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Cavitation controls droplet sizes in elastic media
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Biological cells use droplets to separate components and spatially
control their interior. Experiments demonstrate that the com-
plex, crowded cellular environment affects the droplet arrange-
ment and their sizes. To understand this behavior, we here
construct a theoretical description of droplets growing in an
elastic matrix, which is motivated by experiments in synthetic
systems where monodisperse emulsions form during a temper-
ature decrease. We show that large droplets only form when
they break the surrounding matrix in a cavitation event. The
energy barrier associated with cavitation stabilizes small droplets
on the order of the mesh size and diminishes the stochastic
effects of nucleation. Consequently, the cavitated droplets have
similar sizes and highly correlated positions. In particular, we
predict the density of cavitated droplets, which increases with
faster cooling, as in the experiments. Our model also suggests
how adjusting the cooling protocol and the density of nucle-
ation sites affects the droplet size distribution. In summary, our
theory explains how elastic matrices affect droplets in the syn-
thetic system, and it provides a framework for understanding the
biological case.

phase separation | elastic gels | strain softening | pattern formation

Phase separation has emerged as a powerful concept to explain
how biological cells structure their interiors (1, 2). It explains

how membraneless compartments with distinct chemical compo-
sition, called biomolecular condensates, form spontaneously. In
contrast to classical liquid−liquid phase separation, these con-
densates exist in complex, crowded environments, for example,
provided by the cytoskeleton in the cytosol or the chromatin in
the nucleus. This fundamentally affects the behavior of conden-
sates: Their coarsening is slowed down by subdiffusive motion
(3), they are supported against gravity by the F-actin network in
the nuclei of large cells (4), and their assembly depends on the
stiffness of their surrounding (5, 6). Another example is artifi-
cially induced condensates, which typically appear in soft regions
of the chromatin (7). Taken together, these experiments and
recent numerical simulations (8) demonstrate that condensates
react to the elastic properties of their surroundings (9), but the
detailed dynamics are still unclear.

The interaction of droplets with soft elastic matrices can be
studied in detail in a synthetic system, where oil droplets are
induced in a PDMS (Polydimethylsiloxane) matrix by lowering
the temperature (10). Similar to the biological case, droplets are
biased toward softer regions in this system (11, 12). This elas-
tic ripening is absent when the elastic properties of the system
are homogeneous. Instead, all observable droplets attain simi-
lar sizes, and their positions are correlated (10). Interestingly,
one observes smaller droplets in stiffer systems and at higher
cooling rates (10). This implies that the final state is governed
by nonequilibrium processes, which is also demonstrated by the
bidisperse emulsions that form after increasing the cooling rate
during the experiment (11).

Theoretical models of droplets growing in an elastic matrix
have to describe how the matrix affects the droplets’ dynam-
ics. In the simplest case, the matrix exerts a pressure on the
droplets proportional to the local stiffness, which is sufficient
to explain elastic ripening (13). Moreover, assuming a strain-
stiffening surrounding can explain why droplets attain the same

size, which decreases with stiffness (14–16). However, these equi-
librium models cannot describe the dependence on the cooling
rate.

In this paper, we present a dynamic theory of droplet for-
mation in elastic matrices, which is based on the assumption
that droplets can break the surrounding matrix. We show that,
in this case, some droplets cavitate and grow macroscopically,
while a large fraction are restricted to mesh size. The cav-
itated droplets have a similar size, which decreases with a
higher cooling rate. We motivate our theory by first consid-
ering how the elastic matrix affects a single droplet. We then
couple the dynamics of multiple droplets via the diffusion of
monomers in the dilute phase. Using numerical simulations and
analytical approximations, we demonstrate that this model can
explain the relevant experimental observations of the synthetic
system.

External Pressure Governs Dynamics of Droplets
To understand how droplets interact with an elastic matrix, we
first consider a single spherical droplet of radius R. Motivated by
experimental observations (10, 17), we assume that the droplet
excludes the matrix completely. Droplet growth is driven by the
differences in chemical potential and osmotic pressure between
the droplet and its surroundings. We show, in SI Appendix,
that this can be captured by a driving strength g , which quan-
tifies the energy gain when the droplet volume V = (4π/3)R3

increases. However, when the droplet grows, its surface area
A= 4πR2 also increases, which comes at a cost proportional
to the surface energy γ. Moreover, the matrix surrounding the
droplet must be displaced, which we capture by an elastic energy
FE (V ). Taken together, the free energy F of the entire system
reads

F =−g V + γA+FE (V ), [1]
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where we, for simplicity, first consider constant driving strength
g and surface energy γ.

A droplet will grow spontaneously when the free energy
decreases (∂F/∂V < 0), that is, if

g >P(R) with P(R) =Pγ(R) +PE (R), [2]

where Pγ = 2γ/R is the Laplace pressure due to the surface ten-
sion γ (18, 19), and PE = ∂FE/∂V is the pressure exerted by
the elastic matrix; see SI Appendix. A droplet thus grows when
the driving strength g exceeds the pressure P exerted on the
droplet. A stationary state with droplet radius R∗ is reached
when g =P(R∗), which is stable if ∂2F/∂V 2 > 0, or

P ′(R∗)> 0. [3]

A droplet is thus stable when the exerted pressure increases with
its size.

Without an elastic matrix, the droplet is only affected by the
Laplace pressure Pγ ; see Fig. 1A. The corresponding free energy
shown in Fig. 1D demonstrates that surface tension dominates
for small droplets. In particular, droplets can only grow spon-
taneously (∂F/∂V < 0) after overcoming a nucleation barrier,
for example, by thermal fluctuations (homogeneous nucleation)
(20) or thanks to nucleation sites that lower the barrier (hetero-
geneous nucleation); see SI Appendix. Once the droplet is big
enough, the energy decreases with increasing radius, and the
droplet is always unstable (P ′γ(R)< 0). Droplet growth is then
only restricted by the available amount of material.

An Elastic Matrix Restricts Droplet Growth
An elastic matrix surrounding the droplet exerts an additional
pressure and thus potentially opposes growth; see Eq. 2. The
pressure exerted by the matrix depends on its elastic response.
For small deformations, the response can be characterized by
the Young’s modulus E . However, droplets can grow much
larger than the mesh size `, implying large deformations of the
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Fig. 1. Breakage of the mesh implies a cavitation barrier. Example of
pressure P = PE + Pγ exerted on a droplet during growth (A−C) and cor-
responding free energy F (D−F) as a function of the droplet radius R. F
is obtained from Eq. 1 for fixed driving strength g (red dashed lines in
A−C). Without an elastic mesh (PE = 0), the pressure curve is monotonously
decreasing (A). After crossing a nucleation barrier, droplets grow until all
material is absorbed (D). An elastic matrix increases the pressure once the
droplet grows beyond mesh size (B). This can lead to an energy minimum
where droplets are stable (E). If the mesh can break, the pressure curve
exhibits a local maximum (C), which leads to a cavitation barrier (F).

matrix. The simplest model describing such hyperelastic material
is the neo-Hookean model, where the pressure on a spheri-
cal cavity of radius R is monotonically increasing (P ′E (R)> 0)
and converges at large radii to PE = 5E/6 (21). If the driv-
ing strength g is lower than the maximal pressure, the system
opposes further droplet growth and leads to a stable radius R∗
when g =P(R∗); see Fig. 1B. This steady state corresponds to
a minimum in the free energy; see Fig. 1E. Therefore, an elas-
tic mesh providing resistance to droplet growth can stabilize
droplets.

Breakage Provides a Cavitation Barrier for Droplets. The neo-
Hookean model is often too simple to describe realistic mate-
rials, in part because it does not account for breaking bonds
in the elastic mesh. To capture breakage, we next consider a
stress−strain curve that has a maximal pressure Pcav at a finite
radius Rcav; see Fig. 1C. Similar to the neo-Hookean model, we
consider an increasing pressure when droplets grow beyond the
mesh size `. However, at the critical radius Rcav, the mesh can-
not sustain the stress anymore and breaks, resulting in a pressure
decrease (22). The stability criterion given in Eq. 3 indicates that
droplets with R =Rcav are unstable and will thus expand rapidly
in a cavitation event (23, 24).

The nonmonotonous stress−strain relation shown in Fig.
1C results in a free energy that has two energy barriers; see
Fig. 1F. The first barrier is the familiar nucleation barrier,
while the second one is the cavitation barrier. The local mini-
mum between the two barriers corresponds to the stable state
described in the case of the neo-Hookean model. However,
with breakage, droplets can overcome the second barrier and
cavitate if the driving strength g exceeds Pcav. The growth
of such droplets would then only be limited by the available
amount of material, similar to the case without any elastic
matrix.

Multiple Droplets Grow When Temperature Is Decreased
In the experiments of Style et al. (10), multiple oil droplets
appeared simultaneously when the temperature was lowered.
Since lowering the temperature corresponds to increasing the
driving strength g , cavitated droplets appear when g reaches the
maximal pressure exerted by the surrounding matrix. If this max-
imal pressure increases with the overall stiffness, we predict that
lower temperatures are necessary to create droplets in stiffer
systems, which was indeed observed (11). However, this qual-
itative analysis does not distinguish between the neo-Hookean
and the breakage model, since both allow simultaneous growth
of droplets.

To distinguish the neo-Hookean from the breakage model, we
need to analyze the droplet dynamics in detail. Since the droplets
are spherical in the experiments (10), we expect that direct elastic
interactions mediated by the mesh are negligible. This assump-
tion is consistent with the observation that a droplet growing in
PDMS remains spherical and only affects the mesh in a thin
layer surrounding the droplet when its radius is smaller than
the elasto-adhesive length scale (17, 22). In our case, the elasto-
adhesive length scale, given by the ratio of the fracture energy to
the Young’s modulus E , is about 100 µm (17) and thus larger
than all droplets. Taken together, this suggests that droplets
do not strongly interact via elastic deformations of the mesh.
Instead, the dynamics of growing droplets are coupled because
they compete for the material dissolved in the dilute phase. We
analyze this situation using a theory, where we describe a col-
lection of immobile droplets by their positions ~xi and their radii
Ri together with the concentration field c(~x ) of droplet mate-
rial in the dilute phase (13). For simplicity, we assume that
the concentration cin inside each droplet is constant, droplets
are in equilibrium with their immediate surrounding, and the
dilute phase can be approximated as an ideal solution. In this
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case, the concentration right outside the interface of a droplet is
given by (13)

ceq(P ,T ) = csat(T ) exp

(
P

cinkBT

)
, [4]

where P(R) is the pressure exerted by the surrounding, csat is
the equilibrium concentration in the absence of an elastic mesh
in the thermodynamic limit, kB is Boltzmann’s constant, and T
is the system’s temperature.

Droplets grow when their surrounding is supersaturated (c>
ceq). The droplet growth rate reads (13)

dRi

dt
=

D

Ricin
[c(~xi)− ceq (P(Ri),T )], [5]

where D is the diffusivity of the droplet material in the dilute
phase. The concentration in the dilute phase obeys

∂tc =D∇2c− cin

∑
i

dVi

dt
δ(~xi −~x ), [6]

where the last term accounts for material exchange with the
droplets, which is proportional to the rate of change of the
droplet volumes Vi (13). Combined with no-flux conditions at
the system’s boundary, Eqs. 5 and 6 conserve the total amount of
droplet material.

We simulate the system by mimicking the experimental pro-
tocol of Style et al. (10). In particular, we consider a linear
relation between the saturation concentration csat and tempera-
ture T together with a constant cooling rate. Consequently, csat

decreases linearly from the initial value c0 until it reaches the
minimal value c0−∆c at the final temperature,

csat(t) =

{
c0−αt t < ∆c

α

c0−∆c otherwise,
[7]

where α is the rate of the decrease. As csat is lowered, the
equilibrium concentration ceq also decreases (Eq. 4), implying
a larger supersaturation c− ceq, which corresponds to a higher
driving strength g . Starting with a homogeneous system at high
temperature (high csat), droplets will nucleate once g is large
enough to cross the nucleation barrier; see Fig. 1. We show, in SI
Appendix, that homogeneous nucleation is basically impossible
in the parameter range of the experimental system. Conse-
quently, droplets must nucleate heterogeneously at nucleation
sites. This suggests that surface tension effects are negligible
for small droplets. In fact, surface tension is also negligible for
large droplets, since Ostwald ripening is slow (see SI Appendix),
suggesting that the total pressure P is always dominated by the
elastic pressure PE . We thus neglect surface tension for simplic-
ity and rather assume that droplets form quickly at nucleation
sites. In particular, we initialize our simulations with many small
droplets with radii on the order of the mesh size and focus on
the subsequent dynamics. The radius at which droplets are ini-
tialized is unimportant, since they are restricted by the elastic
matrix to have a small radius R that is governed by the condi-
tion g =P(R). Consequently, many microscopic droplets coexist
early in the simulation.

Droplets can grow macroscopically (R� `) when the driving
strength g exceeds the pressure exerted by the mesh. Since realis-
tic meshes are heterogeneous (25), the exerted pressure will vary
slightly from droplet to droplet. To capture such heterogeneity
for the neo-Hookean model (NH), we consider variable mesh
sizes `i , and give the pressure as (26)

PNH
i (R) =E

(
5

6
− 2`i

3R
− `4i

6R4

)
for R≥ `i , [8]

where E is the macroscopic Young’s modulus of the material.
Conversely, in the breakage model (BR), we choose random
cavitation pressures P

(i)
cav, since this parameter dominates the

cavitation barrier. We thus consider the simple form

PBR
i (R) =


0 R<`

P
(i)
cav

R− `
Rcav− `

`≤R≤Rcav

P∞ R>Rcav,

[9]

where we keep both ` and Rcav fixed for all droplets, since vary-
ing these parameters does not affect the results significantly; see
SI Appendix. Eq. 9 implies that the external pressure increases
linearly when the droplet grows beyond the mesh size ` until it
reaches the cavitation radius Rcav. Beyond this threshold, the
mesh breaks and provides a constant resistance quantified by a
pressure P∞<P

(i)
cav, which we keep the same for all droplets to

suppress elastic ripening (13).
Fig. 2 shows typical simulations of Eqs. 4–7 for both the neo-

Hookean model (Eq. 8) and the breakage model (Eq. 9). In both
cases, macroscopic droplets appear, and they grow with very sim-
ilar rates. However, the breakage model additionally exhibits a
large number of microscopic droplets, which do not grow. Since
these microscopic droplets are likely not visible in the exper-
iment, both models appear to yield monodisperse emulsions,
although this requires an extremely homogeneous mesh in the
neo-Hookean model. In contrast, the models behave differently
when we nucleate new droplets during the simulation: While all
newly nucleated droplets grow in the neo-Hookean model, in
the breakage model, most new droplets are restricted to micro-
scopic sizes; see SI Appendix. Consequently, we expect that the
breakage model leads to a more uniform size distribution of large
droplets in realistic situations.

To see which of the two models provides a better explanation
of the experiments, we next test their predictions quantitatively.
Here, we use the experimentally measured values of D , ∆c, α,
P∞, E , and cin, while the values of the mesh size ` and the
cavitation radius Rcav are arbitrary and do not affect the predic-
tions of the model; see SI Appendix. The only relevant parameter,
which we adjust to match the experimental data, quantifies the
ratio of the mesh heterogeneity η to the density m of nucleated
droplets. We first focus on the intriguing nonequilibrium effect
that higher cooling rates lead to more and smaller droplets. In
the neo-Hookean model, the average droplet size 〈R〉 is indepen-
dent of the cooling rate α (Fig. 3A), while 〈R〉 and the associated
standard deviation match the experimental data in the breakage
model (Fig. 3B and SI Appendix, Fig. S4). The two models also
differ in the spatial distribution of large droplets, which we quan-
tify by the pair correlation function, similar to the experiments
(10). Fig. 3C shows that droplets are uniformly distributed in the
neo-Hookean model, since their positions are solely controlled
by their nucleation. In contrast, droplet cavitation is correlated
in the breakage model (Fig. 3D), leading to a low probability
of finding two large droplets close to each other, similar to the
experiments (10). The shown data collapse suggests that the size
of the depletion region scales with the mean droplet separation.
Moreover, the volume surrounding a droplet, measured from
a Voronoi tessellation, is strongly correlated with its size; see
Fig. 3D, Inset. The fact that our simulations match the exper-
imental data quantitatively suggests that breakage is a crucial
aspect.

Large Droplets Suppress Further Cavitation by Depleting
Their Vicinity
To understand how breakage affects the droplets’ dynamics, we
next investigate why some droplets cavitate while others remain
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Fig. 2. Decreasing temperatures cause monodisperse emulsions in the neo-Hookean model (A and C) and breakage model (B and D). (A and B) The 2D
projections of typical simulations at two time points. The color indicates the concentration c in the dilute phase, and droplets are marked with disks
where brightness indicates depth. (C and D) Droplet radii R as a function of time t showing that large droplets are monodisperse after reaching the final
temperature at t = ∆c/α (dotted black line). The red line in D shows the theoretical prediction given by Eq. 10. The model parameters are α = 1.864 · 10−5

s−1·ν−1, E = 186 kPa, ∆c = 0.0159 ν−1, D = 50 µm2·s−1, cin = ν−1, and cinkBT = 11 MPa, where ν= 0.37 nm3 is the molecular volume. For the neo-Hookean
model, we sample ` uniformly between 0.1 and 0.102 µm (25) and use m = 7 · 10−6 µm−3. For the breakage model, we have Rcav = 1 µm, m = 1.875 · 10−4

µm−3, η/m = 105E µm3, Pmin
cav = E, and P∞ = 5/6E.

small; see Fig. 2D. Initially, all droplets are small and grow due to
the decreasing saturation concentration by absorbing the excess
material from the dilute phase. Note that droplets in a softer
environment, that is, with a lower Pcav, exhibit a lower equi-
librium concentration ceq (Eq. 4), and thus grow faster. This
initial growth phase continues until the droplet with the lowest
Pcav reaches its cavitation radius Rcav. At this point, the elas-

tic matrix no longer provides enough resistance (∂P/∂R< 0),
and the droplet radius becomes unstable; see Eq. 3. The droplet
thus cavitates by recruiting material from the dilute phase as fast
as possible in a diffusion-limited process. Such a quickly grow-
ing droplet depletes its surroundings, effectively fixing the local
driving strength to g =P∞. Consequently, other droplets in the
vicinity cannot cavitate and will remain small forever. Taken

BA

C D

Fig. 3. The breakage model explains the experimental data. (A and B) Comparison of the experimental data [blue crosses (10)], numerical simulations (black
symbols), and analytical predictions (red lines) for the radius R of the cavitated droplets as a function of the rate α with which the saturation concentration
decreases for the neo-Hookean model and the breakage model. (C and D) Pairwise correlation function g(r) of the cavitated droplets scaled to the mean
droplet separation r0 = 1.24 n−1/3 (see SI Appendix) for three rates α. Inset in D shows the correlation between the radius R of droplets and the size Rvoro

of their surrounding, which is obtained from a Voronoi tesselation. Model parameters in A−D are as in Fig. 2, except for η/m = 3 · 105E µm3.
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together, the growth of a cavitated droplet prevents the cavita-
tion of other droplets in its surroundings, while droplets farther
away might still grow, which qualitatively explains the observed
pair correlation function; see Fig. 3D.

The numerical data shown in Fig. 2D suggest that all droplets
that become large cavitated at very similar times, t = tcav, and
grow with similar rates. To understand the growth dynamics,
we first consider cavitated droplets that are homogeneously dis-
tributed with a number density n . Assuming that the cavitated
droplets absorb all excess material from the dilute phase, we
predict their volume to increase as

V (t) =Vcav +
α

ncin
(t − tcav), [10]

where Vcav = (4π/3)R3
cav. The red line in Fig. 2D shows that the

equivalent prediction for the droplet radius explains the mean
growth dynamics of cavitated droplets. In fact, this analysis is
also valid for the neo-Hookean model shown in Fig. 2C, since
droplets also start growing around the same time and absorb all
excess material in this case. Taken together, this analysis indi-
cates that the large droplets are monodisperse, because they start
growing at the same time and grow with the same rate. However,
while these conditions are met artificially by our setup of the neo-
Hookean model, they are self-organized in the breakage model
by controlling which droplets cavitate.

The final droplet size can be estimated by evaluating Eq. 10 at
the time tfinal = ∆c/α, when the final temperature is reached.
For simplicity, we consider the case where droplets are large
compared to the cavitation threshold Rcav, which also implies
tcav� tfinal and leads to Vfinal≈∆c/(ncin). This approximation
correctly predicts that the final droplet volume is independent of
the quench rate α in the neo-Hookean model where the droplet
density n is set by the initial condition; see Fig. 3A. Conversely,
in the breakage model, the density of cavitated droplets might
depend on the quench rate α, which could explain the observed
size dependence shown in Fig. 3B.

Number and Size of Cavitated Droplets Depend on Quench
Rate and Cavitation Thresholds
To understand why faster cooling leads to more and smaller
droplets, we next focus on the cavitation process in the break-
age model. Since cavitated droplets suppress further cavitation in
their vicinity, we hypothesize that this suppression is less efficient
when the system is cooled faster, implying that more droplets can
cavitate overall.

To estimate the final density n of cavitated droplets, we ana-
lyze a simplified theoretical model. The main idea is to study
a fixed density n of cavitated droplets and test whether addi-
tional droplets could cavitate in this situation. The best estimate

is then the lowest value of n where no more droplets cavi-
tate. For simplicity, we consider a homogeneous distribution
of cavitated droplets, allowing us to focus on a single droplet
of radius R =Rcav in a spherically symmetric domain of vol-
ume n−1. We then obtain the concentration field c(r) around
the droplet by solving the diffusion equation with the bound-
ary condition c(Rcav) = ceq(P∞,T ); see SI Appendix. Additional
cavitation takes place in the dilute phase if there is a droplet
whose critical concentration ccav = ceq(Pcav,T ) is lower than
the actual concentration c at its position. Note that the cavita-
tion pressures Pcav are randomly distributed, since the elastic
matrix is heterogeneous. However, since cavitation only happens
for low Pcav, it is sufficient to specify the associated cumulative
distribution function F(Pcav) to linear order around the lower
bound Pmin

cav ,

F(Pcav) =

{
0 Pcav <Pmin

cav

η−1(Pcav−Pmin
cav ) otherwise,

[11]

where Pcav−Pmin
cav � η. Here, η describes how widely the small

cavitation pressures are distributed, thus quantifying the het-
erogeneity of the mesh. Considering a homogeneous density
m of nucleated droplets, we can then calculate the expected
value of droplets that cavitate in the volume n−1. This theory
is self-consistent if exactly one droplet cavitates in this volume,
which provides an implicit condition for the sought density n of
cavitated droplets; see SI Appendix.

The theory does not have any adjustable parameters, and we
thus compare it directly to our numerical simulations. Fig. 4A
shows that the density n of cavitated droplets decreases when
fewer droplets nucleate (smaller m) or cavitation thresholds
Pcav are more widely distributed (more heterogeneous network,
higher η). This is because these two parameters define how many
nucleated droplets possess a very low threshold, cavitate first, and
then suppress cavitation of additional droplets. Conversely, Fig.
4B shows that more droplets cavitate when the system is cooled
faster. Since the total amount of material taken up by droplets is
conserved, this implies smaller droplets for faster cooling, con-
sistent with Fig. 3B. While our theory shows the same trends
as the numerical simulations, it consistently overestimates n by
roughly a factor of 2 in most cases. This is likely because we
assumed a homogeneous distribution of the droplets with the
lowest cavitation threshold, while, in reality, two droplets with
low threshold might outcompete each other, effectively leading
to a higher cavitation threshold than we anticipate. However,
our theory indicates that the cavitated droplets deplete the dilute
phase, thus suppressing further cavitation. Since this depletion is
diffusion limited, decreasing temperature slowly implies stronger
suppression, leading to fewer and larger droplets.

BA

Fig. 4. Suppression of cavitation by large droplets explains numerical data. (A) Density n of cavitated droplets from numerical simulations (black symbols)
compared to the analytical prediction (red line) as a function of the mesh heterogeneity η. (B) Density n as a function of the rate αwith which the saturation
concentration decreases. Model parameters in A and B are given in Fig. 2, except η/m = 3·105E µm3 in B.
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Increasing Cooling Rates Cause Bidisperse Emulsions
We showed that the number and size of the cavitated droplets
depends on the depletion of the dilute phase and thus the cool-
ing rate. This implies that additional droplets could cavitate when
the cooling rate is increased, while lowering the cooling rate
should merely slow down droplet growth. Indeed, experiments by
Rosowski et al. (11) showed a bimodal droplet size distribution
when the cooling rate was rapidly increased in the middle of the
experiment. To explain this observation, we perform a numer-
ical simulation where we rapidly increase the cooling rate well
after the first generation of droplets has cavitated. This results
in a second generation of cavitated droplets, which then grow
together with the previously cavitated ones; see Fig. 5. We show,
in SI Appendix, that other size distributions are possible when
the rate is changed multiple times. Taken together, this demon-
strates that different droplet size distributions can be engineered
by adjusting the cooling protocol.

Heterogeneous Nucleation Might Explain More Cavitated
Droplets in Stiffer Systems
So far, we have investigated how the density and sizes of the
observed droplets depend on the cooling rate α. Another impor-
tant observation of Style et al. (10) is that the droplet density
n increases linearly with the Young’s modulus E of the elastic
matrix. This implies that stiffer matrices lead to smaller droplets.
Unfortunately, it is difficult to connect E , which measures the
macroscopic response of the matrix to small strains, to the micro-
scopic details required by our model. We thus next consider
several possibilities to elucidate which microscopic picture could
explain the experimental data.

In the simplest case, the bulk modulus E is connected to
the pressure curve P(R). For example, the neo-Hookean model
implies PNH(R→∞) = 5/6E ; see Eq. 8. The relation is more
complicated for the breakage model, but recent experiments (22)
indicate that the cavitation pressure Pcav and the pressure P∞
exhibited by large droplets scale with E . Using this scaling in
our model, we obtain slightly smaller droplet densities for stiffer
matrices, opposite to what we expect from the experiments; see
Fig. 6A. Consequently, the scaling of the pressure with E cannot
explain the observed data.

Our model yields more (and smaller) cavitated droplets when
the density m of nucleated droplets is increased. Indeed, we can
explain the observed linear increase of the density n of cavitated
droplets with E by postulating that m strongly increases with E ;
see Fig. 6B. So far, it is not clear how droplets actually nucleate in
the elastic network, but it is likely that heterogeneous nucleation
plays a role; see SI Appendix. Note that the mesh monomers are
unlikely to act as heterogeneous nucleation sites, since they seem
to be repelled from droplets. However, cross-linking molecules
or catalysts that are used to create the PDMS matrix (10) could

act as nucleation sites. In this case, stiffer gels would have more
nucleated droplets simply because they contain more of these
molecules (10, 11, 22). Moreover, stiffer networks might be
more homogeneous (25), which would be captured by a smaller
mesh heterogeneity η. Taken together, these two effects might
explain our prediction that the parameter m/η increases strongly
with E .

Conclusions
We identified a mechanism to create monodisperse emulsions,
where some growing droplets break the surrounding elastic
matrix in a cavitation event. While these droplets become macro-
scopic, most droplets stay constrained by the matrix and do
not grow significantly beyond mesh size. The cavitation barrier
imposed by the elastic matrix thus separates the stochastic nucle-
ation phase from a deterministic growth phase. The resulting
cavitated droplets have correlated positions and similar sizes,
which can be controlled by the cooling rate. Our model agrees
quantitatively with experiments (10, 11), and it suggests how
this mechanism can be used to create microscopic patterns in
technological applications.

Monodisperse emulsions also emerge in other situations of
driven phase separation. For instance, supplying more droplet
material externally (27), internally using solubility gradients (28),
or by chemical reactions (29) all lead to narrower droplet size
distributions than expected from the standard Lifshitz−Slyozov
argument (30). In all these cases, the diffusive flux between
droplets that normally drives Ostwald ripening is dominated
by the flux of the supplied droplet material. In our system, all
droplets additionally start growing at similar times, because they
cross the cavitation barrier at similar saturation concentrations.
Taken together, this ensures that droplets reach similar sizes,
despite multiple opposing processes: Besides the heterogeneities
in the elastic properties that cause the dispersion in our model,
thermal fluctuations might also contribute. Moreover, both Ost-
wald ripening, driven by surface tension, and Elastic ripening,
driven by stiffness gradients over long length scales (11, 13), will
affect the droplet size distribution in realistic systems. Finally,
the heterogeneous nucleation that is required to form droplets in
the experimental system might also affect the dynamics. In fact,
we speculate that it can explain the observed increase in droplet
density in stiffer meshes. It will be interesting to study all these
interactions in the future.

We expect similar behaviors for biomolecular condensates,
which often form as a response to changes in temperature, pH,
salt concentration, or protein concentration in cells (31–34).
Moreover, chemical modifications, like posttranslational modi-
fications, allow cells to actively regulate condensates (35, 36). All
these changes could, in principle, drive droplet formation, similar
to the cooling in our example. Biomolecular condensates are also

BA

Fig. 5. Increasing cooling rate yields bidisperse emulsion. Shown are the droplet radii as a function of time (A) and the droplet size distribution (B) from a
numerical simulation with η/m = 3·105E µm 3, E = 80 kPa, and α = 7.77·10−6 s−1·ν−1 for t< 960 s, then α = 3.11·10−5 s−1ν−1. Other parameters are as in
Fig. 2.
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Fig. 6. Increasing nucleation density could explain stiffness dependence. (A) Droplet density n as a function of Young’s modulus E. Our numerical (black
symbols) and analytical (red line) theory, based on a linear scaling of pressures with E, cannot explain the experimental data [blue dashed line (10)]. (B)
Predicted nucleation site density m as a function of E to match the measured n(E) shown in Inset. (Inset) The n(E) from experiments [blue dashed line (10)]
and numerical simulations (black symbols). Model parameters in A and B are α = 2.33·10−5 s−1·ν−1, and are given in Fig. 2.

typically constrained by elastic matrices (3, 8, 9), which can limit
their growth. Moreover, biopolymer gels often rearrange dynam-
ically, implying that the mechanical stress exerted by droplets can
relax and they can grow further, akin to the cavitation event in
our model. Beyond our current description, the rearrangement
implies viscoelastic behavior (37–39), and biopolymer gels also
often display strain stiffening (40). There is also the possibility
of droplets wetting the mesh instead of excluding it completely
(16). Taken together with the fact that the size of typical conden-
sates is comparable to the gel’s mesh size, we thus expect a rich
phenomenology. Our theory provides a robust starting point for
such future investigations.

Materials and Methods
The numerical simulations were performed using the py-pde python pack-
age (41) using an explicit Euler stepping with a second-order discretization
of the spatial derivative in Eq. 6. Here, droplets are considered point-like,
and the dilute concentration c(~xi) in their vicinity is obtained using bilinear
interpolation.

Data Availability. Source code data have been deposited in Zenodo
(https://doi.org/10.5281/zenodo.4923528) (42).
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28. C. F. Lee, C. A. Weber, F. Jülicher, Droplet ripening in concentration gradients. New J.

Phys. 19, 053021 (2017).
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