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Abstract 

Clear cell renal cell carcinoma (ccRCC) is the most common malignant tumor of the kidney. New and reliable biomark-
ers are in urgent need for ccRCC diagnosis and prognosis. The CENP family is overexpressed in many types of cancers, 
but its functions in ccRCC have not been fully clarified. In this paper, we found that several CENP family members 
were highly expressed in ccRCC tissues. Also, CENPA expression level was related to clinicopathological grade and 
prognosis by weighted gene co-expression network analysis (WGCNA). CENPA served as a representative CENP family 
member as a ccRCC biomarker. Further in vitro experiments verified that overexpression of CENPA promoted ccRCC 
proliferation and metastasis by accelerating the cell cycle and activating the Wnt/β-catenin signaling pathway. The 
elevated β-catenin led by CENPA overexpression translocated to nucleus for downstream effect. Functional recovery 
experiment confirmed that Wnt/β-catenin pathway was essential for ccRCC progression and metastasis. Developing 
selective drugs targeting CENPA may be a promising direction for cancer treatment.
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Background
Renal carcinoma is a malignancy in urinary system with 
high incidence. As reported by the American Cancer 
Society’s most recent estimates about renal malignancies 
in the United States for 2020, approximately 76,080 new 
cases of kidney and renal pelvis cancer would be diag-
nosed, and approximately 13,780 people would die from 
this disease [1]. Renal cell carcinoma (RCC) accounts for 
90% of all renal malignancies [2]. Clear cell renal cell can-
cer (ccRCC) is a major and malignant subtype of renal 
carcinoma, accounting for approximately 3/4 of RCC [3].

Although ccRCC’s diagnostic technique has been 
greatly improved, approximately one in three patients 
have advanced tumor when first diagnosed still have dis-
tant metastasis at the time of diagnosis [4]. These patients 
may have a worse prognosis due to missing the timing for 
surgery. Beyond surgery, radiotherapy and traditional 
chemotherapy are not as effective for ccRCC, which is 
why targeted therapy has been developed. However, 
insensitiveness and resistance could present problems 
for the use of traditional molecular targeted antitumor 
drugs, including sunitinib, a widely applied drug for RCC. 
Researchers are striving for new targets [5, 6], yet few are 
sufficiently effective for clinical research. As a result, it is 
imperative to look for new biomarkers for early diagnosis 
and targeted therapy.

Sustained proliferative signaling is a distinctive feature 
of tumors [7]. Mitotic defects accumulation of finally lead 
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to chromosomal instability (CIN) [8]. Cancers are fre-
quently aneuploid [9], and the alteration of oncogenes or 
tumor suppressors that regulates changes in chromosome 
number may contribute to tumorigenesis, progression, 
metastasis, and prognosis of patients [10–12]. Accurate 
duplication and segregation of our chromosomes depend 
on precise assemblies of the kinetochore protein com-
plex on centromeric chromatin [13], but abnormal seg-
regation leads to chromosomal instability and aneuploidy 
[14]. Centromere protein A, namely CENPA or CenH3, 
is recognized as a marker of centromeric location, as it 
exists in all active centromeres [15]. Overexpression of 
CENPA promotes aneuploidy with karyotypic heteroge-
neity [16]. In contrast, CENPA deficiency drives apopto-
sis and induces cell cycle arrest [17–20].

Extensive studies have uncovered elevated CENPA lev-
els in tumors and their effect in tumorigenesis, including 
colorectal cancer [12, 21], breast cancer [22, 23], gastric 
cancer [24], prostate adenocarcinoma [25], and lung 
cancer [26]. However, though researchers claimed that 
CENPA may play a role in kidney cancer through bio-
informatics analyses [27–30], the relationship between 
CENPA and ccRCC has not been unearthed by in  vitro 
experiment yet.

Here we systematically analyzed the role of CENP fam-
ily members in ccRCC. We found that CENPA, a repre-
sentative of CENP family member, was highly expressed 
and could be a diagnostic and prognostic biomarker of 
ccRCC. In addition, downregulation or upregulation 
of CENPA could inhibit or promote the proliferation, 
migration and invasion of ccRCC in  vitro. With further 
exploration, we found that CENPA accelerated cell cycle 
and activated the Wnt pathway. Finally, functional rescue 
experiments indicated that CENPA promoted ccRCC 
cell proliferation and metastasis by activating the Wnt/β-
catenin pathway.

Results
CENPA was identified as a hub gene in ccRCC via WGCNA
To find the hub genes for ccRCC from the analyzed gene 
set, 6137 genes were identified as differentially expressed 
genes (DEGs) by the “limma” package according to 
the cutoff criterion. WGCNA was used to screen hub 
modules closely related to clinical traits. In our study, a 
scale-free network was ensured with the soft threshold 
β = 4 (Fig.  1A). Based on the gene expression pattern, 

we identified 25 modules shown in Fig. 1B. For correla-
tion coefficient between modules were all less than 0.8 
(Fig. 1C, D), no modules needed to be merged. As shown 
in Fig. 1E, we selected the pink module (T stage: r = 0.3, 
p = 3e−12; N stage: r = 0.061 p = 0.2; M stage: r = 0.19, 
p = 2e−5; Stage: r = 0.27, p = 2e−10) as the hub mod-
ule for further analysis. The relationships between the 
genes in the pink module for M stage, T stage, N stage, 
stage, and G grade were presented in Fig.  1F. Nota-
bly, the top 10 hub genes included CENPI and CENPA, 
which are members of the CENP family (Fig. 1G). Then, 
we focused our interest on the CENP family. Eight 
members (CENPA, CENPE, CENPF, CENPH, CENPI, 
CENPK, CENPM, CENPU) of the CENP family were all 
upregulated in KIRC (kidney renal clear cell carcinoma) 
cohort from TCGA (The Cancer Genome Atlas) data-
base (Fig.  2A). The plot of genetic alteration suggests 
that genes in CENP family seldomly mutate (Additional 
file  2: Figure S2I). From the Kaplan–Meier curve for 
overall survival (OS) and the disease-free survival (DFS) 
of the eight genes in TCGA-KIRC, we found that neither 
CENPI nor CENPU had prognostic significance (Fig. 2B–
I). Although the remaining 5 genes (CENPE, CENPAF, 
CENPH, CENPK, and CENPM) had prognostic value, 
they were not hub genes by WGCNA analyses. Then 
subgroup analysis according to age, gender, Stage and 
G grade were consistent with the previous (Additional 
file  1: Fig. S1D–G). Above all, CENPA was not only a 
hub gene, but could also predict the prognosis of ccRCC 
patients, indicating it to be a representative gene of the 
CENP family in ccRCC.

The expression level of CENPA was significantly associated 
with clinicopathological features
Next, we aimed to investigate the aberrant expression 
of CENPA in ccRCC. Firstly, we investigated the muta-
tions and copy-number alterations (CNAs) of CENPA. 
As illustrated above, there exist no genetic altera-
tions for CENPA in TCGA-KIRC cohort (Additional 
file 2: Figure S2I). We then explored the CCLE (Cancer 
Cell Line Encyclopedia), finding that no mutations or 
CNAs were detected in kidney cancer cell lines. Tran-
scriptomically, CENPA was overexpressed in tumor 
tissues in the TCGA-KIRC project (Fig.  3A-B), GEO 
(gene expression omnibus) database (Fig.  3C, D) and 
Oncomine database (Fig.  3E) [31–33]. Also, CENPA 

(See figure on next page.)
Fig. 1  Weighted gene co-expression network analysis (WGCNA) identified hub genes of renal cell carcinoma. A Analysis of Scale independence 
and mean connectivity for various soft-thresholding power. B The 26 gene dendrogram and module colors of DEGs based on TOM. C, D The 
eigengene adjacency heatmap and clustering of module eigengene to display the relationships between each module. E The relationships 
between 25 modules and clinical traits including T, N, M Stage and G grades. The pink module was selected as the most significant module. F The 
relationships between the genes in pink module and gene significance for M stage, T stage, Stage, and G grade. G The network of ten top hub 
genes by Cytoscape software. DEGs: differentially expressed genes; TOM: topological overlap matrix



Page 3 of 17Wang et al. J Transl Med          (2021) 19:417 	

Fig. 1  (See legend on previous page.)
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Fig. 2  Expression and survival curve of 8 members of CENP family. A The expression heatmap of eight members (CENPA, CENPE, CENPF, CENPH, 
CENPI, CENPK, CENPM, CENPU) of CENP family in TCGA ccRCC. Left: 535 ccRCC tissues; right: 72 cancer-adjacent tissues. B–I The OS and DFS curve 
of the eight CENP family members. In each analysis, all patients were sorted in ascending order based on corresponding gene expression, then 
they were divided into two groups with the same sample size. The OS and DFS of patients in two groups were visualized by Kaplan–Meier plot. OS: 
overall survival; DFS: disease free survival
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overexpression is not acquired from treatment as we 
can see a similar result when we eliminated samples 
from patients with adjuvant therapy prior to the sur-
gery (Additional file  1: Figure S1L-M). As shown in 
Fig.  3F–H and Additional file  1: Figure S1A-B, the 
expression of CENPA was positively correlated with 
multiple clinical stages (T stage, N stage, M stage and 
TNM stage and G stage). Similar results were obtained 
in other datasets (Fig.  3I–K). Higher CENPA expres-
sion indicated shorter survival time and higher tumor 
grade and stage (Table  1). Univariate and multivari-
ate analyses were conducted showing that CENPA was 
one of the independent prognostic markers of ccRCC 
(Table  2). In addition, ROC (receiver operator charac-
teristic) curve analysis showed that CENPA could be 
used as a good diagnostic marker (Fig.  3L and Addi-
tional file 1: Figure S1C). Furthermore, the ROC curve 
analyses were conducted between clinicopathologi-
cal subgroups such T1+2 vs T3+4, M0 vs M1, Stage 
I+II vs Stage III+IV, and G1+2 vs G3+4 (Additional 
file 1: Figure S1H–K), which indicated good diagnostic 
value of CENPA expression for clinicopathological sub-
groups. Thus, CENPA can serve as a potential diagnos-
tic and prognostic biomarker in ccRCC.

CENPA was upregulated in ccRCC tissues and cells
To verify the expression levels of CENPA in ccRCC tis-
sues, qRT-PCR (reverse transcription-quantitative pol-
ymerase chain reaction) and IBT (immunoblotting test) 
were performed. It was observed that CENPA expres-
sion levels were notably elevated in tumor tissues in 
comparison with their corresponding adjacent normal 
tissues (Fig. 3M, N). The immunohistochemistry (IHC) 
results of cancer/para-cancer pairs also suggested that 
CENPA was upregulated in cancer tissues (Fig.  3O). 
Furthermore, we confirmed that the mRNA and protein 
levels of CENPA were higher in RCC cell lines (786-O, 
A498, ACHN, Caki-1 and OSRC-2) than in the normal 
renal cell line HK-2 by qRT-PCR and IBT (Fig. 3P, Q). 
Generally, these results collectively pinpoint the fact 
that CENPA is overexpressed in ccRCC.

CENPA promoted the proliferation, invasion and migration 
of ccRCC cells in vitro
To investigate the effect of CENPA on the biological 
behaviors of ccRCC, ccRCC cell lines were transfected 
with si-CENPA or CENPA plasmid to down- or upregu-
late the expression of CENPA. The mRNA and protein 
expression levels decreased or increased significantly in 
A498 and Caki-1 cells compared with the correspond-
ing negative control (Fig.  4A–C). CCK-8 (cell counting 
kit-8) assays suggested that tumorous cells downregu-
lated or upregulated in CENPA inhibited or promoted 
proliferation, respectively (Fig.  4D–G). The colony for-
mation assays confirmed this finding (Fig. 5A, B). In addi-
tion, transwell assays (Fig. 4H) and wound healing assays 
(Fig. 5C–F) collectively indicated that the level of CENPA 
was positively correlated with the migration and invasive 
abilities of the cells. These results provided us with solid 
evidence that CENPA promoted the proliferation, migra-
tion and invasion of ccRCC cells, which is significant in 
the cascade of tumor metastasis.

CENPA activated the Wnt/β‑catenin pathway 
and accelerated the cell cycle
To determine how CENPA is involved in ccRCC patho-
genesis, functional enrichment analyses were performed 
using the TCGA-KIRC cohort to identify ccRCC-related 
pathways and biochemical processes affected by differ-
entially expressed CENPA. GSEA (Gene Set Enrichment 
Analysis) results indicated that the high expression of the 
CENPA group was mainly enriched in cell cycle pathways 
and Wnt pathways (Fig.  6A). The results of GO (Gene 
Ontology) and KEGG (Kyoto Encyclopedia of Genes 
and Genomes) analyses also included cell cycle path-
ways (Additional file 2: Figure S2A, B). We found that the 
expression of CENPA was positively related to WNT5A 
using GEPIA in TCGA-KIRC, which encodes a member 
of the Wnt family that signals through both the canoni-
cal and noncanonical Wnt pathways (Fig. 6B). To verify 
the presumption of bioinformatics analysis, the western 
blotting assays were performed, and we found that the 
silencing of CENPA could significantly downregulate the 
expression of β-catenin (CTNNB1) and its target gene 

(See figure on next page.)
Fig. 3  CENPA was closely related to clinical traits and overexpressed in ccRCC tissues and cells. Public datasets showed CENPA overexpression in 
ccRCC compared to normal tissues. A In TCGA-KIRC cohort, 533 ccRCC samples showed higher CENPA expression than 72 normal samples. For 
tissues gathered from the same patients, CENPA overexpressed in cancer tissues compared to cancer-adjacent tissues in B TCGA-KIRC dataset 
(72 pairs of samples), C GSE40435 dataset (101 pairs of samples), D GSE66272 dataset (26 pairs of samples) and E Jones Renal dataset (23 pairs 
of samples). The expression of CENPA elevated with various clinicopathological factors in public datasets, including F, J T stage (528 samples 
in TCGA-KIRC and 26 samples in GSE66272), G AJCC clinical stage (527 samples in TCGA-KIRC), and H, I, K G grade (522 samples in TCGA-KIRC, 
101 samples in GSE40435 and 26 samples in GSE66272). L The ROC curve of CENPA expression (AUC = 0.9651; p < 0.0001) in TCGA-KIRC cohort. 
Our own cohort validated CENPA overexpression in ccRCC through M qRT-PCR assays (42 pairs), N immunoblotting tests (12 pairs), and O 
immunohistochemical analyses (2 pairs). CENPA overexpressed in renal cancer cell lines (786-O, A498, ACHN, Caki-1 and OSRC-2) compared to 
normal renal cell line (HK-2) via P qRT-PCR and Q immunoblotting tests. Relative *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Error bars indicate 
mean ± SD. AUC: areas under the curve
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Fig. 3  (See legend on previous page.)
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cyclin D1 (CCND1) in ccRCC (Fig.  6C), whereas the 
overexpression of CENPA could upregulate the expres-
sion of β-catenin (CTNNB1) and cyclin D1 (CCND1) in 
ccRCC (Fig. 6D). Then, the β-catenin (CTNNB1) nuclear 
accumulation was observed with CENPA overexpression 
whereas CENPA knockdown reduced nuclear proportion 
of β-catenin (CTNNB1) (Fig.  6E). In addition, cell cycle 
assays showed that Caki-1 cells were accumulated in G0/
G1 phase, suggesting an inhibition of cell cycle from G0/
G1 to S phase (Fig. 6F). The cell cycle arrest blocked cell 
growth. In contrast, overexpression of CENPA promoted 
entry of more cells into S phase so that the cell prolifera-
tion rate increased (Fig. 6G).

The Wnt/β‑catenin pathway is involved in CENPA‑mediated 
proliferation and metastasis
To further test whether the Wnt/β-catenin pathway was 
required for the downstream effect of CENPA on cell pro-
liferation and metastasis, we conducted in  vitro rescue 
experiments. We used Si-CTNNB1 to knock down the 
expression of β-catenin (CTNNB1) (Additional file 2: Fig-
ure S2D, G). And the Wnt/β-catenin inhibitor XAV-939 
or activator CHIR-99021 trihydrochloride were utilized 

to inhibit or activate the Wnt/β-catenin pathway respec-
tively. To explore their effects on β-catenin (CTNNB1), 
a series of concentration gradients for 24  h and time 
gradients for 10  μM of XAV-939 and CHIR-99021 tri-
hydrochloride were employed Caki-1 (Additional file  2: 
Figures  S2C, E, F, H). Then, 10  uM and 24  h were con-
sidered to be a proper drug treatment condition. Follow-
ing depletion of β-catenin by transfection of siRNAs, the 
function of CENPA on cell proliferation was reduced, as 
shown by CCK-8 assays (Fig. 7A, D). A similar result was 
also obtained by using XAV-939 (Fig.  7B, E). Moreover, 
following activation of Wnt/β-catenin signaling with the 
CHIR-99021 trihydrochloride, the proliferative ability of 
CENPA-depleted cells was enhanced (Fig. 7C, F). There-
fore, we believe that CENPA promotes the progression 
of ccRCC through activating the Wnt/β-catenin signal-
ing pathway. In addition, to investigate whether CENPA 
exerted its effects during ccRCC metastasis in the context 
of the Wnt/β-catenin pathway, we conducted transwell 
assays. Similar to CCK-8 assays, inhibition of β-catenin 
reduced CENPA-mediated migration and invasion 
(Fig.  7G). In contrast, activation of the Wnt/β-catenin 
pathway enhanced the abilities in CENPA-depleted cells 
(Fig. 7H). These results indicated that CENPA promoted 
ccRCC cell proliferation and metastasis by activating the 
Wnt/β-catenin pathway.

Discussion
Here, we uncovered CENPA as a new ccRCC biomarker 
and demonstrated that CENPA acts crucially in ccRCC. 
First, through performing WGCNA analyses, we found 
that eight CENP family members (CENPA, CENPE, 
CENPF, CENPH, CENPI, CENPK, CENPM, CENPU) 
were closely related to clinical stage and grade with 
a similar expression pattern in pink module. Second, 
we selected the CENPA as a representative of the eight 
CENP family members. Functional experiments proved 
that CENPA could accelerate RCC cell proliferation and 
metastasis. Additionally, our experimental evidence 
showed that upregulating CENPA could accelerate the 
cell cycle and trigger the Wnt/β-catenin pathway. Finally, 
functional rescue experiments indicated that CENPA 
promoted ccRCC cell multiplication and metastasis 
through triggering the Wnt/β-catenin pathway.

CENPA exert a key role during mitosis, which epige-
netically determines the position of sister chromatids 
by determining the position of the centromere on chro-
mosome epigenetically [18, 34]. CENPA overexpres-
sion leads to mislocalization in noncentromeric regions, 
resulting in chromosome segregation, aberrations and 
genome instability [13, 35]. Interestingly, High-level 
CENPA in ccRCC is consistent with the CIN in cancer. 
In addition, CENPA overexpression promotes aneuploidy 

Table 1  Correlation between CENPA mRNA expression and 
clinicopathological parameters of ccRCC patients

The four-grid tables were made according to clinicopathological characteristics 
and the CENPA expression level. Statistical analyses were conducted via 
Pearson’s χ2 test. P < 0.05 was considered statistically significant

Parameter Number CENPA mRNA expression P-value

Low (n = 261) High (n = 261)

Age (years)

 < 60 235 120 115 0.725

 ≥ 60 287 141 146

Sex

 Female 183 108 75 0.0033

 Male 339 153 186

T stage

 T1 or T2 336 197 139 < 0.0001

 T3 or T4 186 64 122

N Stage

 N0 or Nx 507 258 249 0.0326

 N1 15 3 12

M Stage

 M0 or Mx 445 242 203 < 0.0001

 M1 77 19 58

G grade

 G1 or G2 or Gx 245 157 88 < 0.0001

 G3 or G4 277 104 173

TNM stage

I + II 318 190 128 < 0.0001

III + IV 204 71 133
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with karyotypic heterogeneity [36]. Therefore, we 
deduced that chromosomal aneuploidy caused by 
CENPA overexpression is an important cause of ccRCC.

Due to the limitations of current treatment, research-
ers have focused on targeted therapy, and research on 
ccRCC pathogenesis and the search for new therapeutic 
targets are increasing; nonetheless, few of them achieve 
clinical usage. Thus, we aimed to uncover a new mech-
anism of ccRCC progression and discuss its potential 
application for developing new drugs. According to our 
results, CENPA acts crucially in ccRCC genesis and pro-
gression, so it maybe a potential target. Presently, some 
antitumor drugs that target key molecules in cell divi-
sion have been developed. PF-2771 [37] and GSK923235 
[38] are both CENPE inhibitors. Ispinesib could specifi-
cally inhibit kinesin spindle protein [39]. But they are all 
investigational. Due to CENPA overexpression in several 
types of cancers, it is expected to be a broad-spectrum 
anti-tumor target in clinical use. Research on anti-cancer 
drugs target Wnt/β-catenin pathway has been advanc-
ing. Schultz-Hausmann et  al. confirmed that ethacrynic 
acid, ciclopirox olamine and piroctone olamine had 

cytotoxic effect on RCC cell lines via Wnt/β-catenin 
pathway [40], but they are not specific inhibitors of the 
pathway. The side effects of them are unable to predict. 
Several researchers have developed more specific drugs 
target Wnt/β-catenin pathway such as MSAB [41] and 
CWP232228 [42], yet they are still far from the patients. 
New drug research and development target CENPA and 
Wnt/β-catenin pathway will be a follow-up issue worthy 
of attention.

Histone variants are considered critical in malig-
nant transformation in several cancer types. As one of 
the histone H3 variants, CENPA acts crucially in mito-
sis and contributes to tumor occurrence and develop-
ment [13, 21, 25, 43]. Past research has mainly focused 
on the changes and functions during mitosis [44]. With 
regard to diseases or cancer, it is currently thought that 
CENPA functions downstream of the pathway or axis 
rather than upstream [45]. Jeffery et  al. uncovered that 
CENPA overexpression impacted epidermal-mesenchy-
mal transition or radiosensitivity depends on p53 status 
in cervical or colorectal cancer cell lines [46]. Some stud-
ies have shown that histone variants, including CENPA, 

Table 2  Univariate and multivariate Cox regression analyses of CENPA mRNA level and patient overall survival (OS)

a Hazard ratio, estimated from Cox proportional hazard regression model
b Confidence interval of the estimated HR
c Multivariate models were adjusted for T, N, M stage, G grade, age and gender

Variable Univariate analysis Multivariate analysisc

HRa 95% CIb P HR 95% CI P

Overall survival (n = 522)

CENPA

 Low (n = 261) 2.384 1.722–3.3 0.003 1.656 1.17–2.344 0.004

 High (n = 261)

Age

 < 60 (n = 235) 1.641 1.196–2.252 0.002 1.391 1.003–1.928 0.048

 ≥ 60 (n = 287)

Gender

 Female (n = 183) 1.071 0.783–1.464 0.669 1.239 0.894–1.717 0.198

 Male (n = 339)

T stage

 T1 or T2 (n = 336) 3.184 2.336–4.329 < 0.001 1.626 1.127–2.347 0.009

 T3 or T4 (n = 186)

N stage

 N0 or NX (n = 507) 3.96 2.143–7.315 < 0.001 2.087 1.101–3.956 0.024

 N1 (n = 15)

M stage

 M0 or MX (n = 445) 4.378 3.199–5.992 < 0.001 2.52 1.752–3.625 < 0.001

 M1 (n = 77)

G grade

 Gx or G1 or G2 (n = 245) 2.681 1.901–3.782 < 0.001 1.638 1.129–2.377 0.009

 G3 or G4 (n = 277)
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can act as transcription factors [25, 47]. In kidney can-
cer, many scholars have already screened out CENPA as 
a diagnostic and prognostic biomarker through bioinfor-
matics analysis, including chromophobe [27] and ccRCC 
[28–30]. However, how CENPA functions in ccRCC has 
not been completely determined. In this study, one of 

our major contributions is our discovery that artificially 
regulating the expression of CENPA can not only affected 
the proliferation and metastasis in ccRCC but change the 
activity of the Wnt signaling pathway.

The Wnt pathway is involved in many biological pro-
cesses, including cell differentiation, proliferation, 

Fig. 4  CENPA promoted the proliferation, migration and invasion of ccRCC cells. CENPA A, B mRNA (n = 3 per group) and C protein levels were 
verified by qRT-PCR in A498 and Caki-1 cells with transient CENPA knockdown or overexpression. D–F Cell viability of A498 and Caki-1 cells after 
depleting or overexpressing CENPA was calculated using CCK-8 assays for four days (n = 6 per group). H The cell migration and invasion ability of 
transfected A498 and Caki-1 cells were evaluated using transwell assays (Magnification: 200×, n = 3 per group). *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001. Error bars indicate mean ± SD
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migration, and cell adhesion. Dysregulation of Wnt signal 
transduction is suggested to be related to various human 
cancers, including RCC [48]. Many Wnt members were 
identified as biomarkers for RCC, and some of them were 
verified as participants in RCC development [49–52]. 
Piotrowska et  al. compared the activation of Wnt/β-
catenin pathway among ccRCC, papillary RCC and chro-
mophobe RCC via immunohistochemistry, finding that 
the Wnt pathway pronouncedly activated in ccRCC [53]. 

A classical mechanism of the Wnt pathway is to decrease 
the amount of phosphorylated GSK3β and cytoplasmic 
β-catenin as well as upregulate many transcription fac-
tors that could upregulate oncogene MYC and CCND1 
[54]. The Wnt pathway abnormally activates during RCC 
genesis, and inhibition of the pathway can reduce inva-
sion, migration and drug resistance [55, 56]. In this study, 
we determined that a high level of CENPA promoted 
the multiplication and metastasis of RCC by activating 

Fig. 5  CENPA promoted the proliferation and migration of ccRCC cells. A, B The colony formation ability of transfected A498 and Caki-1 cells was 
evaluated by colony numbers for 12 days after seeding 1000 cells in the culture dish. The assays were independently conducted in triplicate. C–F 
The migration ability of transfected ccRCC cells was evaluated by wound healing assays. The cells were wounded by a 10-μl pipet when reaching 
100% confluence. The images were taken 24 h or 36 h later. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Error bars indicate mean ± SD
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Fig. 6  CENPA accelerated the cell cycle and activated the Wnt signaling pathway. A The GSEA results of CENPA using TCGA-KIRC expression dataset. 
533 tumoral samples was divided into two groups based on CENPA level. Genes expression patterns of two groups was different in cell cycles 
and Wnt pathway. B The expression of WNT5A is positively correlated to the expression of CENPA in TCGA-KIRC ccRCC tissues. C, D The expression 
of cyclin D1(CCND1) and β-catenin (CTNNB1) were down-regulated or upregulated in ccRCC cells with knockdown or overexpression of CENPA. 
E Western blot revealed the expression of CTNNB1 in the cytoplasm and nucleus. β-actin and Lamin B1 were used as internal references in the 
cytoplasm and nucleus, respectively. F–G Cell cycle distribution was analyzed by PI staining in Caki-1 cells after transfection by Si-CENPA or CENPA 
plasmid for 48 h. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Error bars indicate mean ± SD
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Fig. 7  The Wnt/β-catenin pathway is involved in CENPA-mediated proliferation and metastasis. A A498 and Caki-1 cells with CENPA overexpression 
were treated with Si-CTNNB1 for 48 h. Then, expression of CTNNB1 was measured by western blotting. B, C A498 and Caki-1 cells with CENPA 
overexpression or knockdown were treated with Wnt-pathway inhibitor XAV-939 (10 μmol/L) or agonist CHIR-99012 (10 μmol/L) for 24 h. Then, 
western blotting determined that the drugs were effective to Wnt pathway. D–F Cell viability was assessed in A498 and Caki-1 cells with CENPA 
overexpression and Wnt pathway inhibition/excitation via CCK-8 assays (n = 4 per group). G, H Caki-1 cells with overexpression or knockdown of 
CENPA were treated with Si-CTNNB1 for 48 h or CHIR-99021 (10 μmol/L) for 24 h as indicated and subjected to migration assay and invasion assay 
(magnification: 200×, n = 3 per group). NC: negative control; n.s: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Error bars indicate 
mean ± SD
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the Wnt pathway. CENPA overexpression up-regulates 
β-catenin, promoting its accumulation in the nucleus and 
transactivating Cyclin D1. The possible Wnt subunit that 
CENPA activates may be WNT5A. Functional recovery 
experiment confirmed that Wnt/β-catenin pathway was 
essential for ccRCC progression and metastasis.

Due to the important role CENPA plays in cell divi-
sion, we can easily associate it with cell cycle regulation. 
According to our results, we uncovered CENPA could 
up-regulate CCND1, which is a downstream target gene 
of Wnt pathway. The CCND1 is always overexpressed in 
cancer [57, 58] and regulates cell cycle transition from 
G1 phase to S phase along with CCND2 and CCND3 
[59]. Consistent with the results above, we found CENPA 
could progresses cell cycle from G0/G1 phase to S phase 
that mediated by CCND1.

Our study has some limitations. We only verified the 
tumor-promoting effect of CENPA through in silico and 
in vitro experiments without in vivo data. Regarding the 
mechanisms, we did not determine how Wnt pathway 
and cell cycle-related proteins regulated by CENPA. The 
above issues will be the focus of our further research.

Conclusion
In conclusion, our study unearthed that high-level CENP 
family genes were related to adverse survival and high 
clinicopathological stage in ccRCC patients as deter-
mined by WGCNA analyses. High-level CENPA could 
increase the multiplication, migration and invasion abil-
ity of ccRCC cells via activating Wnt/β-catenin pathway 
in  vitro. Our effort disclosed that CENPA is an impor-
tant renal cancer biomarker and a possible highly specific 
therapeutic target.

Materials and methods
Dataset
The data we analysed were obtained from TCGA project 
(https://​portal.​gdc.​cancer.​gov/), UCSC Xena browser 
(https://​xenab​rowser.​net/), GEO database (GSE44035, 
GSE66272;  https://​www.​ncbi.​nlm.​nih.​gov/​geo/), 
Oncomine database (Jones Renal dataset;  https://​www.​
oncom​ine.​org), and CCLE, which included mutations 
and CNA data, gene expression datasets (RNA sequenc-
ing, RNA-seq), corresponding clinicopathological infor-
mation and survival (including DFS and OS) information 
of KIRC patients [60].

WGCNA
DEGs was acquired by “limma” package [61] under the 
condition of p < 0.05and |log FC| (|log Fold Change|) > 1.0. 
The “WGCNA” package was used to construct the co-
expression network in R [62]. WGCNA analysis was 
conducted based on the previously described standard 

method [6]. All of the above were performed by R 4.0.2. 
The ten top hub genes were identified by Betweenness 
method in CytoHubba plugin using Cytoscape software 
[63].

Survival and ROC curve analysis
The ccRCC samples were classified into two groups 
with the same sample size based on the median CENPA 
mRNA level. DFS and OS were visualized by Kaplan–
Meier plot using GraphPad 8.01. Meanwhile, ROC curves 
were also drawn among two groups. Then, p < 0.05 was 
considered statistically significant.

ccRCC tissue samples
120 pairs of ccRCC and their tumor-adjacent renal tis-
sues were acquired from patients at the Department 
of Urology, Union Hospital in Wuhan during 2015 and 
2018. All patients did not undergo adjuvant therapy 
before the surgery. The clinicopathological features of the 
120 ccRCC patients were collected in Additional file  3: 
Table  S1. Our study comply with the regulations of the 
Human Research Ethics Committee of Huazhong Uni-
versity of Science and Technology. All the procedures 
in our research obeyed the Declaration of Helsinki. The 
tumor-adjacent normal renal tissues were taken more 
than 2.5 cm away from the cancer tissue. The RNAs from 
42 paired samples were analyzed by qRT-PCR and pro-
teins extracted from 12 pairs were analyzed via immu-
noblotting test. Three pairs of samples were analyzed via 
IHC.

Cell culture
The human normal cell line HK-2, and five types of 
ccRCC cell lines (786-O, ACHN, A498, Caki-1 and 
OSRC-2) got from the institution named American Type 
Culture Collection were employed in the research. A kind 
of commonly used culture medium, high glucose Dul-
becco’s Modified Eagle’s Medium (Gibco, USA) was used 
to culture the cells. Before use, we add 10% fetal bovine 
serum (Gibco in USA) to the medium. Usually, cells were 
incubated with 5% CO2 at 37.3 °C.

Immunoblotting test (IBT)
Tissues and cells were lysed in RIPA Buffer (Beyotime, 
China) including protease inhibitor PMSF (Service-
bio, China) for 30 min. The nucleoproteins and plasma 
proteins were extracted by PARIS™ Kit Protein and 
RNA Isolation System (Invitrogen, Carlsbad, Canada) 
directed by the manufacturer’s protocols. Then, BCA 
Protein Assay Kit (Beyotime in China) was applied for 
protein quantification. In IBT assays, the condition of 
12% gel (SDS-PAGE) at 90 V for 30 min and 120 V for 
50 min was used for electrophoresis and the condition 

https://portal.gdc.cancer.gov/
https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
https://www.oncomine.org
https://www.oncomine.org
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of 250  mA for 50 or 90  min was employed for trans-
ferring to membrane. After blocked with 5% BSA 
for 1–2  h at 20 ℃, the membrane was incubated with 
specific CENPA primary antibody (1:2000; Abclonal 
in China, A15995), beta-actin (1:5000; Proteintech in 
China, 66009-1-lg), CCND1(1:2000; Abclonal in China, 
A19038), CTNNB1(1:2000; Abclonal in China, A11512) 
and LaminB1(1:1000; Abclonal in China, A16909)at 
4 °C for 12 h. After washed with 0.1% PBST (phosphate 
buffered saline tween) for 10–15 min thrice, the mem-
branes were immersed with specie-matched secondary 
antibodies (1:2500; Abclonal, China, AS014 and AS003) 
for 2  h at 25  °C. Finally, following washed with 0.1% 
PBST for 30–40  min, the bands for each protein were 
showed with Electrochemiluminescence IBT Substrate 
(Ultra sensitivity; Biosharp, China) via ChemiDoc-
XRS + (Bio-Rad, China). All the original western blot 
pictures were included in Additional file 4

RNA extraction and qRT‑PCR
Directed by the manufacturer’s protocols, we extracted 
total RNA from tissues or cells using Ultrapure RNA 
Kit (CoWin Biosciences, China). Then the concentra-
tion was measured by a multi-wavelength microplate 
reader Tecan’s Infinite M200 Pro (Thermo Fisher Scien-
tific, USA). Afterwards, PrimeScript™ RT Master Mix 
(Takara, Japan) was applied to transform the RNA solu-
tion into cDNA solution. The qPCR conditions were 
seen in the manufacturer’s protocols. GAPDH was con-
sidered as an endogenous control. All qRT-PCR assays 
in the paper were conducted in triplicate. TSINGKE 
provided us with the forward or reverse primers for 
CENPA and GAPDH. The primer sequences used for 
qPCR were: CENPA: 5′-GTG TGG ACT TCA ATT 
GGC AAG-3′ (forward) and 5′-TGC ACA TCC TTT 
GGG AAG AG-3′(reverse); CTNNB1: 5′-AAA GCG 
GCT GTT AGT CAC TGG-3′ (forward) and 5′-CGA 
GTC ATT GCA TAC TGT CCA T-3′(reverse); GAPDH: 
5′-CGT GGA AGG ACT CAT GAC CA-3′ (forward) 
and 5′-GCC ATC ACG CCA CAG TTT C-3′ (reverse).

IHC assay
Briefly, immunohistochemical was stained with 4  µm 
formalin‐fixed paraffin‐embedded tissue sections. The 
slices were then reacted with a rabbit antibody against 
CENPA (1:100) for 12 h at 4  °C. Then the section was 
washed with PBS, immunodetection was performed 
with 50  µl DAKO secondary antibody per section and 
cultured with secondary antibodies at 25  °C for about 
2  h. Three randomly fields were selected to observe 

under a light microscope (Olympus in Japan) at 
200× and 400× magnification.

Transient transfection for overexpression or knockdown 
of CENPA and/or CTNNB1
Plasmids overexpressing CENPA, siRNA targeting 
CENPA (si-CENPA) oligonucleotide sequences and 
their corresponding negative controls were constructed 
in Vigene Biosciences (Shandong, China). The siRNA 
targeting CTNNB1 and the corresponding negative 
control siRNA were synthesized by Wuhan Qijing Bio-
logical Technology (Wuhan, China). Lipofectamine 
3000 (Invitrogen, Carlsbad, CA) reagent was employed 
for transfection directed by the manufacturer’s proto-
cols while the ccRCC cells were at 30–50% fusion. 5 μg 
per well of plasmids (vector or CENPA) or 0.1 nmol per 
well of siRNAs (si-CENPA, si-CTNNB1 or si-NC) were 
used directed by the manufacturer’s protocols. Finally, 
cells were stored for further experiments after 48  h 
transient transfection. Si-CENPA sequence was as fol-
lows: sense 5′-GCA GCA GAA GCA UUU CUA GUU 
TT-3′; antisense 5′-AAC UAG AAA UGC UUC UGC 
UGC TT-3′. The si-CTNNB1 sequence was as follows: 
sense 5′-GGA UGU GGA UAC CUC CCA ATT-3′; 
antisense 5′-UUG GGA GGU AUC CAC AUC CTC-3′.

Cell proliferation assays and cell cycle analysis
After transient transfection for at least 48  h, 1 × 103 
cells were cultured in 96-well plate with 200  µl of 
medium. The cell proliferation assays were measured by 
CCK-8 (MedChemExpress, USA) at a 1:10 dilution with 
serum-free medium every 24  h for four days directed 
by the manufacturer’s protocols. Finally, OD450 of cells 
over four days was shown by GraphPad Prism to reflect 
the ability of cell proliferation. As for cell cycle analysis, 
Caki-1 cells were labeled with PI/RNase Staining (BD 
Bioscience) Buffer after transfected with Si-CENPA for 
48 h. The DNA content was measured using flow (Beck-
man FC500, USA) cytometry and displayed by Modfit 
software.

Cell migration and invasion assays
The standard steps are as described in the previous 
[64]. Notably serum-starved cells (A498: 2 × 104; Caki-
1: 105) were used for migration assays. For invasion 
assays, the cells were double.

Bioinformatics analyses
The ccRCC samples were classified into two groups 
with the same sample based on the median CENPA 
expression. The GSEA (http://​www.​broad​insti​tute.​org/​
gsea) analysis was conducted for enrichment analysis 

http://www.broadinstitute.org/gsea
http://www.broadinstitute.org/gsea
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according to the grouping. The p < 0.05 and the false 
discovery rate (FDR) value < 0.25 were thoughted as 
the relevant enriched pathways [65]. The KEGG and 
GO analyses of differential expressed genes form two 
CENPA expression groups were conducted by R 4.0.2.

The activation or inhibition of Wnt signaling pathway
10  μmol/L Wnt/β-catenin inhibitor XAV-939 or agonist 
CHIR-99021 trihydrochloride (MedChemExpress, USA, 
HY-15147 and HY-10182B) were mixed in cells in 6-well 
plates for 24  h when confluence reached 60%.  Then the 
proteins were collected for further analysis.

Wound healing assay
The same amounts of cells were cared in the 6-well plates. 
When the fusion reached 100%, cells were wounded with 
the same size. Pictures of wounds were observed at 24 h.

Colony formation assays
1000 A498 (Si-NC, Si-CENPA, Vector, CENPA) and 
Caki-1 (Si-NC, Si-CENPA, Vector, CENPA) cells were 
cultured into a well of 6-well plates. After about 12 days, 
the cells were fixed for 30 min. After washed by PBS the 
cells were then dyed with crystal violet for 40 min.

Statistical analyses
The group data were presented with mean and standard 
deviation (SD). The differences between groups were 
evaluated using a Student’s test or paired Student’s test. 
The relationships between CENPA expression and clin-
icopathological characteristics of ccRCC samples were 
analyzed by Pearson’s χ2 test. To conduct univariate and 
multivariate Cox regression analyses, we assigned clin-
icopathological features as binary variables, including 
CENPA mRNA expression levels and set OS as depend-
ent variable. Then the analysis were conducted by SPSS 
25.0. Significance was determined at  P < 0.05. All of 
experiments were repeated for three times. Except the 
qRT-PCR data of tumor and normal tissues were rep-
resented as mean, the rest were represented as the 
mean ± SD. All analyses above were conducted by Graph-
Pad Prism (GraphPad Software, San Diego, California in 
USA) as seen in previous article [66].
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