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ABSTRACT

Pervasive transcription of eukaryotic genomes re-
sults in expression of long non-coding RNAs (lncR-
NAs) most of which are poorly conserved in evolu-
tion and appear to be non-functional. However, some
lncRNAs have been shown to perform specific func-
tions, in particular, transcription regulation. Thou-
sands of small open reading frames (smORFs, <100
codons) located on lncRNAs potentially might be
translated into peptides or microproteins. We report
a comprehensive analysis of the conservation and
evolutionary trajectories of lncRNAs-smORFs from
the moss Physcomitrium patens across transcrip-
tomes of 479 plant species. Although thousands of
smORFs are subject to substantial purifying selec-
tion, the majority of the smORFs appear to be evo-
lutionary young and could represent a major pool
for functional innovation. Using nanopore RNA se-
quencing, we show that, on average, the transcrip-
tional level of conserved smORFs is higher than
that of non-conserved smORFs. Proteomic analysis
confirmed translation of 82 novel species-specific
smORFs. Numerous conserved smORFs containing
low complexity regions (LCRs) or transmembrane
domains were identified, the biological functions of
a selected LCR-smORF were demonstrated experi-
mentally. Thus, microproteins encoded by smORFs
are a major, functionally diverse component of the
plant proteome.

INTRODUCTION

The progress of next generation RNA sequencing technolo-
gies has led to the striking discovery of pervasive transcrip-
tion of eukaryotic genomes (1–3). Effectively, each base in
animal and plant genomes is transcribed in some cell types,
at some developmental stage(s), at some level. The great
majority of these transcripts (98–99%) appear to be non-
coding RNAs (4,5). A major, heterogeneous class of diverse
long non-coding RNAs (lncRNAs) are traditionally defined
as transcripts longer than 200 nucleotides (nt), without dis-
cernible coding potential (6,7). Only a minority of the lncR-
NAs have been shown to perform specific functions, primar-
ily, in chromatin remodeling and regulation of gene expres-
sion (7).

An important question is, are all lncRNAs actually
non-coding? Many recent studies have demonstrated that
lncRNAs are frequently bound to ribosomes (8–10). The
ribosome-associated lncRNAs could be translated to pro-
duce peptides or microproteins (11–13), and alternatively
or additionally, might be involved in translation regulation
(14); else, the interactions with ribosomes might play a role
in the degradation of the lncRNAs (15). Potentially trans-
lated regions in lncRNAs are small ORFs (smORFs, from
10 to 100 codons) (16). Hundreds of peptides or micropro-
teins have been identified by proteomics in mammals (17–
19), fungi (20), plants (8,21,22) and bacteria (23,24). Some
of the peptides or microproteins encoded by smORFs have
been shown to perform diverse biological functions (22,25).

Transcription of non-coding portions of genomes can
result in de novo emergence of new protein-coding genes
(26,27). Because translation of (initially) spurious peptides
encoded by lncRNAs can potentially be harmful to the
cell, the primary selection has been suggested to be for the
avoidance of aggregation (the ‘do no harm’ hypothesis).
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Alternatively, hydrophobic random peptides that can of-
ten emerge from T-rich sequences, given that T-rich codons
largely encode hydrophobic amino acids, could readily be-
come small transmembrane (TM) proteins, in a form of
preadaptation, as suggested by the ‘TM-first’ model of gene
birth (27–29). A specific case of evolution of a functional
yeast membrane protein (YBR196C-A) originated from a
thymine-rich intergenic sequence has been recently docu-
mented in detail (27). Other studies have shown that de novo
genes may emerge from GC-rich sequences that have a low
frequency of stop-codons (30,31).

Thus, there seem to be multiple evolutionary routes lead-
ing to the de novo emergence of small proteins. Several ded-
icated web resources and databases have been developed to
catalog and annotate smORFs (32–35). However, the global
role of lncRNAs as a source of functional peptides remains
largely unknown. It seems likely that the majority of the
lncRNAs that are inferred to be translatable from the ri-
bosome profiling data actually are unannotated mRNAs.
Furthermore, evolutionarily conserved regions in lncRNAs
are significantly enriched in potentially translated smORFs
and in protein–RNA interaction signatures (36). In addi-
tion, microproteins translated from lncRNAs with well-
characterized non-coding functions have been identified as
well (17), suggesting the existence of transcripts with dual
functionality. Overall, the functions and evolutionary his-
tory of the ‘dark proteome’ hidden in genome regions that
are currently considered non-coding still awaits a compre-
hensive analysis.

To our knowledge, the plant smORFome has not been
systematically studied previously. To gain insight into the
functions and evolution of smORFs present in lncRNAs,
we performed a comprehensive analysis of the smORFs
conservation across plant taxa, using as a reference set
the lncRNAs of the moss Physcomitrella (Physcomitrium
patens), a well-characterized plant model. Thousands of
evolutionarily conserved smORFs were identified. The
translation of numerous smORFs into peptides or proteins
was validated by peptidomics, and the functions of selected
small proteins in the moss were characterized experimen-
tally.

MATERIALS AND METHODS

Analysis of publicly available long non-coding RNA datasets

The 1498 predicted lncRNAs from CANTATdb 2.0
database (37), 9416 high-confidence lncRNAs from
GreeNC (38), 3018 lncRNAs from P. patens NCBI
annotation (https://www.ncbi.nlm.nih.gov/genome/
annotation euk/Physcomitrella patens/100), 1512 lncR-
NAs from Lung et al.’s paper (39) and 4648 from
Simopoulos et al.’s paper (40) were brought together
and redundant transcripts were excluded. Using bedtools
(41) lncRNAs were intersect and combined into loci.
Using TBLASTN search, we further filtered out lncRNAs
having sequence similarity to annotated viridiplantae
proteins from Uniprot database (E-value < 10–5; over-
lap > 30%). In addition, we also discarded lcnRNAs with
sequence similarity to known noncoding RNAs from the
Rfam database (E-value < 10–5). The control set of 16
178 mRNA transcripts was obtained from Phytozome

v12.1 (https://phytozome.jgi.doe.gov/pz/portal.html). Only
transcripts coding for annotated functional proteins and
confirmed by nanopore analysis (see below) were included.
The percent GC was calculated with EMBOSS infoseq
(42).

smORFs prediction and classification

LncRNA transcripts and whole loci were scanned for pos-
sible AUG-started smORFs by the MiPepid tool (43). The
NCBI finder (44) allows users to search for ORFs with-
out limiting the length of the query sequence and using
various genetic codes, including different start codons. The
smORFs predicted by NCBI finder (https://www.ncbi.nlm.
nih.gov/orffinder/) which intersected or nested in MiPepid-
smORFs were then filtered out.

The conservation analysis

The transcriptomes of green algae, liverworts, mosses, horn-
worts, lycophytes, leptosporangiate ferns, conifers and basal
eudicots species (Supplementary Table S1) from OneKP
plant transcriptomes project (45) were downloaded from
https://datacommons.cyverse.org/browse/iplant/home/
shared/commons repo/curated/oneKP capstone 2019. We
searched for significant sequence similarity hits between
moss lncRNA loci and transcripts from different plant
lineages using BLASTN (46) with the E-value 10−5 cut-off.
Results were very similar for different E-value cut-offs:
the percent of conserved lncRNAs was the same when
making this parameter more stringent (E-value < 10−6)
and only slightly increased by 0.1% when relaxing the
E-value (E-value < 10−4).

To identify smORF orthologs in selected plant taxa,
TBLASTN search with default parameters was performed
using smORFs as queries and the transcriptome sequences
as subjects. The alignments were filtered by E-value < 10−3

cut-off. The number of conserved smORFs only increased
by 1.9% with a relaxed E-value cut-off (E-value < 10−2)
and decreased by 1.64% in more stringent cut-off (E-
value < 10−4).

Evolutionary analysis

The nucleotide sequence alignments of the orthologous
transcripts and coding sequences were constructed using
Owen (47) and Muscle (48) software and alignments of
CDSs and ORFs sequences were guided by the amino acid
sequence alignment (47–49). The selected coding sequence
alignments should not contain internal stop codons and
match a start codon. We also considered that the alignment
length of orthologous coding sequences should be >80% of
smORF or protein length.

The nucleotide sequence alignments of orthologous cod-
ing sequences were obtained by backtracking the amino
acid sequence alignments using PAL2NAL (50). For the nu-
cleotide sequences, the rates of divergence were calculated
using Kimura’s two parameter model (51). Evolutionary
rates for synonymous and nonsynonymous positions (dS
and dN, respectively) in coding regions were estimated using
the PAML software and the Maximum Likelihood method

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Physcomitrella_patens/100
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for pairs of species (52). The dN and dS values of ambigu-
ous alignments, leading to an unreliable estimation of evo-
lutionary rates, were excluded from the analysis.

In addition to PAML, we also used HyPhy’s BUSTED
algorithm (53) to identify smORFs and proteins with ev-
idence of positive selection. BUSTED (Branch-Site Unre-
stricted Statistical Test for Episodic Diversification) pro-
vides a test for positive selection in at least one site on at
least one branch. The input trees for the tests of positive se-
lection were constructed for each alignment with IQ-TREE
1.6.12 (54). We parsed all PAML and HyPhy results by cus-
tom Python scripts. We considered a P-value less than 0.05
as evidence for positive selection. We used the Benjamini-
Hochberg (55) approach to correct for multiple testing. The
phylogenetic trees were generated by the Toytree package
(56).

Domains and motifs analysis

smORF sequences were scanned for domains using In-
terProScan 4.36 (57) with default settings. The web plant
SSP-Prediction tool available at http://mtsspdb.noble.org/
prediction/ was used (58). The potential SSPs were classified
as Known SSP, Likely Known SSP, Putative SSP and Non-
SSP (58). MEME (http://meme-suite.org/) tool was used
to identify conserved motifs (59). Low-complexity regions
(LCRs) were identified by SEG tool with default settings
(60).

Cellular localization

SignalP-5.0 (61) was run with default parameters on all
smORFs. TMHMM 2.0 (62) was run on the same set of
smORFs with default parameters.

Plant material and mutant lines generation

Physcomitrella (Physcomitrium patens ‘Gransden 2004’,
Frieburg) protonemata and gametophores were grown as
described previously (22). The PSEP3 overexpression lines
were generated based on the �-estradiol induction system
(63). The plasmid pPGX8 (AB537482) was kindly pro-
vided by Prof. Mitsuyasu Hasebe. The resulting plasmid
pPGX8 PSEP3 was used for transformation as described
previously (22). Overexpression lines were screened using
PCR and quantitative RT–PCR analyses. The primer se-
quences, plasmids and constructs used for the production
of the overexpression lines can be found in Supplementary
Figure S1.

The PSEP3 overexpression was induced by 1 �M �-
estradiol (Sigma, USA) dissolved in ethanol. To confirm
induction of PSEP3 transcription, RT-qPCR was used.
Total RNA was isolated using TRIzol™ Reagent (Am-
bion, US) according to the manufacturer protocol and re-
verse transcribed by MMLV-RT kit (Evrogen, Russia). PCR
qPCRmix-HS mix (Evrogen, Russia) was used for quanti-
tative RT–qPCR analyses on a LightCycler® 96 (Roche,
Mannheim, Germany). The representation of cDNA was
normalized using stably transcribed reference gene actin 5
(Pp1s381 21V6.1). The 2-ddCT values were obtained using
the LightCycler® 96 software. Control samples were used
as a calibrator.

Peptide extraction

Endogenous peptides were extracted from 5-day old pro-
tonemata and 30-day old gametophores as described previ-
ously (22).

Protein extraction and trypsin digestion

Protein extraction and trypsin digestion we conducted as
described previously (64,65). iTRAQ labelling (Applied
Biosystems, Foster City, CA, USA) was conducted accord-
ing to the manufacturer’s manual. The experiments were
conducted independently and samples were labelled and
combined as follows: the wild type samples were labelled by
113, 114 and 116 isobaric tags and combined with mutant
RSER3 OE samples labelled by 117, 118 and 121 isobaric
tags; the wild type samples labelled by 113, 114 and 115 iso-
baric tags were combined with PSEP3 KO mutant samples
(116, 119 and 121 isobaric tags); wild type samples were
labeled by 113, 114 and 116 isobaric tags and combined
with samples from PSEP18 KO mutant plants labelled by
116,119 and 121 isobaric tags; iTRAQ reagents 113, 114 and
115 were used to label wild type samples that were com-
bined with PSEP18 OE samples labelled by 116, 119 and
121 isobaric tags. To increase the number of identified pro-
teins, labelled peptides were fractionated by cation exchange
chromatography. Peptides were eluted successively by 50,
75, 125, 200 and 300 mM ammonium acetate in 0.5% formic
acid and 20% acetonitrile; 5% NH4OH in 80% acetonitrile;
10% NH4OH in 60% acetonitrile.

LC–MS/MS analysis and smORF identification

The LC–MS/MS analysis was performed as described ear-
lier (22). For analysis of smORFs translation, five pep-
tidomic data sets - PXD009532 (57), PXD007922 (17),
PXD007923 (17), PXD025373 and PXD025267 were used.
The PXD025373 and PXD025267 datasets were generated
in this study. Tandem mass spectra from peptidomic sam-
ples were searched individually with PEAKS Studio ver-
sion 8.0 software (Bioinfor Inc., CA, USA) and MaxQuant
v1.6.14 (66) against a custom database containing 32 926
proteins from annotated genes in the latest version of the
moss genome (V3.3) (39), 85 moss chloroplast proteins,
42 moss mitochondrial proteins, and predicted smORF
peptides. MaxQuant’s protein FDR filter was disabled,
while 1% FDR was used to select high-confidence peptide-
spectrum matches (PSMs), and ambiguous peptides were
filtered out. The parameter ‘Digestion Mode’ was set to ‘un-
specific’ and modifications were not permitted. All other
parameters were left as default values. All other parame-
ters were left as default values. After MaxQuant peptide
searches, a more stringent FDR filtering strategy was used
(67). A class specific FDR was calculated as the number of
decoy smORF hits divided by the number of target smORF
hits. 1% class specific FDR was applied to the smORF
PSMs.

The search parameters of PEAKS 8.0 were a fragmenta-
tion mass tolerance of 0.05 Da; parent ion tolerance of 10
ppm; without modifications. The results were filtered by a
1% FDR, but with a significance threshold not less than 20
(equivalent is P-value < 0.01).

http://arxiv.org/abs/http://mtsspdb.noble.org/prediction/
http://meme-suite.org/
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Protein quantification

The raw files were analyzed by PEAKS Studio version
8.0 software (Bioinfor Inc., CA, USA). The custom
database was built from the Phytozome proteomic
database combined with chloroplast and mitochon-
drial proteins. The database search was performed with
the following parameters: a fragmentation mass tol-
erance of 0.05 Da; parent ion tolerance of 10 ppm;
fixed modification––carbamidomethylation; variable
modifications––oxidation (M), deamidation (NQ) and
acetylation (Protein N-term). The results were filtered by
a 1% false discovery rate (FDR). PEAKS Q was used for
iTRAQ quantification. Normalization was performed by
averaging the abundance of all peptides. Median values
were used for averaging. Differentially expressed proteins
were filtered if their fold change was greater than 1.2 and
significance threshold 20 with a statistical P-value (ANOVA
test with Benjamini and Hochberg FDR correction) below
0.05, variance homogeneity test (P-value > 0.05), and
normal distribution test (P-value > 0.05).

Long-reading native RNA analysis

Total RNA from gametophores and protonemata was iso-
lated by TRIzol™ Reagent (Ambion, USA). Four biolog-
ical repeats of gametophores and three biological repeats
of protonemata were used for analysis. RNA quality and
quantity were evaluated via electrophoresis in an agarose
gel with ethidium bromide staining. The precise concentra-
tion of total RNA in each sample was measured using a
Quant-iT™ RNA Assay Kit, 5–100 ng on a Qubit 3.0 (In-
vitrogen, US) fluorometer. 100 �g aliquots of total RNA
were diluted in 100 �l of nuclease-free water and poly(A)
fraction was selected by Poly(A)Purist™-MAG Purification
Kit (Thermo Fisher Scientific, USA). The Nanopore direct
RNA sequencing kit (SQK-RNA002, Oxford Nanopore)
was used to prepare libraries from the poly(A) RNA. About
200 ng of each prepared libraries were loaded onto FLO-
MIN106 (ONT R9.4) flowcells and sequencing was per-
formed in MinION sequencers. Each library was run for
48 h.

The obtained reads were basecalled by Guppy 4.0.15
(Oxford Nanopore Technologies). The resulting reads were
mapped against the genome Physcomitrella patens V3.3 (68)
by minimap 2.17 (69) with the following parameters: -ax
splice -uf -k14 f -G2k. ONT reads with a primary alignment
to the genome were retained. The obtained ‘SAM’ files were
sorted and indexed with ‘SAMtools’(70).

To confirm lncRNAs and mRNAs transcription, we
combined the results from StringTie (71) tool with -L pa-
rameter and Flair (72), both in the pipe with GffCompare
(73). To estimate transcript abundance the default Flair
(72) pipeline and featureCounts 2.0.0 (74) tools were used.
Mono-exon features were quantified with featureCounts
2.0.0 (74) (parameters -s 1 -L -O –fracOverlapFeature 0.75
–fracOverlap 0.75), because Flair is suitable only for fea-
tures with splice junctions. Both Flair and featureCounts
produce quantification as simple read counts, which is ap-
propriate for long reads. The full pipeline can be found on
https://github.com/Liverworks/Ppatens lncRNAs.

Fluorescent microscopy

To evaluate ROS induction and cell viability in the PSEP3
overexpressed lines, 6-day old moss protonemata were
treated with 1 �M �-estradiol (Sigma, USA).

The detection of ROS was performed by fluorescent
dye DCFH-DA (2′,7′-Dichlorofluorescin Diacetate, Sigma-
Aldrich, USA) in 24-h after induction. The protonemal tis-
sues were stained with 10 �M DCFH-DA during 10 min.

A cell viability assay was performed in 48-h after estra-
diol induction. The protonemal cells were stained by FDA
(fluorescein diacetate, Sigma-Aldrich, USA) during 5 min
and the ratio of live and dead cells was used to calculate cell
viability. Fluorescence signal was detected by Axio Imager
M2 microscope (Zeiss) with an AxioCam 506 mono digital
camera (Zeiss) and Zen 2.6 pro software (Zeiss). Filter unit
�44 (�ex BP 475 nm/40 nm; �em BP 530 nm/50 nm) was
used for DCFH-DA and FDA fluorescence detection.

Statistical analysis

Statistical analyses and visualization were made in Python
v. 3.7.5 (75) using modules scipy 1.5.2 (76), seaborn 0.11.1
(77), numpy 1.20.1, pandas 1.2.3 (78) and upsetplot 0.5.0
(79).

RESULTS

Comprehensive bioinformatics characterization of the
lncRNA-smORFome

Delineation of the set of smORFs in Physcomitrium patens.
LncRNAs are a poorly characterized class of transcripts
and their prediction is a challenging task (80). Therefore,
we first defined a set of lncRNAs from the model plant -
moss Physcomitrella (Physcomitrium patens) by combining
several available datasets (37,38,40,68). Using the annota-
tion from available databases (see Material and Methods),
all lncRNAs were mapped to Physcomitrella genome v3.3
(39) and combined into 9168 loci (Supplementary Table S2)
where alternative transcripts could occupy the same loci and
overlap.

As a control set, we also selected 16 178 P. patens primary
mRNA transcripts (Supplementary Table S3) coding for
annotated functional proteins from Phytozome v12.1 and
confirmed by nanopore RNA sequencing (see below). This
set includes 252 mRNAs coding for proteins smaller than
100 aa (small coding sequences, small CDSs) that contain
identifiable functional domains (median size = 81aa; small-
mRNAs). In agreement with previous analyses (36,81), the
length and GC content of lncRNAs significantly differed
from those of the mRNAs and the small-mRNAs (Fig-
ure 1A and B, respectively; Kruskal–Wallis rank sum test,
P < 10–15). In addition, lncRNAs contained significantly
fewer exons (median = 1) than mRNAs (median = 6;
Mann–Whitney U test, P < 0.000001).

Having delineated a comprehensive set of moss lncRNAs,
we then predicted smORFs (from 10 to 100 aa) starting
with an AUG codon, using the MiPEPID tool (43). Be-
cause functional smORFs can start with alternative codons
(18), we additionally used NCBI ORF finder (44) to pre-
dict smORFs with non-canonical starts, UUG and CUG.

http://arxiv.org/abs/https://github.com/Liverworks/Ppatens_lncRNAs
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Figure 1. Prediction and classification of small ORFs. (A) Boxplot showing the length comparison of lncRNAs, mRNAs and small RNAs (code for
functional proteins below 100aa). The median, quartiles, and 5th and 95th percentiles are shown. (B) Comparison of GC contents of lncRNAs, mR-
NAs and small RNAs. (C) Pipeline of smORFs prediction and classification. (D) Cumulative distribution of different CDS lengths; ‘random smORFs’
refer to smORFs expected to occur by chance; the median lengths are 25aa and 20aa for MiPEPID-smORF and NCBI ORF finder, respectively; ∼26%
MiPEPID-smORFs had the length more than 40 aa. (E) Comparison of amino acid compositions of functionally characterized proteins (including small
CDSs, <100aa) and AUG-started smORF-encoded peptides. smORFs were enriched in leucine (chi-square P-value < 10–15), isoleucine (chi-square P-
value < 10–15), phenylalanine (chi-square P-value < 10–15) in comparison to functional proteins.

The ORF finder-predicted smORFs included ∼65% UUG-
started and ∼35% CUG-started ones. The most common
alternative translation initiation site (TIS) that has been
identified in both plant and mammalian mRNAs by ri-
bosome profiling is CUG (82,83). The set of MiPEPID-
smORFs was then merged with the set of non-AUG starting
ORFs identified with NCBI ORF finder to generate an un-
biased set of smORFs.

The set of predicted smORFs was thoroughly filtered
and classified (Figure 1C; Supplementary Table S4). First,
smORFs containing sequences significantly similar to an-
notated proteins above 200 aa from Phytozome v12.1
(BLASTP, E-value < 0.00001; percent identity ≥ 80%) or
overlapping exons of protein-coding genes on both strands
by 50% of a smORF length or more were filtered out. The
smORFs that did not meet the above criteria, but show-
ing significant similarity to annotated P. patens proteins
(E-value < 0.00001) were designated ‘unclassified’. The P.
patens proteome includes 7028 predicted proteins smaller
than 100 aa, of which many have no associated functional
annotation and some could be incorrectly predicted (22).
The smORFs that overlapped with such small proteins were
designated ‘small protein’ smORFs. The smORFs that did
not fit into the ‘small protein’ and ‘unclassified’ categories
were designated ‘new’, and all three classes of smORFs were
analyzed further (Figure 1C). Overall, ∼49% ‘new’, ∼99%
‘small protein’ and ∼76% ‘unclassified’ smORFs started
with AUG. The percentage of smORFs with alternative
start codons was ∼33% UUG and ∼18% CUG in ‘new’,

∼16% UUG and ∼8% CUG in ‘unclassified’, and ∼0.45%
CUG and ∼0.55% UUG in ‘small protein’ smORFs.

The median sizes of the smORFs significantly differed
from the median ORF size of 13 codons expected by chance
for the P. patens genome (GC = 45.9%; Mood’s median test
P < 10–15; Figure 1C, D) (68). About 85% (76289/90057)
of the MiPEPID-smORFs were predicted as coding using
a logistic regression model (43). The BLASTP search of
predicted smORFs against known smORF databases (E-
value < 0.001, ≥ 50% of identity) revealed 16 smORFs
shared by P. patens and Arabidopsis (84,85) and four ho-
mologs in smProt database (35).

Intrinsic features of transcripts, such as sequence con-
servation or nucleotide composition, are often used for the
calculation of their coding potential (86). We found that,
on average, the smORFs were significantly less GC-rich
than protein-coding ORFs (Kolmogorov–Smirnov test,
P < 10−20). It has been shown previously that different types
of animal smORFs (lncRNAs-smORFs, upstreamORFs,
downstreamORFs etc.) significantly differed from each
other in the amino acid composition (25). The amino acid
composition of the putative microproteins/peptides en-
coded by the AUG-started smORFs in our data set differed
from the composition of functionally characterized pro-
teins, especially in the content of some hydrophobic amino
acids (Figure 1E). Increased frequencies of methionine and
cysteine as well as decreased frequencies of alanine, glu-
tamate and aspartate closely resembled the reported fea-
tures of smORFs in mammalian lncRNAs (25). Overall, the



Nucleic Acids Research, 2021, Vol. 49, No. 18 10333

observed composition of smORFs and small CDSs were
concordant with the respective values calculated for mam-
mals (25).

Numerous lncRNA-smORFs are conserved across differ-
ent plant lineages. It has been previously shown that,
for >70% of the lncRNAs, no homologs could be identi-
fied between animal species that diverged more than 50 mil-
lion years ago (87). To explore the evolutionary conserva-
tion of the lncRNAs in plants, we performed BLASTN se-
quence similarity search (E-value < 0.00001) of the P. patens
lncRNA set against transcriptomes from the 1000 (OneKP)
plants project (45). The number of lncRNA matches pre-
cipitously dropped in more distant plant lineages (Fig-
ure 2A). In contrast to lncRNAs, the mRNA transcripts
were far more strongly conserved across different plant lin-
eages (Figure 2A). As expected, the conserved regions in
mRNA transcripts were longer than those in the lncR-
NAs, with a median length of 753 and 168 nucleotides, re-
spectively. These observations match the results obtained
for mammalian mRNAs and lncRNAs (36,88). In small-
mRNAs, the median length of the conserved regions was
only slightly larger than in lncRNAs (226 versus 168, re-
spectively; Mann–Whitney U-test, P < 10–15), but small-
mRNAs showed a much stronger evolutionary conserva-
tion (Figure 2A, B). Thus, our results confirmed that the
evolutionary conservation of lncRNAs at the nucleotide
level is substantially lower than that of mRNAs.

We next analyzed smORFs conservation at the amino
acid sequence level. Because increasing stringency of
TBLASTN discriminates against short sequences (89), we
used an E-value < 0.001 cut-off. In this search, 15167
MiPEPID-smORFs and 9425 ORFfinder-smORFs showed
at least one match to 41 moss transcriptomes (see in Supple-
mentary Table S5; Figure 2C), in particular, that of the clos-
est moss species, Physcomitrium sp. (YEPO). In other moss
species, the number of putative orthologs ranged from 1130
to 2887 (Supplementary Figure S2). Thus, nearly half of the
lncRNA loci (4078 of the 9168 lncRNA loci) from our set
contained at least one conserved smORFs.

The proportion of smORFs predicted with low ‘coding’
potential (based on MiPEPID tool classification) was sig-
nificantly higher among the non-conserved smORFs com-
pared to conserved ones (18% versus 6%, respectively, chi-
square P < 10–15). The conserved moss smORFs were also
found to be significantly longer than the non-conserved
ones (Kruskal–Wallis, P < 0.00001; Supplementary Fig-
ure S3). The fraction of pairwise alignments between P.
patens and YEPO containing internal stop codons was sig-
nificantly higher in the MiPEPID-smORFs than in the
small CDSs (11.6% versus 1.6%, respectively, chi-square
P < 10–10), which is compatible with the lower evolution-
ary conservation of the smORFs.

The conserved smORFs were clustered according to their
level of conservation in different plant lineages. Overall,
three prominent patterns of smORF conservation were de-
tected: (i) a high level of conservation among diverse plants,
including bryophytes, lycophytes and ferns (n = 645); (ii)
broad conservation in moss species and partial conserva-
tion in liverworts and hornworts (n = 1423); (iii) conserva-
tion in a small number of moss species (n = 22 524; 83% had

orthologs in only one species; Figure 2D and E). The ‘new’
smORFs were significantly enriched in the third group and
strongly depleted in the first and second groups compared
to the other types of smORFs (chi-square P-value < 10–15;
Figure 2E).

Thus, the conservation of smORFs rapidly dropped at
the transition from mosses to other plant lineages (Figure
2C) and in particular, rapid depletion of ‘new’ smORFs was
observed. As expected, annotated proteins (including small
CDSs) were more widely conserved than smORFs, with
the number of conserved proteins dropping only slightly
in distant plant groups (Figure 2C). These findings are in
line with previous results describing the fast turnover of
smORFs in animal genomes (25,90).

Evolutionary rates and selection in lncRNAs and smORFs.
Comparative analysis of nucleotide pairwise alignments
between P. patens and Physcomitrium sp. showed that
the distributions of evolutionary rates, Kd (Kimura two-
parametric model, K2P), differed substantially between
lncRNAs and mRNAs (Kruskal–Wallis rank sum test,
P < 10–15), with the mRNAs evolving significantly slower
(Supplementary Table S6; Figure 3A). However, the me-
dian of Kd distributions of lncRNA hits and small-mRNAs
were closely similar (median 0.046 versus 0.048, respec-
tively) and differed significantly from another subset of mR-
NAs with longer CDSs (median = 0.035; Mann–Whitney
U-test, P < 10–15 for both comparison). Thus, although
plant lncRNAs are generally far less conserved at the nu-
cleotide sequence level than mRNAs, some of lncRNAs
contain conserved regions with the Kd values comparable to
the short protein coding transcripts. This finding is in agree-
ment with the results of comparative analyses of coding and
non-coding RNAs in other eukaryotes (88,91,92).

We then estimated the evolutionary rates and performed
statistical tests for identification of purifying selection in
the predicted smORFs (92,93). Based on the analysis of
TBLASTN pairwise alignments, we concluded that the Kd
values of smORFs were statistically indistinguishable from
those for the CDSs, including small ones (Kruskal–Wallis
rank sum test, P = 0.20; Figure 3B).

Because conserved regions in animal intergenic lncR-
NAs were enriched in translated smORFs (36), we next
analyzed the evolutionary rates of 4022 smORFs over-
lapping conserved lncRNA regions between P. patens
and Physcomitrium sp. Such lncRNA regions, overlap-
ping >80% of smORF lengths, were found in ∼45%
of the conserved lncRNA loci. We calculated the ra-
tio of non-synonymous to synonymous substitution rates
(dN/dS) to examine whether these lncRNAs contained re-
gions with significant levels of protein selection pressure
(Supplementary Table S7). As expected, protein-coding
CDS (including small CDSs) had stronger purifying se-
lection signatures compared to smORFs (Kruskal–Wallis
rank sum test, P < 0.0001; Figure 3C). Overall, ∼76%
of small CDSs displayed a robust signature of purify-
ing selection (dN/dS < 0.20) compared to ∼45% of the
smORFs (1771 smORFs). About 30% of both smORFs
and small CDSs were ‘highly conserved’ (orthologs with-
out mutations/substitutions or with single ones in YEPO).
However, in contrast to the small CDSs, ∼83% of these
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Figure 2. Evolutionary conservation of lncRNAs and smORFs. (A) Comparison of the sequence conservation between lncRNAs and mRNAs in different
plant lineages; (B) Distributions of lengths of conserved regions of lncRNAs and small mRNAs (code for proteins below 100aa) in bryophytes and green
algae. The median, quartiles, and 5th and 95th percentiles are shown; (C) the number of smORFs with detectable orthologs in different plant lineages;
‘% of small proteins” shows percent of small CDSs having orthologs in this plant lineage. (D) Heatmap showing the evolutionary conservation pattern of
smORFs in different plant lineages. The scaled numbers of species with detectable smORF homologs are shown. Color bars indicate three conservation
patterns: light blue––smORFs that are mostly conserved in a small number of moss species (lineage-specific, cluster 3), orange––widely conserved smORFs
(highly conserved, cluster 1), green––smORFs that are preferably conserved in mosses and other bryophytes (bryophyte specific, cluster 2). (E) UpSet plot
showing intersection between three conservation patterns and smORFs types.
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Figure 3. Evolutionary rates and selection regimes in lncRNAs, mRNAs, smORFs and protein-coding genes. (A) The evolutionary rates distribution in
pairwise alignments of P. patens and Physcomitrium sp. lncRNA (n = 4078) and mRNA transcripts (n = 15 926 and n = 252 for mRNAs encoded proteins
above and below 100aa, respectively); P < 10–15 by Kruskal–Wallis rank sum test. (B) The evolutionary rates distribution in pairwise alignments of P. patens
and Physcomitrium sp. smORFs and protein CDSs; P = 0.2 by Kruskal–Wallis rank sum test. (C) The distribution of dN/dS ratios in smORFs (n = 4022)
and functional proteins (n = 8203). Small CDSs are protein smaller than 100aa; P < 0.0001 by Kruskal–Wallis rank sum test. (D) The distribution of dN
versus dS values from smORF tblastn alignments; pie chart shows the number of smORFs classified based on dN/dS values. (E) The distribution of dN
versus dS values from small CDSs (proteins below 100aa) tblastn alignments; pie chart shows distribution of dN/dS values.

‘highly conserved’ smORFs were distributed in only a
small number of moss species (cluster 3, see above). These
observations suggest that about half of the evolution-
ary conserved smORF encodes lineage- and/or species-
specific peptide/microproteins. On the contrary, smORFs
with comparable levels of dN and dS values, could be un-
der selection at the nucleotide level or have a signature of
positive selection.

The number of putative orthologs of smORFs in more
distant moss species drastically dropped, accompanied by
a decline of the dN/dS ratio (Supplementary Figure S4). In
more distant moss species the median dS values in smORFs
were similar to those in functional proteins, whereas the
dN values were twice as high in smORFs. Thus, numer-
ous smORFs might have signatures of positive selection or
could be subject to selection at the nucleotide level.

We next analyzed potential signatures of positive se-
lection in the set of smORFs. About 12% (507, Figure
3E) of the analyzed alignments between P. patens and
Physcomitrium sp. had dN/dS > 1. In contrast, no align-
ments with dN/dS > 1 were found in the set of small CDSs.

For further analysis, HyPhy’s BUSTED algorithm has
been used (53). We identified 125 smORFs as positively se-
lected (LRT, P < 0.05; Supplementary Table S8), including
∼16% (20/125) of smORFs with dN/dS > 1. Thus, only

∼4% of the total set of 507 smORFs with dN/dS > 1 were
supported by the BUSTED method as positively selected.
We next ran HyPhy-BUSTED to test for positive selection
in closely related moss species, using 398 smORFs and 146
small CDSs conserved from three to six moss species. About
12% of both smORFs and small CDSs contained evidence
of episodic diversifying selection according to the BUSTED
algorithm (LRT, P < 0.05) in both smORFs and small
CDSs sets (Supplementary Table S8).

Thus, our findings suggest the existence of a group of
smORFs, which may indeed encode small proteins that are
broadly conserved, and smORF groups that are maintained
by selection in groups of comparatively closely related or-
ganisms (species- and lineage-specific) as it has been shown
in animals (94).

Structural features of predicted plant microproteins

Low complexity regions in lncORF-smORFs. Numerous
proteins, particularly in eukaryotes, contain Low sequence
Complexity Regions (LCRs) of widely varying lengths. De-
spite suggestions that LCRs drive evolutionary changes
in proteins, their functions remain obscure (95,96). In
database searches for sequence similarity, the LCRs are ei-
ther masked and excluded from further search or down
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weighed for the significance estimation (97). The exclusion
of LCRs might result in underestimation of the number of
potentially functional microproteins encoded by lncRNA-
smORFs. To assess the prevalence of LCRs in smORFs, we
used the SEG tool (98) and identified ∼10% AUG-started
smORFs (7831 smORFs), containing predicted LCRs (av-
erage length = 14aa; Figure 4A, B; Supplementary Table
S9). Overall, ∼4% of all amino acids constituted MiPEPID-
smORFs were part of predicted LCRs.

We further reanalyzed the conservation of the
smORFs without filtering out the LCRs (TBLASTN,
E-value < 0.001, SEG = ‘no’). Overall, 2095 conserved
smORFs were identified in this search compared to 1520
in the original search with LCR filtering. For example,
for a proline-rich 47-aa ‘new’ translatable (see below)
smORF that was previously considered ‘non-conserved’,
apparent homologs were identified in transcriptomes of 43
species, including mosses, liverworts and ferns (Figure 4C,
D). The transcriptomes of some moss species contained
several transcripts encoding paralogs of this microprotein.
Thus, a number of microproteins containing LCR can be
overlooked in plant proteome annotations and our analysis
of LCR patterns in smORF candidates showed that their
numbers are likely underestimated. These findings suggest
that the origin of new small proteins containing LCR is
more widespread than previously thought.

Given that genome base composition could define the
evolutionary trajectories of new ORFs (27), we next
asked whether the evolutionary rates of smORFs orig-
inated from low complexity genome regions different
from other smORFs. Although the distribution of the
Kd evolutionary rates did not differ significantly, the
dN/dS ratios were significantly different between the LCR-
smORFs and smORFs without LCRs (Mann–Whitney U-
test, P = 4 × 10–10; Figure 4E). In addition, the propor-
tion of smORFs with dN/dS > 1 was significantly higher
in LCR-smORFs than in non LCR smORFs (25% versus
12%, respectively; Fisher’s exact test P < 0.00001). In con-
trast, the evolutionary rates (Kd and dN/dS ratios) did not
differ significantly between small CDSs with and without
LCRs. Thus, LCR-containing smORFs appear to evolve
under weak purifying selection, and some might even be
subject to positive selection, whereas small CDSs including
those containing LCRs are subject to substantially stronger
purifying selection (Figure 4E).

Many lncORF-smORFs contain transmembrane domains
and signal peptides. Little is known about the gain of func-
tion by new genes that might originate from non-coding
DNA. Novel ORFs, especially AT-rich ones, can have high
propensity to form transmembrane domains (TMDs) (27),
which function as protein sorting determinants (99). There-
fore, we applied two algorithms, TMHHM 2.0 (62) and
SignalP-5.0 (61) to predict transmembrane and signal pep-
tides in the set of all smORFs. At first, 9472 smORFs
were predicted to be secreted by TMHHM 2.0 (62) and/or
SignalP-5.0 (61) tools (Supplementary Table S10). In addi-
tion, 4978 smORFs were predicted to be small transmem-
brane proteins. These TM-containing smORFs were desig-
nated as TMD-smORFs (Supplementary Table S10). The

TMD-smORFs were significantly longer in comparison to
other smORFs (Mann–Whitney U-test, P < 10–15, Figure
5A), including conserved smORFs (Mann–Whitney U-test,
P < 10–10, Figure 5B).

We found that 1182 TMD-smORFs had a putative or-
tholog in at least one examined species, and about 70%
(821/1182) of them belonged to the ‘new’ class. The percent
of TMD-smORFs in the conserved set was only slightly,
albeit significantly, higher than in the entire smORFs set
(∼5% TMD-smORFs versus ∼3% all smORFs; chi-square,
P < 10–15). The ‘new’ TMD-smORFs were significantly
shorter than the TMD-smORFs in other smORF types
(Mann–Whitney U-test, P < 10–10, Figure 5C). One of the
‘new’ TMD-smORF identified in our previous work (22)
as a 41-aa peptide (PSEP1) being overexpressed facilitated
rapid growth of P. patens protonemata accompanied by ear-
lier cell death; in contrast, the knock-out psep1 lines grew
more slower compared with wild-type plants (22). Here, we
found that PSEP1 is widely conserved in a range of land
plant species. Thus, at least some of these ‘new’ TMD-
smORFs could perform important functions in plants.

The TM-first model of gene birth suggests that emerging,
adaptive new ORFs originate from AT-rich genome regions
(27). In our set, the lncRNA loci containing TMD-smORFs
had a slightly but significantly lower GC-content than other
lncRNAs (Kolmogorov–Smirnov test, P < 10−20; Figure
5D). The GC-content of TMD-smORFs was even lower
than that of the corresponding lncRNA loci, indicating that
these smORFs were located in AU-rich regions of lncR-
NAs (Kolmogorov–Smirnov test, P < 10−20; Figure 5E).
The TMD-smORFs without detected orthologs were found
to be significantly less GC-rich than the conserved TMD-
smORFs (Figure 5F). This observation might reflect se-
lection against highly hydrophobic smORF, perhaps due
to their aggregation potential, leading to increased GC-
content. We next tested whether the evolutionary rates of
TMD-smORFs differed from those of other smORFs. The
dN/dS ratios were significantly higher in the set of TMD-
smORFs than in other smORFs (Mann–Whitney U-test,
P = 1.3 × 10–5; Figures 4E and 5G), suggesting that TMD-
smORFs are subject to a weaker purifying selection and
evolve faster than other smORFs.

Recently, ‘CDS elongation’ via a stop codon mutation
was proposed as a model of de novo gene birth from
‘new’ smORFs (25). An example of a smORFs that is ex-
panded in more distant species is a widely conserved 51-aa
‘new’ TMD-smORF (smORF28298 C22 5645030r 50aa),
containing a predicted N-terminal signal sequence
(4–26aa). This smORF contains a specific, conserved
motif [P***R*R***LR] at the C-terminus that is
shared with uncharacterized small proteins in the Ref-
Seq database (Figure 5H). Another possible example
of smORF with an expanded coding sequence at C-
terminus is potentially secreted 66-aa microprotein
smORF32633 C27 3110343f 66aa (Figure 5I). The
C-terminal end of longer smORFs is similar to low
complexity regions with stretches of identical amino acid
(Figure 5I). These examples suggest possible evolution
of this smORF by mutation in a stop codon that causes
readthrough.
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Figure 4. Low complexity regions in putative microproteins encoded by smORFs. (A) The length distribution of predicted LCRs in smORFs and func-
tional proteins. (B) Amino acid propensities of LCRs in smORFs; difference from small CDS LCRs aa propenisties is shown. SmORF-LCRs were
significantly enriched in leucine, phenylalanine and isoleucine (Fisher’s exact test P < 0.00001). (C) The alignment of 47-aa smORF and selected or-
thologs. This smORFs is conserved among extant bryophytes. (D) the phylogenomic tree of extant bryophytes. The species with identified orthologs of
smORF35290 C03 10088000r 47aa are shown in red. Tree was drawn based on OneKP data. (E) Evolutionary rates of LCR-smORFs and TM-containing
smORFs compared to those of small CDSs.

The role of low complexity regions in origin and
evolution of secreted and transmembrane microproteins
is poorly understood (96). Given that LCR-smORFs
are enriched with nonpolar amino acids, identification
of ∼32% LCR-smORFs that were predicted to com-
prise secreted or transmembrane peptides was not unex-
pected (Figure 5J). For example, a 89-aa ‘small protein’
smORF (smORF29906 C24 11564015f 89aa) contains one
LCR that overlapped signal peptide (predicted by both
TMHMM 2.0 and SignalP-5.0 tools) and another proline-
rich LCR at the C-terminal end. A TBLASTN search
without low-complexity filtration significantly expanded
the number of identified orthologs in a range of moss
species, suggesting wide conservation of this smORF (Fig-
ure 5K). Another example is a 96-aa secreted ‘small
protein’ LCR-smORF (smORF10900 C12 8956284f 96aa)

that had a match only to the Physcomitrium sp. transcrip-
tome (TBLASTN, E-value < 0.001), but was found to be
highly conserved in a range of moss and liverwort species in
TBLASTN search against OneKP transcriptomes without
filtering out the LCRs (Supplementary Figure S5). We de-
tected the consecutive increase in the length of matched hits
and performed a search for motifs in identified homologs by
MEME software (59). This search revealed two proline-rich
motifs, that are expanded in distant species (Supplementary
Figure S6).

The lncORF-smORFs are enriched for intrinsically disor-
dered regions. According to a previous study, novel short
ORFs are substantially enriched in predicted intrinsically
disordered regions than known small proteins (90). There-
fore, we next queried smORFs against the InterProscan
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Figure 5. SmORFs with predicted transmembrane and/or signal peptides. (A) The length of all smORFs with/without predicted transmembrane do-
main. Plots indicate the median, quartiles, and 5th and 95th percentiles. (B) The length of conserved smORFs with/without predicted transmembrane
domain. Plots indicate the median, quartiles, and 5th and 95th percentiles. (C) The length of ‘new’ and annotated (‘small protein’ and ‘unclassified’)
TMD-containing conserved smORFs. Plots indicate the median, quartiles, and 5th and 95th percentiles. (D) Cumulative distribution of GC-content of
lncRNAs loci with TMD-smORFs, TMD-smORFs and small CDSs. (E) Cumulative distribution of GC-content of lncRNAs loci with/without TMD-
smORFs; (F) Cumulative distribution of GC-content of the conserved and non-conserved TMD-smORFs and small CDSs. (G) The distribution of dN/dS
ratios in TMD-smORFs and smORFs without transmembrane domain. (H) Multiple sequence alignment of selected orthologs and ‘new’ TMD-smORF-
smORF28298 C22 5645030r 50aa. (I) Multiple sequence alignment of potentially secreted smORF smORF32633 C27 3110343f 66aa and selected or-
thologs. (J) UpSet plot showing intersection between smORFs with predicted LCR, TM and functional domains, including ‘consensus disorder predic-
tion’, and N-terminal secretion signal. (K) Multiple sequence alignment of 89-aa smORF smORF29906 C24 11564015f 89aa and orthologs from selected
moss species. *** P < 10–10––Mann–Whitney U-test.

database to analyze possible domains and motifs in our set
of smORFs (57). About 95% of smORFs were not assigned
to any known functional domains or motifs. The most com-
mon type of motif identified was ‘consensus disorder predic-
tion’, assigned to ∼93% (8595/9189) of all domain-assigned
smORFs (Supplementary Table S11). As expected, the set
of 3357 highly conserved smORFs (homologs found in at
least 5 moss species) was significantly enriched for known
domains and motifs compared to all conserved smORFs
(Fisher’s exact test, P < 10–5). About 80% of these highly
conserved smORFs were also predicted to contain ‘consen-
sus disorder prediction’ motifs. We next compared our set
of smORFs with small functional proteins (small CDSs).
Small CDSs were assigned a diverse range of known do-
mains, with about ∼16% corresponding to different small
ribosomal proteins (Supplementary Table S11). The preva-
lence of ribosomal proteins is in concordance with amino
acid composition of small CDSs (Figure 1E).

Because precursors of bioactive peptides are often small
proteins devoid of specific functions apart from the ac-
tive peptide moiety, the corresponding genes can be mis-
annotated as lncRNAs. Therefore, we next used the Small
Secreted Peptide (SSP) prediction tool (58) that utilizes hid-
den Markov models (HMMs) of known SSP families to
analyze the identified smORFs. Overall, we identified 45
smORFs with ‘known’ SSP domains in our set (Supple-
mentary Table S12). The most highly conserved SSP mo-
tifs belonged to plant antimicrobial Cysteine-Rich Peptide
(CRP) families, such as CRP5310 (Defensin-Like proteins)
or CRP5660––glycine-rich proteins (GRP; Supplementary
Figure S7).

Another identified conserved CRP family is TAXIMIN
(TAX) which are involved in lateral organ separation in
Arabidopsis (100). The detailed analysis of two smORFs
containing a predicted CLE10 (CLAVATA3/ESR-related)
domain revealed that these are precursors of PpCLE5 and
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PpCLE7 CLV3-like peptides, identified earlier in P. patens
(101). We also identified three conserved smORFs with
similarity to DEVIL/ROTUNDIFOLIA (DVL/ROT) pep-
tides that are known to be encoded by short ORFs in plants
(102). The orthologs of smORFs with DVL/ROT domain
were identified in all plant lineages except green algae. The
analysis of the set of small CDSs identified only four poten-
tial SSPs. These examples show that transcripts that encode
small precursors of SSP can be predicted as lncRNAs and,
therefore, the number of SSP families in plants could be un-
derestimated.

Expression of lncRNAs and translation of smORFs

To analyze the expression of the diverse set of moss lncR-
NAs and further compare them with mRNAs, we per-
formed Nanopore direct RNA sequencing of polyA(+)
RNA fractions extracted from both P. patens protonemata
(n = 3 biological repeats) and gametophores (n = 4 bi-
ological repeats). The nanopore sequencing allows full-
length characterization of native RNA in transcriptomes
(103,104), being an indispensable tool for the elucidation of
lncRNA transcripts (105).

This analysis confirmed the transcription of ∼57%
(5249/9168) of the loci encoding lncRNAs. The relatively
low fraction of detected lncRNAs in these experiments can
be explained by three, not mutually exclusive reasons: (i)
lncRNAs expression is tissue- and/or condition-specific, so
that many of these transcripts are not expressed at the two
developmental stages and our experimental conditions; (ii)
low-expressing lncRNAs are not detected; (iii) differences
in read lengths and assembly protocols between RNA-
seq and nanopore sequencing technologies. About 50% of
the lncRNA nanopore-based transcripts exactly matched
the intron chain of the set of lncRNAs and 20% were
partially overlapped annotations. For further analysis the
transcriptional level of 1678 lncRNA loci, which exactly
matched the intron chain, was calculated (Supplementary
Table S13).

It has been previously shown that the frequency of trans-
lation initiation at non-AUG codons is significantly lower
when the corresponding ORF is located downstream of
AUG codons, suggesting a bias in the distribution of con-
served and potentially translated smORFs (106). To assess
this trend, we explored the distribution of AUG- and non-
AUG-started smORFs across the length of lncRNAs. The
distribution of both types of non-conserved smORFs was
found to be bimodal and significantly differed from con-
served smORFs (Supplementary Figure S8; Kolmogorov–
Smirnov test, P < 10−15). Specifically, the conserved ‘small
protein’ AUG-smORFs were, typically, significantly closer
to 5′-end of transcripts than ‘new’ and ‘unclassified’ ones
(Kolmogorov–Smirnov test, P < 10−20). However, because
the accurate prediction of smORFs with alternative start
codons can be compromised by intersection with AUG-
smORFs, these observations require further elucidation by
ribosome profiling (106).

It has been shown that young and/or taxonomically re-
stricted protein-coding genes as well as lncRNAs are on av-
erage shorter than conserved genes and are expressed at a
lower level (7,107). In agreement with these observations,

the transcriptional level of both mRNA subsets was signif-
icantly higher in protonemata (Kruskal–Wallis rank sum
test, P < 10–15) and gametophores (Kruskal–Wallis rank
sum test, P < 10–15) compared to the set of lncRNAs (Fig-
ure 6A, B). Due to the presence of the small ribosomal pro-
teins in the small CDS set, the level of transcription in small-
mRNAs subset was significantly higher than other mRNAs
in protonemata (Mann–Whitney U-test, P < 10–15) and ga-
metophores (Mann–Whitney U-test, P < 10–15).

The transcriptional level of 1678 lncRNAs containing
conserved smORFs (n = 629) was significantly higher than
the expression level of both lncRNAs with conserved nu-
cleotide regions other than smORFs (n = 451) and lncR-
NAs containing non-conserved smORFs (n = 598) in pro-
tonemata (Kruskal–Wallis rank sum test, P < 10–15) and
gametophores (Kruskal–Wallis rank sum test, P < 10–15;
Figure 6C, D). However, we did not find any significant
differences between the transcriptional levels of lncRNAs
containing broadly conserved (cluster 1 and 2) or lineage-
specific (cluster 3) smORFs. Taken together, these findings
show that, although the characteristic expression level of
lncRNAs was expectedly lower than that of mRNAs, the
transcriptional level of lncRNAs could be a determinant
of smORF conservation as previously shown for proteins
(108). Thus, the positive correlation between expression lev-
els of transcripts and the evolutionary conservation of their
coding regions is a universal trend. The lncRNAs that fit
this trend could be considered as mRNAs with predicted
low coding potential.

We then used mass-spectrometry analysis to identify
translated smORFs. The peptidomic datasets from our pre-
vious studies (22,109) and additionally generated datasets
were used. All datasets were searched against a custom
database and thoroughly filtered using the target-decoy
strategy. MS-based detection of smORFs is a challeng-
ing task due to the low expression and rapid turnover of
lncRNA-encoded peptides (21,110). Overall, we obtained
evidence of translation for 195 smORFs, including 56 iden-
tified by both search engines (Supplementary Table S14;
Figure 6E). The number of peptides encoded by lncRNAs
identified by MS analysis is consistent with results obtained
on human cells (110,111).

Approximately 44% of the translated smORFs belonged
to the ‘new’ smORFs class (Figure 6F). About 31% of the
‘new’ translated smORFs were not conserved, suggesting
rapid turnover of microproteins. As expected, ‘new’ trans-
latable smORFs were significantly overrepresented among
non-conserved ones (chi-square test, P < 10–15).

Proteomic standards of identification (≥2 unique pep-
tides for protein) can be expected to suffice to identify the
microprotein products of smORF without false positives,
but true smORF-encoded peptides (SEPs) could be lost
(23). In our datasets, translation of 73 smORFs was con-
firmed by two and more unique peptides. Among these,
there were 13 ‘new’ (8 non-conserved) smORFs, including
the functional lncRNA-smORFs - PSEP1, PSEP3, PSEP18
identified in our previous study (22). This result can be
considered as a validation of our identification strategy. It
has been shown that mass-spectrometry can confirm the
translation of microproteins from highly-expressed abun-
dant transcripts (112). In both protonemata and game-
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Figure 6. The analysis of smORFs transcription and translation. (A, B) the comparison of lncRNAs and mRNAs transcriptional level in gametophores
and protonemata, respectively; mRNAs(small)––a subset of mRNAs, encoding proteins smaller than 100aa. (C, D) the transcriptional level of conserved
smORFs (smORFs), conserved lncRNAs (lncRNAs) and non-conservative smORFs (nc smORFs) in gametophores and protonemata, respectively. (E)
Venn diagram showing the comparison of smORFs identification by two search engines––PEAKS 8.0 and MaxQuant. 56 smORFs were identified by both
search engines. (F) Pie chart depicting classification of identified translatable smORF types.

tophores, expression of the translated smORFs was signif-
icantly higher than the expression of ORFs without evi-
dence of translation (Mann–Whitney U-test, P < 0.00001),
implying that only smORFs from highly-expressed lncR-
NAs were detected in our proteomics analysis. Therefore,
the number of translatable smORFs in our study is likely to
be substantially underestimated. We next used these results
to select smORFs for experimental validation.

Experimental validation of the functions of selected micro-
proteins

The functions of smORF-encoded peptides (SEPs) are
poorly studied in plants. We selected two SEPs: LCR-
smORF PSEP3 and peptide with ‘consensus disorder pre-
diction’ motif - PSEP18 both identified in our previous
work (22) to examine their functional role in more detail.
Knocking out PSEP18 resulted in a slight decrease in the
moss plant diameter, whereas the PSEP3 KO lines dis-
played a severe decrease in growth rate and altered filament
branching (22).

Here, we found that 40-aa ‘new’ peptide PSEP18, addi-
tionally confirmed by nanopore sequencing and MS anal-

ysis, is poorly conserved. Using iTRAQ (Isobaric tag for
relative and absolute quantitation)-based quantitative pro-
teomic analysis, we have not found significant changes in
proteomes of both overexpression and knockout lines of
PSEP18, suggesting that evolutionary conservation might
be a marker of functional SEPs.

Hydroxyproline- and proline-rich peptides and proteins
play pivotal roles in signal transduction cascades, plant de-
velopment and stress tolerance (113,114). Our MS analysis
confirmed the translation of 71 LCR-smORFs (36%), seven
of which were enriched in prolines, including a previously
identified 57-aa microprotein - PSEP3 (22) and its paralog
(Figure 7A, B).

A TBLASTN search without low-complexity filtration
identified PSEP3 orthologs in 27 moss and one liverwort
species (Supplementary Figure S9). Due to severe growth
inhibition and cell death in lines with PSEP3 overexpres-
sion (22), we additionally generated PSEP3 overexpressed
lines (PSEP3 OE) using the �-estradiol induction system
(63), to study the impact of PSEP3 translation on cell
metabolism. The induction of PSEP3 expression resulted
in cell death (Figure 7C, D), accompanied by an significant
increase in reactive oxygen species (ROS) levels (ANOVA,
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Figure 7. Functional analysis of PSEP3 microprotein. (A) Sashimi plot showing nanopore-based transcription of PSEP3 and surrounding region on
chromosome 25. (B) The multiple pairwise alignment of selected orthologs and translatable ‘new’ smORFs - PSEP3 and paralog XR 002972902.1 ORF5.
(C) the influence of PSEP3 overexpression on cell viability measured by fluorescein diacetate (FDA) dye. The PSEP3 expression was induced by estradiol
treatment in liquid culture; (D) The induction of cell death under estradiol treatment; WT - wild-type plants, OE1 - PSEP3 OE line. (E) Boxplot showing the
difference in the intensity of DCFH-DA in PSEP3 OE mutant without/under estradiol treatment, respectively (P < 0.001 by two-way ANOVA followed by
Tukey’s multiple comparison test). (F, G) detection of ROS generation by DCFH-DA in PSEP3 OE mutant without/under estradiol treatment, respectively;
(H, I) autofluorescence of chloroplasts without/under estradiol treatment, respectively. (J) the merged image of (F) and (H) pictures. (K) the merged image
of (G) and (I) pictures. (L) Volcano plot of the entire set of proteins quantified during iTRAQ analysis in PSEP3 OE line. (M) Volcano plot of the entire
set of proteins quantified during iTRAQ analysis in PSEP3 KO line. Proteins significantly changed in abundance are depicted in colour. Blue dots indicate
up-regulated proteins and red dots indicate down-regulated proteins in PSEP3 mutants.

P < 0.001) and changes in cell structure during 48-h (Fig-
ure 7F–K).

Using quantitative comparative proteomic analysis, we
next identified 167 protein groups which were signifi-
cantly changed in the proteome of induced PSEP3 OE
line in comparison to wild-type plants (Supplementary Ta-
ble S15; FC > 1.2, P < 0.01, Figure 7L). The most en-
riched up-regulated protein groups belonged to ‘photosyn-
thesis’ (GO:0015979, P < 10–15) and ‘generation of pre-
cursor metabolites and energy’ (GO:0006091, P < 10–5)
GO terms. We identified the Light-Harvesting Chlorophyll
a/b Binding Proteins Lhcb1, Lhcb2 and Lhcb5 among the
most up-regulated proteins in PSEP3 OE line. The down-
regulated protein group included metacaspase-4-related
(Pp3c2 20840V3) and xyloglucan endo-transglycosylase
(Pp3c25 4050V3; Figure 7L). Thus, PSEP3 overexpression
resulted in substantial changes in moss proteome and in-
creased cell death.

The impact of PSEP3 knock-out on the protonema
proteome was less pronounced. Overall, 56 differentially
expressed protein groups (FC > 1.2, P < 0.01; Supple-
mentary Table S15; Figure 7M). The down-regulated pro-
tein groups were mainly enriched in ‘oxidoreductase’ activ-
ity (GO:0016491, P < 0.0001). For example, ‘thioredoxin
x’ and ‘thioredoxin m(mitochondrial)-type’ proteins were
found. Among the most upregulated proteins were 60s ribo-
somal protein 10a-1 (Pp3c20 19190V3) and Phosphogluco-
mutase (Pp3c16 20760V3).

Thus, the PSEP3 overexpression was harmful for moss
cells in contrast to PSEP3 knockout. It has been shown pre-
viously that overexpression of random peptides can gener-
ate visible phenotypes in plants (115). This could be a bona
fide biological effect, but alternatively, might be an artefact
of unphysiological peptide concentration. In the first case,
tight regulation of the expression of such peptides in plant
cells should be expected.
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DISCUSSION

The properties and evolutionary fates of smORFs located
on lncRNAs remain poorly understood. Although transla-
tion and functionality of thousands of smORFs have been
validated in animals by different approaches (25), only a
small fraction of these are widely conserved (90). In the
present analysis of plant lncRNA-smORFs, we observed
that the majority of the smORFs abruptly lost orthology
even in close species, suggesting fast stochastic gain and
loss of non-functional smORFs in plant genomes. Besides
their possible roles in microprotein production, our result
are also compatible with the possibility that some of the
smORFs are located in the regions of lncRNA that are
subject to RNA-level selection pressure and could be func-
tionally important for RNA–RNA and/or RNA-protein
interactions (36). Nevertheless, coding sequences in such
regions could exist as well (116). Given that dS is usually
lower in alternative and new eukaryotic exons compared to
constitutive exons (117,118) and that the portions of pro-
teins encoded by such exons also contain an increased frac-
tion of intrinsically disordered regions, we hypothesize that
many if not most of the lncRNA regions with low dS have
dual functions, at the level of both transcripts and trans-
lated products (119). Well-known examples of transcripts
combining coding and non-coding functions are plant pri-
miRNAs that encode functional SEPs but also play roles in
gene regulation (120,121). In addition, smORFs can con-
tribute to the regulation of lncRNAs abundancy by en-
gaging the corresponding transcripts in ribosomes (8) or
triggering nonsense-mediated RNA decay (122). Arguably,
such function would entail conservation of smORFs posi-
tion in lncRNAs across species, which we indeed observed
in many cases. Such position-specific smORFs can play reg-
ulatory roles, similar to uORFs (25) and dORFs (123) in
mRNAs.

Additionally, we cannot rule out limitations in ortholog
detection for smORFs. In particular, we found that the con-
servation of smORFs containing LCRs can be underesti-
mated and requires new approaches for an adequate analy-
sis (97). Moreover, these LCR-smORFs were enriched with
AT-rich codons encoding hydrophobic amino acids. It has
been recently shown that hydrophobic mutational ratchet
entrenches protein molecular complexes (124), suggesting
a new role for such AT-rich smORFs. Indeed, many func-
tionally characterized SEPs have been shown to bind mem-
brane proteins (25,125). We also identified a number of new
conserved smORFs containing predicted export signal pep-
tides and/or transmembrane domains, suggesting their role
in cell-to-cell communication. Because the mutational pro-
cess favours G/C to A/T transitions (126), lncRNAs can
be prone to producing microproteins containing transmem-
brane domains (27). Novel TMD-containing peptides could
escape in the membrane environment from degradation or
deleterious interactions with cytoplasmic proteins.

The emergence of de novo genes from non-coding re-
gions can be the first step in new gene birth although
the routes through which emerging proteins become func-
tional remain poorly understood. Such genes are taxonom-
ically restricted and are often referred to as ‘orphans’ genes
that constitute up to 30% of the genes in some eukary-

otes (26,27,127–129). Our results support the hypothesis on
the species-specific functions of the majority of smORFs.
The most conserved smORFs were those that had simi-
larity to annotated proteins (‘unclassified’ type) or inter-
sect predicted small proteins (‘small protein’ type). These
smORFs are enriched in known protein domains and come
from already existing genome annotation, suggesting that
these could be remnants of functional proteins. In contrast,
new smORFs appear to be the main source of variabil-
ity. Based on BLASTX search (E-value < 0.00001) against
the Viridiplantae uniprot database, we roughly estimate the
proportion of such remnants of ancestral protein-coding
genes in our set of lncRNAs at ∼3%. This is an agree-
ment with results obtained on mammals (130). These find-
ings suggest that a relatively small fraction of the lncR-
NAs are potential pseudogenes or natural antisense tran-
scripts of protein-coding genes. However, further analysis
using whole genome alignments is needed to accurately
estimate the contribution of pseudogenization of protein-
coding genes to the evolution of lncRNAs in plants.

In conclusion, our analysis revealed several possible sce-
narios for the emergence and the subsequent evolution
of the smORFs. First, some of the identified conserved
smORFs are bona fide small functional proteins or precur-
sors for secreted peptides. In this case, the corresponding
transcripts were erroneously identified as long non-coding
RNAs or represent transcripts with dual function. This
finding is in agreement with our identification of many pre-
viously unnoticed, lineage-restricted or widely conserved
secreted microproteins. The evolutionary conservation of
such smORFs in a range of species could point at their func-
tionality. Second, however, a major fraction of the smORFs
either emerged by chance in a single species or have or-
thologs only in close species, suggesting rapid gain and loss.
Some of these smORFs can be translated into SEPs, but
both the expression level of the respective lncRNAs and the
translation level are low. Such translatable but poorly con-
served peptides might not have a well-defined function but
could serve as a pool for the emergence of functional mi-
croproteins via positive selection. Third, there is a subset
of smORFs that are conserved at the nucleotide level, but
do not show protein selection signatures. The possible func-
tions and evolution of such smORFs is of interest and re-
quire further elucidation.

In conclusion, we identified numerous, previously un-
known, evolutionarily conserved smORFs, and validated
the expression of a substantial subset of these by tran-
scriptome and proteome analysis. By extension, many more
smORFs in plants are likely to be functional and are can-
didates for future experimental study. Such studies on the
plant smORFome should be expanded to more complex
plant species, and will require large-scale pipelines to inves-
tigate the SEPs localization, toxicity, the potential for cel-
lular uptake, and identification of protein-protein interac-
tions.
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