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Magnetic resonance fingerprinting (MRF) is a method to extract
quantitative tissue properties such as T1 and T2 relaxation rates
from arbitrary pulse sequences using conventional MRI hardware.
MRF pulse sequences have thousands of tunable parameters,
which can be chosen to maximize precision and minimize scan
time. Here, we perform de novo automated design of MRF pulse
sequences by applying physics-inspired optimization heuristics.
Our experimental data suggest that systematic errors dominate
over random errors in MRF scans under clinically relevant con-
ditions of high undersampling. Thus, in contrast to prior opti-
mization efforts, which focused on statistical error models, we
use a cost function based on explicit first-principles simulation of
systematic errors arising from Fourier undersampling and phase
variation. The resulting pulse sequences display features qualita-
tively different from previously used MRF pulse sequences and
achieve fourfold shorter scan time than prior human-designed
sequences of equivalent precision in T1 and T2. Furthermore, the
optimization algorithm has discovered the existence of MRF pulse
sequences with intrinsic robustness against shading artifacts due
to phase variation.

magnetic resonance imaging | optimization | magnetic resonance
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In contrast to traditional MRI, which relies on simple pulse
sequences with analytically solvable dynamics, magnetic reso-

nance fingerprinting (MRF) extracts tissue properties such as T1

and T2 from arbitrary pulse sequences by pattern matching mea-
sured signals to a dictionary of numerically computed signals for
different tissue types. This can be done by interpreting the signals
as complex vectors and finding the dictionary entry whose inner
product with the observed signal has the largest magnitude (1).
MRF has been explored for several clinical applications (2–9). By
allowing arbitrary pulse sequences, MRF opens up a design space
of thousands of tunable parameters over which to search for pulse
sequences achieving greater precision at shorter scan time.

Optimization of MRF acquisition parameters, such as
radiofrequency pulses, timing, and magnetic field gradients, is
needed to achieve the best signal-to-noise ratio, image quality,
precision, and reproducibility. However, the design and opti-
mization of pulse sequences is very challenging for two main
reasons. First, it is difficult to design an efficiently computable
cost function that accurately predicts in vivo performance of
MRF pulse sequences. Second, the resulting optimization prob-
lem is computationally difficult, as the space of possible pulse
sequences is too high-dimensional and nonconvex for simple
methods, such as exhaustive search or gradient descent. In this
work, we use optimization algorithms to choose the flip angle
and repetition time (TR) duration for each TR. Thus, the search
space for a pulse sequence of n pulses is 2n-dimensional, where
for two-dimensional (2D) scans, n is typically on the order of
1,000 and is even larger for three-dimensional (3D) scans.

In clinical settings, it is typical to accelerate MRF scans by
sampling only a small fraction of the relevant Fourier coefficients
(“k -space”) after each pulse. For example, acceleration factors of
48 to 400 (sampling only 2 to 0.2%, as compared to the Nyquist
sampling requirement) have been reported in 2D or 3D MRF in
vivo scans (5, 10–12). Through extensive in vivo experimentation,
we find that the dominant sources of error in MRF brain scans
in this regime are Fourier undersampling artifacts and system-
based phase-variation-induced shading artifacts. The interplay
of these two errors results in temporally and spatially depen-
dent artifacts in the reconstructed images and causes aliasing and
shading artifacts in the resulting tissue maps (5). Random error
due to background noise in the receive coils is also present, but
appears to play a secondary role.

To design MRF pulse sequences through optimization, one
first needs a cost function, which, given a proposed pulse
sequence, produces a metric of its predicted effectiveness. In pre-
vious work, several cost functions have been proposed. Under
the assumption of zero-mean independent Gaussian random
error at each time step in the raw signal, lower bounds on the
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SD in the inferred values of T1 and T2 from an MRF scan can
be obtained by using the Cramer–Rao bound. Taking a linear
combination of these bounds as a cost function, optimized MRF
pulse sequences are obtained in ref. 13 by sequential quadratic
programming, in ref. 14 using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm, in ref. 15 using an interior point
method, and in ref. 16 using dynamic programming. In ref. 17,
the Gaussian model of random error is supplemented by a model
of Fourier undersampling artifacts in which an additional Gaus-
sian noise term is added, whose magnitude is signal-dependent.
Optimized sequences are then obtained by using a genetic algo-
rithm. In ref. 18, the magnetization vs. pulse index time-series
for a given tissue is interpreted as a vector, and inner product
between the normalized vectors determined by different tissues
is interpreted as a metric of distinguishability. Minimization of
these inner products is then performed with simulated anneal-
ing, branch and bound, an interior point method, and brute-force
search. Several works have been devoted exclusively to the design
of a cost function predictive of in vivo performance of MRF
sequences, without also pursuing optimization (19–21).

In the highly undersampled regime most relevant to clinical
settings, we find that cost functions based on simple statisti-
cal noise models or crude heuristics, such as minimizing inner
product between signal vectors, are insufficient to accurately pre-
dict in vivo performance of MRF pulse sequences. An obvious
alternative is to use a comprehensive first-principles computer
simulation of the MRF scan using explicit models of a tissue
distribution, a choice of acquisition parameters including k -
space trajectories, and an image-reconstruction algorithm. Such
computer models have been constructed in prior work and
are referred to as “digital phantoms.”∗ Digital phantoms that
directly model undersampling artifacts by carrying out nonuni-
form Fourier transforms are computationally costly, often taking
several minutes to evaluate, even on powerful workstations.
This makes them challenging to use as a cost function within
an optimization, as our computational experiments show that
even carefully tuned optimization algorithms often require tens
of thousands of cost-function evaluations to find good pulse
sequences.

Here, we introduce an accelerated digital phantom that makes
use of a simplified model of brain tissue distribution. This
approximation speeds up the evaluation by approximately two
orders of magnitude. Further detail on the accelerated digital
phantom is given in Methods and SI Appendix. A preliminary
report also appears in ref. 22.

Our computational experiments show that, even when allowed
thousands of cost-function evaluations, standard “off-the-shelf”
optimization methods, such as sequential quadratic program-
ming and BFGS, yield poor pulse sequences. However, with care-
ful parameterization of the search space, judicious generation
of moves within the search space, and well-tuned hyperparam-
eters, we find that good pulse sequences can be found with both
simulated annealing and substochastic Monte Carlo optimiza-
tion methods. Use of Monte Carlo methods, such as simulated
annealing, for optimizing magnetic resonance (MR) protocols
has a long history (23). Our experiments show that such meth-
ods can be used to design high-speed MRF pulse sequences
“from scratch”—i.e., without human-designed pulse sequences
as starting points—but that this requires careful design of the
cost function as well as the moves by which the search space
is explored, as discussed in Methods. In recent work, reinforce-
ment learning has been used for de novo design of MRI pulse
sequences (24).

*The name digital phantom is an analogy with traditional MR phantoms, which are
precisely characterized physical artifacts used to calibrate MRI machines.

Using these methods, the optimization algorithms yield pulse
sequences that display superior performance to prior state-
of-the-art MRF pulse sequences designed by human experts.
Improved precision can be achieved by increasing the number of
pulses (and hence the scan time). Thus, a performance compar-
ison can be made by plotting optimized pulse sequences against
the precision vs. duration tradeoff curve obtained by taking
truncations of the human-designed pulse sequence to different
numbers of pulses. (see Fig. 5.)

In addition to higher precision at given scan time or shorter
scan time at given precision (by up to a factor of four), the
optimized sequences display a feature of intrinsic robustness to
highly undersampled scans with phase variation, such as can arise
from magnetic field inhomogeneities. The interplay between
these two sources of error has typically resulted in shading arti-
facts in T1 and T2 maps obtained from low-pulse-count MRF
scans via direct dictionary matching. Alternatives to direct dic-
tionary matching, such as iterative reconstruction (25–28), have
different characteristics regarding systematic error. In future
work, the optimization framework presented here can be applied
to these alternative schemes.

To maximize the chance of finding novel pulse sequences, we
initialize the optimization algorithms from an ensemble of ran-
domly generated pulse sequences, rather than from an existing
human-designed pulse sequence. Over many repetitions from
different starting points, the optimization algorithm produces
a large number of distinct pulse sequences, which, neverthe-
less, consistently display certain qualitative features. Some of
these reproduce features that were previously incorporated into
MRF pulse sequences designed by human experts, while oth-
ers are qualitatively distinct, as discussed in Discussion (see Fig.
3). These algorithmically discovered design patterns can inform
future MRF pulse-sequence design by human experts.

Methods
We define the sequence optimization problem with three main
components: a cost function, a search space of possible pulse
sequences, and an optimization algorithm. Fig. 1 summarizes the
optimization workflow. The theory and implementation of each
component are described in the following sections.

MRF Pulse Sequences. The specific class of MRF pulse sequences
that we consider are Fast Imaging with Steady-State Progres-
sion (FISP) sequences (10), applied in the context of making 2D
T1, T2, and proton density maps of the brain.† At the start of a
FISP pulse sequence, an inversion pulse is applied to initialize
the spins of hydrogen nuclei as close as possible to antialignment
with the background B0 field, which is taken to be in the pos-
itive z direction. In such a sequence, step s has total duration
TRs , consisting of the following pieces. First, polar rotation αs

is applied followed by phase rotation θs . Then, a wait time of
TEs <TRs is imposed during which the spins evolve according
to exponential decay determined by T1 and T2. Next, the magne-
tization measurements are performed. Then, further exponential
decay occurs during the remaining time TRs −TEs . Lastly,
a strong “spoiling” gradient is applied to mitigate the effects
of magnetic field inhomogeneity. (For a sequence diagram,
see ref. 10.)

An MRF pulse sequence consists of hundreds or thousands
of such steps, with flip angle and TR duration varying from
one to the next. In practical settings, MRF scans typically sam-
ple Fourier space very sparsely in order to achieve short scan
time. Commonly used Fourier undersampling patterns include

†In this work, we ignore the proton density maps inferred from the MRF scans and focus
only on the T1 and T2 maps.

2 of 8 | PNAS
https://doi.org/10.1073/pnas.2020516118

Jordan et al.
Automated design of pulse sequences for magnetic resonance fingerprinting using physics-inspired

optimization

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020516118/-/DCSupplemental
https://doi.org/10.1073/pnas.2020516118


EN
G

IN
EE

RI
N

G

Fig. 1. Here, the overall structure of the pulse-sequence optimization process is illustrated. A physics-inspired optimization algorithm proposes one or
more randomly generated initial pulse sequences, which are then given to a cost function, which returns a quality metric assessing their speed and accuracy.
Based on this feedback, the optimization algorithm proposes updated sequences. The cycle of updating and reevaluation is repeated for a fixed number
of iterations. The best sequence found during this process, as judged by the cost function, is produced as final output. Within the cost function, a full
simulation of MRF process is performed. The discrepancy between the simulated ground truth T1 and T2 values in a brain slice and the corresponding values
inferred by the standard MRF dictionary-matching procedure are used as a metric of accuracy.

radial (29), spiral (1), and 3D Cartesian (30). Here, we con-
sider the “single-shot” setting, in which one spiral trajectory
through k -space is sampled after each pulse. The spiral trajectory
employed in this study is a variable-density spiral, which needs
48 interleaves to cover k -space (31). The readout duration is 5.9
ms, with a field of view of 300 × 300 mm2 and matrix size of
256 × 256 (1, 10, 12, 31). The spiral sampling is varied tempo-
rally from one TR to the next, so the aliasing artifacts do not
cause constant bias in the signals. A Nonuniform Fast Fourier
Transform (32) is then applied to reconstruct images from an
MRF scan using measured k -space trajectories (33). Quantifi-
cation of tissue properties, such as T1 and T2 relaxation times,
is performed in each image voxel by comparing the observed
magnetization time-series against the entries of a dictionary that
contains a list of potential such signals. For each voxel, one can
assign (T1, T2) based on the dictionary entry that most closely
matches the observed signal. Considering system limitations and
scan time, we constrain the TR duration to the range of 10 to
100 ms, resulting in a total scan time of in the range of a few sec-
onds for a 2D MRF scan; 3D MRF scans with duration of a few
minutes have been reported in refs. 5 and 34.

Mathematical Model. The dynamics of nuclear spins in a magnetic
field are described phenomenologically by the Bloch equation
(35). Given the magnetic field as a function of time at a given
location, an initial condition for all the spins in a voxel,‡ tissue
parameters T1, T2, and acquisition parameters (flip angles, TRs,
unbalanced gradients), the Bloch equation predicts the state of
the spins at subsequent times. Here, we consider MRF pulse
sequences for 2D slices through brain tissue consisting of 256 ×
256 voxels, each 1.2-mm by 1.2-mm spatial resolution. Cor-
respondingly, our mathematical model consists of a value of
T1, T2, and m0 (proton density) assigned to each voxel. The
proton density only affects the magnetization of the voxel by
acting as a time-independent multiplicative factor. For a given

‡To model the effect of spoiling gradients, we simulate 400 spins in each voxel. See SI
Appendix.

pulse sequence, we solve the Bloch equations (in the hard-
pulse approximation) to obtain magnetization vs. time for each
(T1,T2) pair appearing within the voxels of the simulated tissue
distribution.

MR scans are complicated processes involving many sources
of random and systematic errors. An accurate model of these is
a necessary ingredient for an optimization algorithm to produce
sequences with good in vivo performance. Here, we model three
main sources of error and their interactions: Fourier undersam-
pling artifacts, spatially dependent phase variation, and random
error. Many subtle effects can be present in the interactions.
For example, aliasing artifacts are often observed in the T1 and
T2 maps derived by applying dictionary matching to Fourier
undersampled MRF scans. To minimize these, it is thought to
be beneficial to design flip angles and TR times so that the
Bloch dynamics spreads signal intensity as uniformly as possi-
ble between the sets of TRs associated with each of the k -space
sampling trajectories. Similarly, shading artifacts are thought to
arise through the interplay of two sources of systematic error,
which individually do not cause shading artifacts, as described
below. With a direct first-principles simulation in the cost func-
tion, pulse sequences can be designed to suppress such errors
without needing to identify and enumerate them.

It is common to observe spatial phase variation in MR scans,
which could be from spatially varying B0 or B1 field inhomo-
geneities or temporally varying motion. If not explicitly modeled,
such phase variation can contribute a source of systematic error
in MRF scans. Although the phase variations observed exper-
imentally vary from scan to scan, even on the same machine,
they tend to be smoothly varying across the field of view and
differ between scans mainly in the direction across which they
vary. In our model, we consider static spatially varying phases,
which are among the most common sources of systematic error
in MR scans and have been reported to cause artifacts and distor-
tion in MR images (36, 37). Furthermore, the interplay between
phase variation and aliasing due to Fourier undersampling intro-
duces spatially and temporally varying artifacts that affect both
magnitude and phase of the measured signals, which causes a
commonly seen “shading artifact” shown in Fig. 2F from in vivo
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Fig. 2. T1 (red) and T2 (blue) map simulations of an optimized sequence (top two rows) and a standard human-designed sequence (1) (bottom two rows)
incorporating phase variation. The error is modeled as a time-independent phase that varies quadratically along a chosen direction. Experimentally, one
finds that this direction varies randomly from one scan to the next. In this figure, A includes no phase variation. B–E correspond to four example orientations
for the phase variation. In vivo results for both sequences are shown in F.

MRF scans. The shading is not seen when only the undersam-
pling is modeled (Fig. 2A). Such interactions of artifacts have
not been considered in previous work, which is one of the main
sources of discrepancy between simulated sequence performance
and in vivo scan performance.

In addition to systematic errors, scans exhibit random error,
the dominant source of which is Johnson noise in the receive
coils. Following refs. 17 and 19, we model this as independent
complex Gaussian zero-mean error at each data point, i.e., white
noise.

Cost Function. For an MRF scan, we wish to minimize T1 error,
T2 error, and scan time. We use a weighted combination of the
predicted values for these quantities as a cost function to mini-
mize. Using the formulas from refs. 17 and 19 and an assumed
value of variance σ2 of a Gaussian noise distribution, one can
obtain predicted SD on T1 and T2 for a given tissue due to ran-
dom errors. By simulating Fourier undersampling artifacts and
phase variation, we obtain predictions of discrepancies between
the theoretical and measured values of T1 and T2 associated with
each voxel. Averaging over voxels of a given tissue type, we can
obtain rms values of systematic error for each of the three tissue

types in our model. Correspondingly, an estimate of total error
is obtained by taking the sum in quadrature of these rms sys-
tematic errors with the predicted SDs due to random error. We
thus obtain six numbers, which are the predicted rms errors in
inferred T1 and T2 for each of the three tissue types in our model
(gray matter, white matter, and cerebrospinal fluid). Ultimately,
we wish to minimize these six errors and the total duration of the
pulse sequence. Thus, we need to combine these seven quantities
into a single aggregate measure, which our optimization algo-
rithm will attempt to minimize. Optionally, we may add a term
incentivizing large average magnetization of the tissues, as this is
clearly advantageous for signal to noise ratio.

The cost function C is defined as follows.

C =
(
σ(T1) +w2 σ

(T2)
)√

t +
wmag

m̄min
, [1]

σ(p) =σ
(p)
GM +wWM σ

(p)
WM +wCSF σ

(p)
CSF p ∈{T1,T2}.[2]

Here, t is the total duration of the sequence, w2 is a tunable
“weight” quantifying the importance of T2 errors relative to T1

errors, and wWM and wCSF are tunable weights quantifying the
importance of errors in white matter and cerebrospinal fluid
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Fig. 3. The optimized sequences (Left column) display qualitatively
different features than the standard human-designed sequence (Right
column). In particular, the optimization algorithm consistently produces
pulse sequences in which the TR duration is at its minimum allowed value
for most of the TRs, but briefly spikes to much longer duration. The pre-
dicted magnitude of the magnetizations for white matter (WM), gray
matter (GM), and cerebrospinal fluid (CSF) are shown for each sequence
in units such that the initial inversion pulse achieves magnetization of
magnitude 0.95. (The considerations behind modeling the initial magne-
tization as 0.95 are discussed in ref. 42.) Optimized sequence o is chosen
here as a representative example, about which further information is avail-
able in Fig. 5 and SI Appendix, Tables 1–4. The optimization that produced
this sequence used wCSF = 0.024 52, wWM = 1.000, w2 = 12.02, and wmag =

0. The pulse sequences are available for noncommercial research pur-
poses from https://github.com/madan6711/Automatic-MRF-seq-design. A.U.,
arbitrary units; deg, degrees.

voxels relative to errors in gray matter voxels. m̄min is magneti-
zation, averaged over TRs and minimized over modeled tissues.
wmag is the weight of the incentive on magnetization, which
can be set nonzero if a stronger incentive is desired than that
provided indirectly through the modeling of random error. The
motivation for the form of the t-dependence of Eq. 1 is that, by
standard sampling statistics, one expects that by using n mea-
surements, one can obtain SD scaling as 1/

√
n . Consequently,

multiplying the total error by t raised to the power 1/2 or higher
should steer the optimizer toward shorter duration sequences.
In practice, we find that the factor of

√
t is usually effective. The

motivation behind the functional form of the optional magneti-
zation term is that, if magnetization vanishes completely, there is
no signal and error formally diverges.

Direct evaluation of errors due to Fourier undersampling and
phase variation is problematic to incorporate into a cost function
due to high computational cost. To speed up evaluation, we here
introduce a simplifying approximation. Specifically, rather than
assigning each voxel to a unique T1, T2 pair, the voxels are all
assumed to arise from one of three brain tissue types: gray matter,
white matter, and cerebrospinal fluid, each of which has fixed val-
ues of T1, T2, and proton density. As a result, the magnetization
of the voxels in response to a pulse sequence can be computed
by solving the Bloch equations for only three (T1,T2) pairs.
More importantly, the artifacts due to Fourier undersampling
and phase variation can be precomputed based on the spatial dis-
tributions of the three tissue types, for each of the 48 k -space
trajectories. Given these 144 precomputed response functions, a
simulation of the reconstructed T1 and T2 maps arising from a
1,000-pulse MRF sequence can be completed in 2.0 s on a 24-
core computer (Azure NC-24 virtual machine). (See Fig. 2 for
examples of simulated maps and comparison to in vivo data.)

Optimization Algorithms. We formulate the design of MRF pulse
sequences as a global optimization program over continuous
variables. The cost function is treated as a black box. There is
no formula for the gradient of the cost function; strictly speak-
ing, the cost function is not differentiable due to the discrete
dictionary matching. Due to the highly nonconvex nature of
the cost function, we relied on optimization heuristics capable
of escaping from local minima. The best performing of these,
according to our experimentation, were simulated annealing and
substochastic Monte Carlo. The latter is a quantum-inspired
optimization algorithm in which quantum fluctuations are mod-
eled in order to escape from local minima. The method used
here is a continuous-variable generalization of the substochastic
Monte Carlo method described in ref. 38.

Here, we perform optimization with physics-inspired optimiza-
tion algorithms, which have been tuned specifically for the MRF
pulse-sequence optimization problem. To obtain good pulse
sequences, we first reduce the dimension of the search space by
only considering pulse sequences that vary smoothly over time.
In prior work, it has been observed§ that such pulse sequences,
when used with dictionary matching, yield T1 and T2 maps with
milder Fourier undersampling artifacts than highly discontinu-
ous sequences (13–15, 39). We achieve this by parameterizing the
pulse sequences using cubic splines, as has been done in other
contexts (15, 40). The two optimization algorithms found to be
most successful (variants of simulated annealing and substochas-
tic Monte Carlo) are both based on biased random walks in
the search space. The random perturbations that generate these
walks are not only varied in time such that larger, exploratory
perturbations are followed by smaller, fine-tuning perturbations,
but are also nonisotropic, such that different classes of variables
are perturbed by different amounts. These nonisotropic updates
appear to be crucial to the success of the algorithms, as discussed
in SI Appendix. After a number of runs of the optimization algo-
rithms with different hyperparameters and random seeds, the
most promising sequences are selected for in vivo testing.

In Vivo Experiments. The optimized pulse sequences were tested
by using in vivo scans to validate our mathematical modeling
and directly evaluate the precision, robustness, and image qual-
ity of the quantitative tissue maps obtained by using optimized
MRF pulse sequences. In vivo scans were performed in a Siemens
Magnetom Skyra 3T scanner on volunteers following informed
consent and approval from the Institutional Review Board of
University Hospitals Cleveland Medical Center. The scan was
acquired with a field of view of 300× 300 mm2, matrix size of 256
× 256, and slice thickness of 5 mm. As a supplement to subjective
judgement of image quality, data from these scans were combined
with experimentally measured noise levels in the receive coils to
obtain quantitative estimates of random error via bootstrapping
statistics, as described in ref. 41. The SD in inferred T1 and T2

values from the bootstrap method is calculated within regions of
interest in the white matter and is used as a metric of precision.

Results
Optimized Pulse Sequences. Fig. 3 compares an optimized se-
quence against a standard MRF scan. The optimized sequences
display qualitatively distinct features from prior human-designed
sequences, such as “spiked” TR durations. Although the details
of optimized sequences vary, this spiked TR duration fea-
ture is observed consistently for sequences optimized with and
without models of phase variation in the cost function. Note that

§An intuitive explanation for this is that, by cycling through different k-space trajectories
from one TR to the next, one induces undersampling errors that vary in a rapid and discon-
tinuous manner. If these are added to a signal that varies smoothly, then this separation
in frequency space between signal and noise makes the noise easier to filter out.
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the magnetization curves shown depict the total magnitudes of
the magnetization vectors, not just the magnitudes of their pro-
jections onto the xy-plane, which determine the signal strength
of the immediate measurement. However, the latter is strongly
sensitive to the flip angle of the given pulse, whereas the for-
mer gives a more meaningful metric of the reservoir of available
magnetization to be exploited in subsequent pulses. Note also
that the optimized sequence shown in Fig. 3 has total duration
only slightly longer than the standard sequence (5.85 s vs. 5.57 s),
despite having some TRs that are vastly longer than any TRs in
the standard sequence. The optimization algorithm achieves this
by setting almost all other TRs to the minimum allowable dura-
tion (10 ms), whereas the majority of the TRs in the standard
sequence have duration between 11 and 13 ms.

Convergence of Optimization Algorithms. Here, we compare three
optimization algorithms on the MRF cost function (Eq. 1)
with a spline-parameterized search space. First, we apply
Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
with Bounds (L-BFGS-B), which is a quasi-Newton method that
uses gradient information to find local minima of smoothly vary-
ing cost functions (43). (A variant of BFGS was used to optimize
MRF pulse sequences in ref. 14.) Our cost function is not for-
mally differentiable, due to dictionary matching. Nevertheless,
it is smooth on length scales that are not too short, thus yield-
ing meaningful gradient-like information via finite differences.
As can be observed from Fig. 4, the cost function is sufficiently
nonconvex that, even by starting L-BFGS-B from several ran-
dom starting points and selecting the best local minimum found
yields poor optimization performance. Similarly, we compare to
sequential least-squares programming (SLSQP) (44) from mul-
tiple random starting points, which also arrives at relatively poor
optima upon reaching the algorithm’s termination condition.
SLSQP is a widely used optimization method closely related to
the sequential quadratic programming algorithm employed to
optimize MRF pulse sequences in ref. 13. The best performance

Fig. 4. Comparison of standard optimization routines from SciPy (L-BFGS-B
and SLSQP) against our simulated annealing implementation with non-
isotropic moves (SA). The decrease in cost is plotted as a function of the
number of queries made to the cost function. As the evaluation of the cost
function is by far the most computationally intensive part of the algorithm,
this is therefore a metric of the efficiency of the optimization method. The
physics-inspired method’s performance varies depending on random seed.
Here, the average performance across 200 trials is shown alongside the per-
formance from the best of these trials. (As a meta-algorithm, one can run
such trials in parallel and select the resulting sequence with lowest cost-
function value.) For comparison, the cost-function value achieved by the
standard sequence is shown as a dashed line.

is shown by the physics-inspired Monte Carlo method. Never-
theless, by initiating this with random seeds, one never finds
precisely the same optima, and, thus, one can conclude that the
global optimum is almost certainly not found.

Robustness Against Random Error. Fig. 5 compares the precision of
T1 and T2 values between the standard and optimized sequences
using various choices of weight parameters w2, wmag, wWM, and
wCSF. Unoptimized sequences of different duration are obtained
by truncating the sequence from ref. 1. These then define a trade-
off curve between precision and duration. As shown in Fig. 5,
the optimizer can yield sequences achieving greater precision
at given duration or, equivalently, shorter duration to achieve a
given precision, relative to the unoptimized sequences. Specifi-
cally, at a given duration, the best optimized sequences achieve
over twofold error reduction in inferred T1 and T2. Alterna-
tively, optimized sequences are found that can achieve over 4.5x
speedup relative to unoptimized sequences of comparable pre-
cision, as detailed in SI Appendix. Note however, that bootstrap
statistics measure only random errors, and not systematic. There-
fore, the optimized sequences that appear best according to
bootstrapping may not coincide with the optimized sequences
that yield best subjective image quality.

Robustness Against Systematic Error. Robustness against aliasing
and systematic errors were estimated in simulations and tested
with in vivo scans. Fig. 2 compares the T1 and T2 maps obtained
from standard and optimized MRF scans, according to simula-
tion and experiment. In both simulation and experiment, Fourier
undersampling artifacts are visible as circular rings, and shading
artifacts induced by phase variation are visible as nonsymmet-
ric image intensity variations. Such errors are quite significant in
state-of-the-art short-duration human-designed pulse sequences,
as can be seen in the bottom two rows of F.

In addition to in vivo results (F), Fig. 2 shows simulation results
under five different assumptions. A shows simulations incorporat-
ing only Fourier undersampling artifacts. B–E show simulations
that additionally incorporate phase variations in four orienta-
tions. (The phase is modeled as varying quadratically across the
chosen direction.) Due to the unpredictability of the orienta-
tion of phase variation from one scan to the next, maps from
simulation do not match in detail the results from individual in
vivo scans. However, the simulations that incorporate phase vari-
ation accurately predict the relative image quality achieved in
vivo by different pulse sequences. Furthermore, the rank-ordering
of pulse-sequence quality is largely independent of the orienta-
tion of the phase homogeneity. Thus, high-quality (i.e., robust)
sequences can be obtained by optimization using a cost function in
which a single orientation of variation has been chosen arbitrarily.

It is not a priori obvious that choice of pulse sequence can
influence robustness against phase variation. To our knowledge,
prior to the algorithmically discovered pulse sequences shown
here, no pulse sequences were known to yield T1 and T2 maps
via direct dictionary matching with intrinsic robustness against
phase variation.

Discussion
Here, we present an automatic pulse-sequence design framework
for MRF scans using physics-inspired optimization. The cost
function is built upon explicit first-principles modeling of MRF
scans, incorporating random error, as well as errors induced
by the interplay of Fourier undersampling, phase variation,
and image-reconstruction algorithms. This realistic modeling,
combined with tailored optimization algorithms, yields MRF
pulse sequences that strongly outperform standard MRF pulse
sequences, according to in vivo experiments.

Although the optimization algorithms producing these MRF
pulse sequences are essentially inscrutable, by examining the
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Fig. 5. Precision vs. duration tradeoff in T1 (Left panel) and T2 (Right panel) for optimized and unoptimized sequences. Here, the metrics of precision are
the SDs in inferred T1 and T2 values, which we estimate from in vivo data using bootstrap statistics, as described in ref. 41. The standard sequence from (1)
is truncated to TR counts from 480 to 3,000 in order to obtain scans of different durations, as illustrated by the gray tradeoff curve. The optimized data
points are classified according to which terms were included in the cost function. Unsurprisingly, the sequences with best robustness against random error
(err.) are obtained by heavily incentivizing large signal magnitude (i.e., magnetization) in the cost function. In vivo images corresponding the labeled data
points (a–o) are shown in SI Appendix. Note that these bootstrap statistics are derived from in vivo experimental data, for which exact ground truth values
of T1 and T2 are inaccessible. Thus, they can only assess scatter, and not bias.

qualitative features of the optimized sequences, one may obtain
insights that can be fed back to human-led MRF pulse-sequence
design efforts. The first of these is that careful design of MRF
pulse sequences can greatly reduce susceptibility to shading
artifacts. This is an important finding in this study, because
the shading artifacts represent a unique interaction of static
phase variation, spatially and temporally varying undersampling
errors, and signal intensity variation from temporally varying
flip angles and timings. Second, the flip angle vs. pulse index
in high-performing sequences is consistently observed to con-
sist of a modest number (three to six) of “humps.” This is
a feature present in prior MRF pulse sequences designed by
human experts. That optimization algorithms reproduce it when
proceeding from randomly generated starting points is strong
confirmation of the intuitions behind this design. Third, plots of
TR duration (i.e., time between pulses) vs. pulse index arising
from optimized sequences consistently show spike patterns. That
is, all but a small number of the TRs are of minimum allowed
duration, with a small number of TRs with vastly longer duration.

We propose the following interpretation for why the optimizer
finds spiked TR patterns to be beneficial. Rapidly gathering data
that efficiently distinguish tissues is aided by short TR times
and large flip angles. However, repeated application of pulses
with these features gradually depletes magnetization levels and,
hence, signal strength. One might interpret the TR duration
spikes as “rest periods” during which data collection is tem-
porarily sacrificed in favor of allowing T1 relaxation to proceed
unimpeded and thereby “recharge” magnetization levels. This
interpretation is bolstered by the observation that, across large
ensembles of optimized sequences, the TR duration spikes are
generally coordinated with low flip angles, as illustrated in SI
Appendix, Fig. 1. This is a feature absent in prior human-designed
sequences and may be a significant contributor to the improved
duration vs. accuracy tradeoff.

Our optimized sequences achieve increased scan speed at a
given precision target relative to standard sequences and can
simultaneously yield intrinsic robustness against phase variation.
Although our in vivo scans were performed on a scanner with 3
Tesla field strength, optimization of sequences to achieve robust-
ness against systematic variations may, in future work, serve as
an enabling technology for low-cost, low-field-strength portable
scanners, which are likely to have large field inhomogeneities and
low signal-to-noise ratio.

In this study, we modeled three types of errors that are com-
monly seen in the in vivo MRF scan. In addition to Gaussian
random noise, we explicitly modeled 2D spatially and temporally
dependent artifacts due to undersampling and phase variation.
The need to incorporate phase variation is a unique finding in
this study. In a fully sampled MRF scan, this phase variation is
time-independent and would have no effect on the maps derived
from dictionary matching. However, in an actual in vivo MRF
scan, which typically employs high acceleration rate and time-
varying sampling trajectories, the phase variation combined with
Fourier aliasing to generate spatially and temporally varying arti-
facts that cause shading artifacts in the maps. Fig. 2 compares
simulation with and without incorporating phase variation. Only
the simulation incorporating phase variation reproduces shad-
ing from the in vivo scan. Due to the interplay of multiple error
sources, the optimal MRF sequence design should be a com-
prehensive consideration of flip-angle series, timing, sampling
trajectories, and reconstruction.

Our cost function is based on a digital brain phantom from
the Montreal Neurological Institute Brain Imaging Center (45,
46). For practical implementation, we simplified the model by
mapping all voxels to three tissue types: gray matter, white
matter, and cerebrospinal fluid. Although optimization using
this limited model yielded sequences with good in vivo per-
formance, one could, in future work, consider more detailed
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models involving additional tissue types and geometries, includ-
ing pathological cases. Furthermore, with enough computational
resources, optimization could be performed by using a cost func-
tion that incorporates a complete nonuniform Fourier transform,
rather than precomputed response functions. This would enable
k -space trajectories to be co-optimized with the other acquisition
parameters, such as flip angles and TR durations.

The general framework developed here for automated design
of pulse sequences via physics-inspired optimization algorithms
could be applied in many other contexts. The framework would
be straightforward to adapt to optimize pulse sequences for
3D scans or for operation with alternative image-reconstruction
schemes, such as iterative reconstruction. Furthermore, the opti-
mization algorithms, parameterization of the search space, and
cost function described here could be adapted to the develop-
ment of MRF pulse sequences specialized for body parts other
than the brain, as well as for MRF scans measuring quantities
beyond T1 and T2, such as diffusion rates. More ambitiously,
because our cost function explicitly models the systematic errors

arising from specific tissue distributions, it could be used to gen-
erate MRF pulse sequences tailored to specific disorders or even
specific patients. In the opposite direction, repeatability of pulse-
sequence results across different scans and different patients
could be addressed by large scale in vivo studies. Such repeata-
bility is an especially important feature for monitoring disease
progression or age-related tissue changes (7–9) and helps to ful-
fill the promise of quantitative MR scanning for objective clinical
diagnostic criteria (8, 47).

Data Availability. Some study data are available. Four tables
in .csv files listing detailed results of the proposed model and
optimization algorithms and a readme.md file providing detailed
explanation of the experiments performed to generate numbers
in each table, in addition to the 15 optimized pulse sequences
reported on in the manuscript, are available in GitHub (https://
github.com/madan6711/Automatic-MRF-seq-design) (48).
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