This made it so that the time spent
correcting for error did not compete with the time needed to view the
random dot motion, thus equalizing the cost of error for the low- and high-
coherence images.

Control 2. This experiment (SI Appendix, Fig. S4, n = 18 subjects) removed cost
of error as well as task difficulty but maintained implicit reward as a factor
that could influence the rate of learning. The primary target was always the
image of a noise patch (3° × 3°), presented at ±15° with respect to central
fixation. A green dot always appeared at the center of every image. Upon
initiation of the primary saccade, the primary target was erased and
replaced by another image at 5° closer to central fixation. When the primary
target was to one side, the replacement image had 50% probability of being
a face, thus resulting in a positive reward prediction error (15). For the other
side, the replacement image was always a noise patch, thus resulting in a
zero reward prediction error. The facial images were gathered from the
Internet (500 total images) and were modified in a way that the center of
the two eyes was located at the center of the image. The noise images were
constructed by shuffling the pixels of each face image (500 × 500 pixels). This
ensured that the luminance and color content of the two categories were
identical.

Experiment 4 and Control 3. Our main experiments (Exp. 1 to 3) introduced a
high error cost for one direction of movement and a low error cost for an-
other direction. In a more general setting, one would wish to enhance
learning rates in all directions. To test whether this could be achieved, in Exp.
4 (n = 16 subjects, SI Appendix, Fig. S5A) we tested the same subjects on two
sessions, separated by one week.

We simplified the decision-making task: rather than judging the direction
of motion of random dots, subjects had a limited amount of time (250 ms
from primary saccade offset) to view a cue image. In some trials, this cue
image provided them with information necessary for decision-making. In
other trials, the cue image was irrelevant for decision-making.

In Exp. 4 and Control 3, participants sat in front of an LEDmonitor (32-inch,
1,920 × 1,080 pixels, light gray background, refresh rate 60 Hz) placed at a
distance of 40 cm while we measured their eye position at 1,000 Hz (Eyelink
1000+). Each trial began with presentation of a crosshair-shaped fixation
stimulus (1.5° × 1.5°) around the center of the screen. During the fixation, a
target (the image that represented the number “0,” 1.5° × 1.5°) appeared
at ±15° for 200 ms, but the subjects were not allowed to saccade to it.
Rather, they waited for the removal of the fixation stimulus (an additional
200 to 500 ms) and then made a saccade to the remembered location. At the
onset of this primary saccade, the cue target (1.5° × 1.5°) was placed 5° away
from the previewed target. The cue target contained either a stimulus that
carried a large cost or no cost. For example, if the cue image contained three
black dots, then the correct decision was a saccade to the target labeled “3”
(1.5° × 1.5°). If the cue image contained random noise, then the image was
irrelevant for decision-making—the correct decision was a saccade to
any target.

In the main group (SI Appendix, Fig. S5B), during one session 90% of the
cues on both sides were images that were important for decision-making
and thus carried a large error cost. During another session, 90% of the cues
on both sides were irrelevant for decision-making and thus had zero error
cost. The sessions were counterbalanced across the participants.
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In the control group (n = 14 subjects), we sought to reproduce the results
of the main experiments in this simplified decision-making paradigm. Thus,
we tested the subjects during a single session, with movements to one side
encountering images that had a high error cost and movements to the other
side encountering zero cost (SI Appendix, Fig. S5B, control group).

Data Analysis. Eye position data were acquired using an EyeLink 1000+ system
(SR Research) at 1,000 Hz. During the online data acquisition, we used a
second-order Savitzky–Golay filter with seven datapoints to estimate the eye
velocity. The onset of the primary saccades was detected when the eye ve-
locity increased above 20°/s or the eye position left the area (4° × 4°) around
the start target (whichever happened first). The source code for online es-
timation of eye velocity is available for download from the project’s OSF
repository (https://doi.org/10.17605/osf.io/H24J8, ESN_Eye_Filt.c). Primary
saccade offset was detected when the eye velocity fell below 75 °/s and the
eye position was inside a rectangle (9° × 4°), which contained the area
around the primary and secondary target locations and the region
in between.

Eye position data in offline analysis were filtered with a second-order
Butterworth low-pass filter with cutoff frequency of 100 Hz. Eye velocity
data were calculated as the derivative of the filtered position data. Saccades
were identified with a speed magnitude threshold of 20°/s and minimum
hold time of 10 ms at saccade end (i.e., velocity magnitude could not exceed
the cutoff for a minimum 10 ms after endpoint). Corrective saccade onset
and offset were detected identically to the primary saccades, using 20°/s
threshold on velocity magnitude. We measured change in primary saccade
amplitude with respect to the average saccade amplitude in the first block in
each condition.

Viewing period of the random dot image was measured based on the
amount of time that the eye position was inside of an imaginary box of size
4° × 4° centered on the image. In the case of the Control 1 experiment, the
moment when the eye position entered this region started the 300-ms timer.

Decision accuracy was measured based on the number of correct decision
responses divided by the total number of trials for each condition (high versus
low coherence).

Pupil area was measured by EyeLink 1000+ system (SR Reseach) and was
reported in the system’s arbitrary pixel coordinate system. We blanked this
data during eyeblink events to account for divergence in eye tracking. To
combine and compare the pupil data across participants and experiments,
we measured the percentage change for each participant by dividing the
pupil data by the average pupil area over the entire recording for that
subject. To control for differences in visual stimulus properties, we computed
the average normalized pupil area during 200-ms window of time when
participants were fixating on the start target (0.5° × 0.5° green dot). Next,
we measured the change in normalized pupil area from one trial to the next
to quantify how the conditions of each trial affect pupil dilation (Fig. 5B).

Statistical analyses were performed using SPSS and Linear Mixed Models.
We used stimulus type (two levels, categorical) and bins of trials (multiple
levels, hierarchical) and tested within-subject effect of those independent
variables. To test between-subject effect of experiment type, we used Linear
Mixed Models with bins of trials (multiple levels, hierarchical, within-subject
variable) and experiment type (two levels, categorical, between-subject
variable) without repeated measurements as independent variables. Statis-
tical analyses were performed under the assumption of first-order autore-
gressive to model the covariance matrix. We used intercept, stimulus/
experiment type, bins of trials, and trial by stimulus/experiment type inter-
action as fixed effects and the intercept as a random effect.

State-Space Model of Learning. After the experience of a movement error,
humans and other animals change their behavior on future trials. In the
absence of error, adapted behavior decays over time. Here, we used a state-
space model (20) to capture this process of error-based learning. Here, the
internal state of an individual x, changes from trials n to n+1 due to learning
and forgetting:

x(n+1) = ax(n) + b(n)e(n) + «(n)x . [1]

Forgetting is controlled by the trial-to-trial retention a. The rate of learning is
controlled by the error sensitivity b. Learning and forgetting are stochastic
processes affected by internal state noise «x: a normal random variable with
zero-mean and SD of σx.

While we cannot directly measure the internal state of an individual, we
can measure their movements. The internal state x leads to a movement y
according to the following:

y(n) = x(n) + «(n)y . [2]

The desired movement is affected by execution noise, represented by «y: a
normal random variable with zero-mean and SD of σy. To complete the
state-space model described by Eqs. 1 and 2, we must operationalize the
value of an error, e. In sensorimotor adaptation, movement errors are de-
termined both by motor output of the participant (y) and the size of the
external perturbation (r):

e(n) = r(n) − y(n). [3]

We used Eqs. 1–3 to estimate the trial-to-trial retention a and error sensi-
tivity b during each experiment design.

We used permutation (10,000 iterations) of the population data to esti-
mate the parameters of the single-state and two-states models. We formed
population data by randomly sampling (with replacement) the subjects and
then computed the average adaptation curve for the population. In each
iteration for each subject, we stacked all the data for a given stimulus type
together and as a result formed two time series for each subject, one for
each stimulus type. Then, since the number of trials were balanced over
subjects and stimuli, we combined the data for a given stimulus and com-
puted the average population data for that stimulus. We fitted single-state
and two-states models of the learning to the population data using Least
Mean Square optimization method.

After computing the distribution of each model parameter, we next
computed the distribution of within-population difference between the
large- and small-cost conditions. To test whether there was a significant
effect of cost, we used the within-population difference and integrated the
region from zero (no difference) to minus infinity, resulting in a P value
(Fig. 3C and SI Appendix, Fig. S3D). It should be mentioned that the P value
computed here was a one-tailed P value and should be compared to 0.025
for the two-tailed assumption.

Data Availability. Anonymized data and codes have been deposited in
OSF (Open Science Foundation) repository https://doi.org/10.17605/OSF.IO/
H24J8 (52).
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