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Abstract
Study Objectives:  Sleep regularity predicts many health-related outcomes. Currently, however, there is no systematic approach to measuring 
sleep regularity. Traditionally, metrics have assessed deviations in sleep patterns from an individual’s average; these traditional metrics 
include intra-individual standard deviation (StDev), interdaily stability (IS), and social jet lag (SJL). Two metrics were recently proposed that 
instead measure variability between consecutive days: composite phase deviation (CPD) and sleep regularity index (SRI). Using large-scale 
simulations, we investigated the theoretical properties of these five metrics.
Methods:  Multiple sleep–wake patterns were systematically simulated, including variability in daily sleep timing and/or duration. Average 
estimates and 95% confidence intervals were calculated for six scenarios that affect the measurement of sleep regularity: “scrambling” the 
order of days; daily vs. weekly variation; naps; awakenings; “all-nighters”; and length of study.
Results:  SJL measured weekly but not daily changes. Scrambling did not affect StDev or IS, but did affect CPD and SRI; these metrics, 
therefore, measure sleep regularity on multi-day and day-to-day timescales, respectively. StDev and CPD did not capture sleep 
fragmentation. IS and SRI behaved similarly in response to naps and awakenings but differed markedly for all-nighters. StDev and IS 
required over a week of sleep–wake data for unbiased estimates, whereas CPD and SRI required larger sample sizes to detect group 
differences.
Conclusions:  Deciding which sleep regularity metric is most appropriate for a given study depends on a combination of the type of data 
gathered, the study length and sample size, and which aspects of sleep regularity are most pertinent to the research question.

Key words:   intra-individual variability; inter-individual variability; sleep variability; sleep stability; circadian misalignment; circadian 
disruption

Statement of Significance

Sleep regularity may be as important for health as sleep duration and timing. Traditional metrics for quantifying sleep regularity compare 
each day’s sleep–wake pattern to the average pattern, whereas other, recently-developed metrics compare sleep between consecutive days. 
We examined five sleep regularity metrics under different simulated scenarios and study lengths, including common sources of day-to-day 
variability. We found that there are differences between metrics in their sensitivity to specific sources of variability. We also found that 
there are differences between metrics in the requirements for study length and sample size. These findings provide a set of guidelines for 
the selection and use of sleep regularity metrics, for a time in which sleep regularity is becoming a major focus for the field.
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Introduction

Day-to-day variability in sleep–wake patterns has emerged in 
recent years as an important factor for health and safety [1, 2]. 
Studies have found associations of irregular sleep with mul-
tiple adverse outcomes, including cardiac autonomic modu-
lation [3], inflammation [4], metabolism [5–7], mental health 
[8, 9], and performance and cognitive function [10–12]. These 
studies, however, have used a variety of metrics to quan-
tify sleep regularity, and the vast majority used metrics that 
quantify sleep regularity by comparing each day’s sleep-wake 
pattern to the individual’s average pattern. These overall met-
rics include intra-individual standard deviation (StDev) and 
interdaily stability (IS [13]). The daily variation around an 
individual’s mean, as quantified by these metrics, has also 
been referred to as intra-individual variability (IIV) [1]. A  re-
lated metric is social jet lag (SJL [14]), which quantifies the 
difference in average sleep timing between workdays and 
free days.

Recently, two novel metrics have been developed to instead 
capture variability in sleep–wake patterns between consecutive 
days, based on the hypothesis that day-to-day changes may cause 
circadian disruption or misalignment. These consecutive metrics 
include the composite phase deviation (CPD [15]) and the sleep 
regularity index (SRI [16]). Higher CPD values, indicating lower re-
gularity, have been associated with later chronotype [15], poorer 
mood/well-being and more irregular class/event schedules in col-
lege students [17], lower stability of meal timing [18], and more 
variable caloric intake in Type 2 diabetes patients with melatonin 
MT2 receptor mutations [19]. Lower SRI values, indicating lower re-
gularity, have been associated with delayed circadian phase and 
lower academic performance [16, 20], impaired daytime function 
[21, 22], poorer mood/well-being [23, 24], depression [25], insomnia 
and PTSD [26], and impaired cardiometabolic outcomes [27].

This study was designed to theoretically compare these 
five sleep regularity metrics, and to help researchers make in-
formed decisions about which sleep regularity metric(s) may 
be appropriate for the specific features of their study, including 
study length and sample size. While overall metrics other than 
StDev and IS have been used to quantify variability in sleep–
wake patterns, most notably IS’s counterpart intra-daily vari-
ability (IV), we chose StDev and IS because (1) they specifically 
quantify variability between days, not within days (which is 
the purpose of the IV metric), and (2) they are the most com-
monly used measures in sleep and circadian rhythm research 
[1]. To allow the theoretical properties of each metric to be es-
tablished, we simulated sleep–wake patterns using scenarios 
that included different sources of variability: “scrambling” the 
order of days; daily vs. weekly variation in sleep timing and dur-
ation; daytime naps; nocturnal awakenings; and “all-nighters” 
(nights with no sleep). We also compared the performance 
of the five metrics in response to sleep–wake patterns of dif-
ferent lengths (2–28 days) and calculated the sample size re-
quired to detect a significant difference between two groups 
by each metric. These findings can guide the planning of future 
studies and provide context for interpreting existing research.

Methods

Metrics for quantifying sleep regularity

The metrics can be calculated from any multi-day recording of 
sleep (e.g. actigraphy, sleep diaries, PSG).

Overall metrics
Overall metrics assess sleep regularity by comparing features of 
each day’s sleep pattern to the individual’s average sleep pat-
tern (StDev, IS), or by comparing an individual’s average timing 
of sleep on workdays with their average timing of sleep on free 
days (SJL). These metrics each quantify variability relative to a 
mean, rather than comparing sleep patterns between consecu-
tive days. The three selected overall metrics are the most com-
monly used to quantify sleep regularity but are not exhaustive. 
Other measures exist, for example, the coefficient of variation 
(CoV), which is closely related to standard deviation.

Standard deviation (StDev).   StDev is a statistical measure of the 
amount of variation or dispersion. A  lower number indicates a 
more regular pattern. It can be applied to features of daily sleep 
(e.g. sleep onset, sleep offset, midsleep, sleep duration) (Figure 1, C):

	
StDev =

Õ
N∑
i=1

Ä
Xi − X

ä2

N− 1 � (1)

where N is the number of days, Xi is the value of the sleep vari-
able on day i, and X  is the mean.

Interdaily stability  (IS).  IS was developed to measure the sta-
bility of rest–activity rhythms over multiple days, comparing the 
pattern of activity each day to the average pattern across days. 
Higher IS values reflect more regular patterns of activity. IS ori-
ginally used activity count data but can also be defined using 
binary sleep–wake data (i.e. sleep (=0) or wake (=1) state as-
signed to each epoch). It is calculated as the ratio of the variance 
within the same time interval each day and the overall variance 
(Figure 1, D):
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where N is the total number of data points; p is the number of 
data points per day (e.g. 1-h epochs = 24 data points per day); X  
is the mean of all data; Xh are the means of every epoch across 
all days; and Xi represent the individual data points. A higher 
number indicates a more regular pattern.

Social jet lag  (SJL).  SJL is the mismatch in average midsleep 
timing between workdays and free days (Figure 1, B). Midsleep 
on weekends can be either earlier (negative SJL values) or later 
(positive SJL values) than midsleep on weekdays:

	 SJL = MSF−MSW�

where MSF is the average midsleep on work-free days and MSW 
is the average midsleep timing on workdays. A  lower number 
indicates a more regular pattern.

Consecutive metrics
Consecutive metrics have been recently proposed to specifically 
measure variability in sleep–wake patterns between consecu-
tive days. The rationale for these metrics is that changes from 
one day to the next (on a circadian timescale) are challenging 
for the circadian system to accommodate, due to limits on the 
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rate of phase resetting. Measuring this type of variability may 
therefore be a useful proxy for circadian disruption associated 
with irregular sleep patterns.

Composite phase deviation  (CPD).  The CPD was developed 
to quantify circadian disruption in the context of shift 
work, where sleep–wake behavior is often both mistimed 
(e.g. sleep during the daytime) and irregular (e.g. rotating 
schedules where working times alternate). CPD uses an 
individual’s chronotype to determine the optimal timing of 
sleep; chronotype is assessed using midsleep on free days, 
corrected for potential sleep loss on workdays (MSFsc) [28]. 
The “mistiming” component is quantified by calculating the 
difference in hours between midsleep timing on one day and 
the individual’s chronotype (ΔChronotype); the “irregularity” 
component is computed as the difference between midsleep 
timing on one day from that on the previous day (ΔDay-to-
Day) (Figure 1, E1). The two components are plotted against 
each other and the vector length from data point to the origin 
(i.e. perfectly aligned and regular sleep) is calculated for N 
sleep episodes and averaged (Figure 1, E2):

	
∆Chronotypei (∆CTi) = MSFSC −MSi� (4a)

	
∆Day− to− Dayi (∆DDi) = MSi−1 −MSi� (4b)

	 CPDi =
»
∆CT2

i +∆DD2
i � (4c)

	
CPD =

1
N

N∑
i=1

CPDi

� (4d)

Calculating CPD requires as input the designation of one main 
sleep episode per day. CPD can also be derived for other sleep 
variables, such as daily sleep durations. A  lower number indi-
cates a more regular pattern.

Sleep regularity index (SRI).  The SRI measures the similarity of 
an individual’s sleep–wake patterns from one day to the next, 
based on binary sleep–wake state classifications. It calculates 
the percentage probability of an individual being in the same 
state (sleep vs. wake) at any two time points (e.g. 30-s epochs) 
24-h apart, averaged across the study. The SRI is scaled to range 
from 0 (random) to 100 (perfectly regular):

	
SRI = −100+

200
M (N− 1)

M∑
j=1

N−1∑
i=1

δ
(
si,j, si+1,j

)

� (5)

where M is the number of daily epochs, N is the number of 
days, si,j = 0 for sleep and si,j = 1 for wake, and δ(si,j, si+1,j) = 1 if 
si,j  =  si+1,j and 0 otherwise. The metric is defined so that two 

Figure 1.  Sleep regularity metrics. (A) Raster plot of a 28-day sleep–wake pattern with a weekly variation of 1 h later and 1 h longer sleep on weekends than weekdays. 

The gray box marks six days of the pattern used to illustrate the five sleep regularity metrics in panels B–F. (B) Social jet lag (SJL). (C) Standard deviation (StDev). (D) 

Interdaily stability (IS). (E1 and E2) Composite phase deviation (CPD). (F) Sleep regularity index (SRI). Note: Only clock times 0-8 are shown for space reasons.
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individuals with the same standard deviation in midsleep 
time but different sleep durations (e.g. 4 h vs. 8 h) have ap-
proximately the same SRI scores. As a result, the SRI tends to 
be uncorrelated with total sleep time [16, 21, 27], despite the 
fact that the SRI would tend to a value of 100 if an individual 
hypothetically slept 0% or 100% of the time. We note that the 
SRI is sometimes stated to have a range of 0–100, as this cor-
responds to its practical range. In fact, the full theoretical 
range is −100–100, but virtually all real-world sleep/wake pat-
terns fall in the range 0–100. SRI values less than 0 are there-
fore theoretically possible (e.g. sleep for 24 h, wake for 24 h, 
etc.), though uncommon in practice [16]. The SRI makes no 
assumptions about the structure of sleep (e.g. whether there 
is one main sleep episode or naps). A higher number indicates 
a more regular pattern.

Pairing of metrics
Among the overall metrics, SJL conceptually differs from 
StDev and IS. SJL does not compare sleep on each day to the 
average sleep–wake pattern, but instead compares two aver-
ages (workdays and free days). The remaining four metrics 
can be paired according to how they integrate the sleep–wake 
data (= signal) into a sleep regularity score (Table 1). In this 
respect, StDev and CPD both use extracted daily features (e.g. 
midsleep time) that are derived from the recorded sleep–wake 
episode data, with a single value per day. We label these daily-
value metrics. Conversely, IS and SRI both use the information 
in all recorded epochs (i.e. multiple values per day). We label 
these whole-signal metrics.

Scenarios

Our principal aim was to simulate sleep–wake patterns that 
closely resemble real-life patterns. To this end, the basic aspects 
of the simulated sleep–wake patterns were based on values 
reported in the literature; namely, longer and later sleep on 
weekends [29], the amount of social jetlag (i.e. ≥1 h in 80% of 
the population) [30], and the variation in sleep duration ob-
served for the general population (i.e. 60  min on average) [31, 
32]. These assumptions were the same across scenarios where 
applicable. Within each scenario, we varied specific parameters 
to examine their impact on sleep regularity metrics (e.g. number 
of all-nighters). In certain cases, where we discovered a non-
monotonic relationship for at least one of the sleep regularity 
metrics, we explored the full theoretical range, in some cases 
going beyond what may be seen in the real world (e.g. 28 days of 
no sleep). These cases are included because, though they extend 
beyond observable behaviors, they provide insights into the the-
oretical underpinnings of each sleep regularity metric.

Sleep–wake patterns were generated for 28 days in MATLAB 
(MathWorks, Natick MA, USA), consisting of binary time series 

of sleep (=0) or wake (=1), starting randomly on any day of the 
week. Day-to-day sleep variability was introduced by sampling 
daily midsleep times and/or sleep durations from random 
Normal distributions. The random Normal distributions were 
limited to ±3σ (i.e. 99.7% of the distribution) to avoid cases of 
potentially overlapping or negative duration sleep episodes. We 
simulated six scenarios, illustrated in Figure 2, to compare how 
the sleep regularity metrics performed.

Scenario 1: daily variation
Average sleep timing was set to start and end at 0:00 and 
8:00, respectively (average midsleep at 4:00, 8  h sleep dur-
ation). We note that the choice of sleep timing is arbitrary, 
as the same simulated schedules could be shifted earlier or 
later with no effect on sleep regularity metrics. Daily sleep 
variability was added by randomly varying (1) midsleep, 
(2) sleep duration, or (3) both. Standard deviation (σ) of the 
random Normal distributions ranged in 15-min steps from 0 
to 120 min for (1) and (2), and from 0 to 90 min for (3). These 
ranges were selected to encompass a range of regular to ir-
regular sleep behaviors.

Scenario 1A: “scrambling”
To examine how sensitive the metrics were to changes in 
the day-to-day sleep sequence, one sleep–wake pattern from 
Scenario 1 was randomly generated for each level of vari-
ation in midsleep (0–120  min). Days were then randomly 
re-ordered (scrambled) 1,000 times. This scenario serves to 
demonstrate whether each metric is sensitive to changes in 
sleep from one day to the next; if so, scrambling the order of 
sleep episodes would affect the metrics’ values. Scrambling 
the order of the data, therefore, allows us to appreciate the 
timescale on which each metric measures variability. This 
has important practical implications, which are covered in 
the Discussion.

Scenario 2: weekly variation
Real-life sleep patterns commonly show later and longer sleep 
on weekends (usually a free day) than on weekdays (usually a 
workday) [29]. To investigate this type of variation, we added a 
weekday-weekend difference in sleep timing and/or duration to 
the daily variation from Scenario 1. Average sleep timing was 
set to start and end at 23:30 and 6:30, respectively, on weekdays 
(midsleep at 3:00, 7 h sleep duration) and at 0:00 and 8:00, re-
spectively, on weekends (midsleep at 4:00, 8 h sleep duration). 
The difference between weekdays and weekends was thus 1h 
in both midsleep and sleep duration, which is the minimum 
level of weekday-weekend difference experienced by 80% of 
the general population [30]. Examples of sleep–wake patterns in 
Scenario 2 with different variabilities are shown in Supplement 
A, Figure S1.

Scenario 3: naps
To assess how multiple blocks of sleep per day affect the met-
rics, naps were added to sleep–wake patterns of Scenario 2, 
with daily variation of the main sleep episode set to σ = 60 min 
for both midsleep and sleep duration. Day-to-day variability in 
naps was generated by randomly varying both the midpoint of 
the nap (“midnap”) and nap duration. Daily naps were drawn 

Table 1.  Classification of metrics

Metrics

Calculation

Daily-value (one  
value per day)

Whole-signal (multiple 
values per day)

Overall StDev IS
Consecutive CPD SRI

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
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from a random Normal distribution with average midnap 
timing and duration of 15:00 and 2  h, respectively (average 
nap onset and offset: 14:00–16:00) and standard deviation σ 
that increased from 0 to 30 min in 10-min steps. The distribu-
tion width was again limited to ±3σ. The total number of days 
with naps was systematically varied from 0–28 in the 28-day 
simulation.

Scenario 4: Awakenings
To assess how fragmentation of the main sleep episode affects 
the metrics, nocturnal awakenings (wake after sleep onset, 
WASO) were added to sleep–wake patterns of Scenario 2, with 
daily variation of the main sleep episode set to σ = 60 min in 

both midsleep and sleep duration. The number of Wake bouts 
per sleep episode varied from 1 to 60 (1–10 bouts and then 
in 10-bout steps) and the total duration of WASO from 10 to 
240 min in 10-min steps. Accordingly, the length of a single Wake 
bout varied between 10 s and 4 h, with fixed length across all 
sleep episodes within a simulation. The wide range of number 
and total duration of Wake bouts was chosen to compare 
insomnia-like sleep–wake patterns (long but few bouts) with 
highly fragmented (short but many bouts) sleep–wake patterns. 
The position of Wake bouts within a sleep episode was drawn 
from a random uniform distribution; that is, Wake bouts were 
equally likely to occur throughout the sleep episode but were 
not allowed to overlap with one another.

Figure 2.  Scenarios of sleep regularity. (A) Scenario 0 illustrates a perfectly regular sleep–wake pattern over 28 days (zero variation). (B) Scenario 1 adds daily variation 

in midsleep, sleep duration, or both. (C) Scenario 1A uses sleep–wake patterns from Scenario 1, but with re-arranged (“scrambled”) order of days. (D) Scenario 2 adds 

weekly variation to sleep–wake patterns from Scenario 1. Scenarios 3 to 5 further add (E) daytime naps, (F) nocturnal awakenings, or (G) “all-nighters” (nights with 

no sleep) to Scenario 2. (H) Scenario 6 uses sleep–wake patterns of Scenario 2, varying the number of days (2–28) to simulate varying study lengths, illustrated by the 

gradual shading.
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Scenario 5: “all-nighters”
To assess how total sleep deprivation affects the metrics, nights 
with no sleep were generated by replacing Sleep with Wake in 
sleep–wake patterns of Scenario 2, with daily variation of the 
main sleep episode set to σ = 0–120 min in sleep duration and 
σ = 60 min in midsleep. For nights with no sleep, midsleep values 
were treated as missing and sleep durations were set to zero. 
The number of all-nighters was systematically varied from 0 to 
28 in the 28-day simulation.

Scenario 6: study length
Sleep–wake patterns were generated for study lengths from 2 to 
28 days to determine the statistical dependence of each metric 
on study length. Sleep–wake patterns were simulated in the same 
way as for Scenario 2, with two differences: (1) to increase com-
parability with real data, we introduced missing data, with a one 
in seven chance of each day being missing, similar to real levels 
of missingness [1]; and (2) to simplify interpretability, daily vari-
ation increased from 15 to 120 min in 15-min steps for midsleep 
timing, but was set to 60 min for sleep duration, representing an 
average level of variability in healthy adult populations [31, 32].

Data processing

For each simulation within each scenario, we generated 1,000 
28-day sleep–wake patterns with random daily variation.  
For example, in Scenario 3 where naps were added to the 
main sleep–wake pattern, a total of 29  × 4=116 combinations 
were simulated (i.e. 0–28 naps and 0, 10, 20, 30  min variation 
in midnap timing) with 1,000 iterations for each. Average esti-
mates and 95% confidence intervals (CIs) were calculated for 
each metric across each batch of 1,000 iterations.

Sleep regularity metrics
The metrics SRI and IS were computed identically in all 
scenarios. Since the other three metrics (SJL, StDev, and CPD) 
are reliant on a specific feature (e.g. midsleep) and insensitive to 
all other features, their calculation was performed in multiple 
ways. For simulations that varied midsleep, the three metrics 
were calculated using daily midsleep values (CPD calculating 
deviations from chronotype and from previous midsleep). For 
simulations that varied sleep duration, the three metrics were 
calculated using daily sleep durations (CPD calculating devi-
ations from average sleep duration and from previous sleep 
duration).

For sleep–wake patterns with naps (Scenario 3), variants of 
StDev and CPD were calculated using both midpoints of main 
sleep episodes (midsleeps) and midpoints of naps (midnaps): 
(1) StDevNap was calculated as the standard deviation of all 
midsleeps and midnaps, and (2) CPDNap was calculated as the 
average of CPD using midsleeps and CPD using midnaps, 
weighted by the number of naps (e.g. if one nap occurred, the 
contribution of CPD using midnaps to CPDNap would be weighed 
by 1/28).

Calculation of sample sizes.  In Scenario 6, the average estimates 
and standard deviations calculated for each metric were used 
to determine sample sizes needed to detect a statistically sig-
nificant difference between two groups of different sleep re-
gularity at a given power of 0.8. Sample sizes were calculated 
using Welch’s t-test to account for unequal variances between 

groups. Sample sizes were calculated in R using the package 
“pwrAB” [33].

Results

SJL is a measure of weekly but not daily sleep 
regularity

Scenario 1: daily variation
SJL was the only metric whose average values did not change 
with increasing daily variability (Figure 3, A), highlighting the 
fact that SJL operates on a weekly but not a daily timescale. With 
increasing daily variation, StDev and CPD increased, while IS 
and SRI decreased (Figure 3, B–E).

Overall vs. consecutive metrics measure sleep 
regularity on multi-day vs. day-to-day timescales

Scenario 1A: “scrambling”
Scrambling did not have any effect on values of the three 
overall metrics: SJL, StDev, and IS maintained identical 
average estimates and zero-width 95% CIs, despite changes 
in the day-to-day sequence of sleep episodes (Figure 3, A, B, 
D). In contrast, scrambling did affect values of the consecu-
tive metrics CPD and SRI, slightly affecting average estimates 
and widening 95% CIs with increasing daily variation (Figure 
3, C, E). Confidence intervals were wider for SRI than CPD, 
indicating a higher sensitivity of SRI to re-ordering the daily 
sleep sequence. This is due to CPD combining a mistiming and 
an irregularity component, only the latter of which is sensitive 
to re-ordering of days.

Daily-value vs. whole-signal metrics integrate single 
vs. multiple sources of variability

Scenario 2: daily + weekly variation
When weekly variation was added to the daily variation, all 
metrics’ values changed to a more irregular value (Figure 3, F–J). 
SJL equaled 1  h, the exact amount of introduced weekly vari-
ation (Figure 3, F). Though average SJL remained the same across 
different levels of daily variation, 95% CIs increased, showing 
that individual sleep–wake patterns with the same underlying 
weekday-weekend difference can have different SJL values. 
Because of its limitations in reflecting daily changes in sleep, SJL 
was not included in further analyses.

StDev and CPD could capture only variation in either 
midsleep timing or sleep duration, depending upon how they 
were defined (Figure 3, G, H, K, L). In contrast, IS and SRI values 
were sensitive to both forms of variation, with greater sensitivity 
to variation in midsleep timing than sleep duration (Figure 3, I, J).

When midsleep and sleep duration both contributed to daily 
variability, StDev and CPD values increased in one direction 
only: when based on midsleep, StDev and CPD varied only by 
midsleep once a sleep duration variation was chosen, and vice 
versa; there was no interaction observed (Figure 3, K, L). IS and 
SRI values showed an interaction, with the lowest values when 
variation was greatest in both sources (Figure 3, M, N). Hence, 
the major difference between daily-value vs. whole-signal met-
rics is the number of sources of variability they reflect in their 
sleep regularity scores. StDev and CPD quantify variability from 
a single source (i.e. midsleep or sleep duration), whereas IS and 
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SRI reflect variability from several sources (i.e. midsleep and 
sleep duration).

Key points for Scenarios 1, 1A, and 2

	•	 SJL measures weekly but not daily changes in sleep.
	•	 Only consecutive metrics (CPD, SRI) are sensitive to 

re-ordering of a sleep recording.
	•	 Daily-value metrics (StDev, CPD) quantify variability from a 

single, specified source (i.e. either sleep timing or duration).
	•	 Whole-signal metrics (IS, SRI) combine variability from mul-

tiple sources (i.e. both sleep timing and duration).

IS and SRI (but not StDev and CPD) are sensitive to 
napping and awakenings

Scenario 3: naps
As the number of days with naps increased from 0% to 50%, IS 
and SRI decreased, reflecting lower regularity. As the number of 

days with naps increased from 50% to 100%, IS and SRI increased, 
reflecting higher regularity (Figure 4, D, E). If there was no vari-
ation in the timing or duration of naps, IS and SRI eventually 
returned to their original values; that is, values of sleep regu-
larity were the same for 0% and 100% naps. The extent to which 
naps decreased IS and SRI values compared to sleep–wake pat-
terns without naps was up to ~10% of the scale range. StDev and 
CPD in their original calculations do not include naps, only main 
sleep. When variants of these metrics were computed that in-
cluded naps, StDevNap increased with number of naps but did not 
differ between variations in midnap/nap duration (Figure 4, B). 
CPDNap values showed slight changes with increasing number of 
naps and variations in midnap/nap duration, yet the differences 
were overall very small (Figure 4, C).

Scenario 4: awakenings
StDev and CPD are not sensitive to fragmented sleep (i.e. WASO), 
and so did not vary under this Scenario. The number of Wake 
bouts had virtually no impact on the IS and SRI values (Figure 

Figure 3.  Sources of variability: “scrambling,” daily variation, and weekly variation (Scenarios 1A + 2). Panels A–E show the five metrics for randomly re-ordered (“scram-

bled”) sleep–wake patterns in Scenario 1A. Note that the metrics SJL, StDev, and IS are identical for unscrambled and scrambled sleep patterns (i.e. zero-width 95% CIs, 

colored lines overlay). Panels F–J show the five metrics calculated for sleep–wake patterns of Scenario 2, with daily variation in midsleep OR sleep duration. Panels K–N 

show the metrics for the same patterns but with daily variations in midsleep AND sleep duration. Warmer colors in heat maps indicate “more irregular” values in all 

metrics. Note that SJL is not shown in the bottom row due to its non-response to daily variation (see panel A).
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4, G, H). With increasing total WASO duration, both IS and SRI 
decreased at first, reflecting less regular sleep (Figure 4, I, J); yet, 
for total WASO durations of >160 min, SRI increased again, re-
flecting “more regular” values, due to increasing night-to-night 
overlap of awakenings, whereas IS yielded monotonically lower 
values. The impact of WASO was large on IS and moderate on 
SRI. Compared with a consolidated sleep–wake pattern (no 
awakenings), WASO reduced IS and SRI by as much as 47% and 
16% of the scale range, respectively. Increasing wakefulness 
seemed to affect IS and SRI differently, which we explored more 
deeply in Scenario 5.

IS requires alternating sleep and wake states for a 
perfectly regular score

Scenario 5: “all-nighters”
As the number of all-nighters (i.e. nights with no sleep) in-
creased from 0% to 50%, the StDev and CPD (based on daily 
sleep durations) increased while SRI decreased, reflecting “less 

regular” scores for each metric (Figure 4, L, M, O). As the number 
of all-nighters increased from 50% to 100%, these three metrics 
returned to more regular scores, reaching a perfectly regular 
score for constant wake (100% all-nighters), due to each day 
having an identical pattern (no sleep at all). The behavior of the 
IS metric was notably different, as it decreased monotonically 
with increasing number of all-nighters from 0% to 100% (Figure 
4, N). Although every day was identical with 100% all-nighters, 
the lack of daily rhythmicity (i.e. low or zero amplitude) was re-
flected by a low IS score. A combination of all-nighters and naps 
was simulated to examine the impact of (compensatory) naps 
occurring during the daytime following an all-nighter. Naps res-
cued rhythmicity as measured by IS, with values returning to 
more regular scores for >50% naps (Supplement B, Figure S2).

Key points for Scenarios 3, 4, and 5

	•	 StDev and CPD are not designed to assess regularity of sleep–
wake patterns that include naps or awakenings.

Figure 4.  Sources of variability: naps, awakenings, and “all-nighters” (Scenarios 3, 4, and 5). The far-left panel of each row shows example raster plots of 28-day sleep–

wake patterns with (A) daytime naps, (F) nocturnal awakenings, and (K) nights with no sleep (“all-nighters”). Panels (B–E) StDev, CPD, IS, and SRI for sleep–wake patterns 

fragmented by daytime naps. For clearer illustration, only variations in midnap timing are shown, with metrics’ values averaged across variations in nap duration. 

Panels (G–J) IS and SRI for sleep–wake patterns fragmented by nocturnal awakenings (WASO, wake after sleep onset). Panels (L–O) StDev, CPD, IS, and SRI for sleep–wake 

patterns with all-nighters.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
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	•	 IS and SRI take into account both naps and awakenings, as-
signing higher scores when the sleep–wake pattern is more 
consistent between days.

	•	 IS is the only metric that quantifies rhythmicity/amplitude 
in addition to regularity of sleep–wake patterns, as indicated 
by its monotonic reduction with increasing awakenings or 
all-nighters.

Overall metrics overestimate sleep regularity when 
based on ≤7 days of data

Scenario 6: study length
As simulated study length was increased from 2 to 28 days, StDev 
and IS values underwent systematic changes up to ~7 days of 
data (Figure 5, B, D), indicating a bias in overall metrics toward 
overestimating sleep regularity (therefore, underestimating 
sleep irregularity) for short study lengths, compared with what 
would be calculated using the same metric in the same indi-
vidual simply from a longer recording. We note that this bias 
was not driven by day of the week, since the starting day of the 
week for simulations was randomized. This difference was par-
ticularly pronounced for the comparison IS vs. SRI, and less so 
for StDev vs. CPD (see Supplement B, Figure S2, C, F). The change 
in IS values over 2–7 days was larger for higher daily variations, 
suggesting that IS particularly overestimated highly irregular 
sleep–wake patterns (Figure 5, D, Supplement B, Figure S2, D). 
SRI displayed the least dependence on study length of all met-
rics (Figure 5, E).

The 95% CIs widened with increasing levels of daily vari-
ability and narrowed with an increasing number of days for all 

metrics. The CIs of consecutive metrics were generally wider 
than those of the corresponding overall metrics (Figure 5, G–J). 
CIs of CPD were between 1.6- and 2.4-times wider than those 
of StDev, irrespective of number of days or level of variability 
(Figure 5, G, H). The difference between CIs of IS and SRI de-
creased with more days (Figure 5, I, J): 95% CIs of SRI were on 
average 39% larger for ≤7 days, 20% larger for 8–14 days, and 14% 
larger for >14 days, than those of IS.

Consecutive metrics require larger sample sizes 
than overall metrics

Scenario 6: sample size
For all metrics, estimated required sample sizes decreased with 
an increasing number of days, and were largest when com-
paring groups with small differences in sleep regularity (see 
Supplement C, Figure S3, A–P), as expected. To achieve the same 
level of statistical power, consecutive metrics required gener-
ally larger samples sizes than overall metrics. Averaging across 
all simulated study lengths, using CPD required on average 21% 
more participants than StDev; using SRI required on average 20% 
more participants than IS. These differences declined as more 
days of data were available. For example, using SRI required on 
average a 26% larger sample than IS with 7 days of data, but only 
12% with 28  days of data (illustrated in Supplement C, Figure 
S3, U, X). The main factor driving this difference between overall 
and consecutive metrics was effect size: when the difference in 
sleep regularity between groups was large (e.g. ≥45 min differ-
ence in daily variation), estimated sample sizes differed negli-
gibly between metrics (Supplement C, Figure S3, Q–X).

Figure 5.  Impact of study length on sleep regularity metrics (Scenario 6). The far-left panel of each row shows example raster plots of the same sleep–wake pattern, 

based on (A) 14 days or (F) 28 days of data. Panels (B–E) Average estimates and panels (G–J) width of 95% confidence intervals (CIs) for sleep–wake patterns based on 

2–28 days of data.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
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In Supplementary Materials (Tables S1 and S2), we provide 
detailed data tables with average estimates, 95% CIs, standard 
deviations, and sample size for each sleep regularity metric 
based on 2, 7, 14, 21, and 28 days of data, to help guide investiga-
tors’ choice of metric, study length, and sample size.

Key points for Scenario 6

	•	 Overall metrics, especially IS, overestimate sleep regularity, 
when based on ≤7 days.

	•	 Consecutive metrics are more stable across study lengths, 
especially SRI, but require on average larger sample sizes to 
achieve the same confidence interval.

	•	 Required sample sizes become more similar between met-
rics in longer studies or when the difference (Δ) in sleep reg-
ularity is large between groups (Δ ≥ 45 min).

Correspondence between overall and consecutive 
metrics depends on the source of variability

To determine how well the metrics correspond with one an-
other, we plotted values of StDev against CPD (the paired 
daily-value metrics) and values of IS against SRI (the paired 
whole-signal metrics) for Scenarios 2–6 in Figure 6. StDev and 
CPD corresponded closely under most conditions, with gen-
erally larger CPD than StDev values by a factor of ~1.4 (≈

√
2, 

as expected given CPD’s use of vector lengths) (Figure 6, A). 
However, there was no correspondence between the two met-
rics for naps (Figure 6, B): while StDevNap distinguished be-
tween numbers of naps (values moving from bottom to top 
with increasing number of naps), CPDNap distinguished be-
tween variations in midnap timing (values moving horizon-
tally for a given number of naps). Agreement between StDev 
and CPD was overall good for all-nighters (Figure 6, D); how-
ever, values were least similar for very low or high numbers 
of nights with no sleep and most similar for numbers of all-
nighters in the middle range (20–80%).

IS and SRI had almost perfect agreement for variations in 
midsleep, sleep duration (Figure 6, G), or naps (Figure 6, H). For 
awakenings (Figure 6, I) and all-nighters (Figure 6, J), IS and 
SRI showed a crescent-shaped relationship: IS and SRI values 
were initially similar, for example, for relatively short total 
WASO durations (i.e. ≤ 60  min) or a relatively low number of 
all-nighters (i.e. ≤10% or three nights in four weeks), but di-
verged with increasing wakefulness, as IS decreased while SRI 
increased.

For Scenario 6, average estimates and width of 95% CIs gen-
erally became more similar between the metric pairs with an 
increasing number of days (Figure 6, E, F, K, L). The largest dif-
ferences were observed for study lengths of ≤7  days: average 
estimates of StDev and CPD corresponded at a ratio of ~1.6 after 
7 days, and at their usual ratio of ~1.4 after 14 days (Figure 6, E); 
correspondence between IS and SRI values was achieved after 
7 days (Figure 6, K). Ninety-five percent CIs were approximately 
twice as wide for CPD as for StDev after 7  days (Figure 6, F); 
they were generally wider for SRI than IS, but were within 15% 
of each other when based on >14 days of data (Figure 6, L). For 
sample sizes, the average number of additional participants 
required when using consecutive vs. overall metrics gradually 
decreased with an increasing number of days (Supplement D, 
Figure S4).

Key points for metric correspondence

	•	 The relationship between overall and consecutive metrics is 
not always linear. For example, SRI values cannot be inferred 
from IS values, except in specific circumstances.

	•	 Differences between overall and consecutive metrics are lar-
gest for short study lengths (≤1 week) and become gradually 
smaller with more days of data.

Discussion
Using large-scale simulation of sleep–wake patterns, we com-
pared the performance of five sleep regularity metrics—SJL, 
StDev, IS, CPD, and SRI—under conditions that allowed us to de-
termine their sensitivity to factors that affect measurements of 
sleep regularity. Our findings have important implications for 
usage of these metrics and the design of studies that prospect-
ively employ them. We found that each metric captures different 
aspects of sleep regularity and can be classified accordingly. SJL 
is a measure of weekly but not daily sleep regularity. StDev and 
IS are overall metrics that assess sleep regularity across multiple 
days, whereas CPD and SRI are consecutive metrics that assess 
sleep regularity from one day to the next. StDev and CPD are 
daily-value metrics that quantify regularity in a single aspect of 
sleep (e.g. midsleep time), whereas IS and SRI are whole-signal 
metrics that characterize regularity of the entire sleep–wake 
pattern. Only the whole-signal metrics (IS and SRI) are sensitive 
to naps and awakenings. Only the SRI is unbiased with respect 
to the number of days of study. And while StDev, CPD, and SRI 
measure the regularity of sleep–wake patterns, IS additionally 
assesses rhythmicity/amplitude. In the following sections, we 
discuss the theoretical and practical implications of these find-
ings, to help guide investigators in choosing and appropriately 
using sleep regularity metrics.

Main characteristics of sleep regularity metrics

Weekly vs. daily metrics: SJL vs. StDev/IS/CPD/SRI

SJL reflects weekly but not daily changes in sleep  While SJL was 
originally developed as a sleep-based metric for “living against 
one’s biological clock” [28], it can also be framed as a measure 
of sleep regularity, given its comparison of sleep on workdays 
vs. free days [34]. SJL does indeed appear to be the best metric 
for purely assessing weekly changes in sleep. However, it does 
not capture daily changes within workdays or within free days. 
In this respect, it can be considered a complementary metric to 
the other four.

Overall vs. consecutive metrics: StDev/IS vs. CPD/SRI
Multi-day vs. day-to-day timescales  The observation that 
overall metrics (StDev and IS) were not affected by scrambling 
the order of days highlights that they operate on a multi-day 
timescale. This is because these two metrics compare each 
day to the individual’s average sleep–wake pattern, meaning 
the ordering of days is irrelevant. In contrast, consecutive met-
rics (CPD and SRI) operate on a day-to-day basis, specifically 
quantifying changes between consecutive days. The use of dif-
ferent timescales has important biological implications. Cases 
where a consecutive sleep regularity metric is predictive of an 
outcome but an overall metric is not are potentially informative 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
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to the underlying mechanism (i.e. circadian disruption). For in-
stance, the health impacts of sleep patterns with low IS values 
vs. sleep patterns with low SRI values are likely to mechanis-
tically differ. The consecutive metrics CPD and SRI have also 
been used to examine effects of irregular sleep on multiple 
timescales, disaggregating within-subject (daily changes) from 
between-subject effects (average differences) in regression 
models [35]. In a recent study of 223 US college students, CPD 
averaged across ~30 days (but not average sleep duration) was a 

predictor of average well-being, while daily sleep duration (but 
not daily CPD) was a predictor of students’ daily well-being [17]. 
The findings suggest that effects of sleep regularity and duration 
on well-being may act on different timescales, with some effects 
accumulating over longer timescales.

Study  length  Because overall metrics are based on compari-
sons to the mean, their estimates can be biased when based 
on short study lengths. IS values showed the largest bias of all 

Figure 6.  Correspondence between sleep regularity metrics: StDev vs. CPD and IS vs. SRI. The upper six panels show values of StDev and CPD plotted against each other. 

The lower six panels show values of IS and SRI plotted against each other. Results are shown for Scenario 2 (A, G), Scenario 3 (naps) (B, H), Scenario 4 (awakenings) (C, 

I), Scenario 5 (all-nighters) (D, J), and Scenario 6 (study length) (C–F, K–L). Note that StDev and CPD cannot be calculated for sleep–wake patterns with awakenings, so 

panel C is empty. The dotted lines all have a zero-intercept but the slope equals 1 in the lower six panels (G–L) and 0.7/0.5 in the upper six panels (panels A–E/panel F), 

corresponding to the factors by which values of StDev are generally smaller than those of CPD. The colored lines in each panel represent the different levels in a given 

variable, for example, number of naps in panel B. The arrows represent the effect of varying a second variable, for example, in panel B the spread in points of the same 

color (for each number of naps) is due to variation in midnap timing.
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metrics over the first 7 days, whereas SRI was independent of 
study length. IS tended to quantify short recordings as more 
regular than they would be scored based on a longer recording, 
especially when sleep–wake patterns were highly irregular. The 
use of IS in studies with relatively few days of data (≤7  days) 
should therefore be considered carefully, especially when com-
paring results between studies of differing lengths. StDev and 
CPD followed a similar, albeit less pronounced pattern: StDev 
values changed slightly more over the first 7 days than those of 
CPD. The finding that overall metrics tend to overestimate sleep 
regularity when based on ≤7 days has potentially far-reaching 
implications. Many epidemiological studies, where sleep as-
sessments over long durations are not feasible, include study 
lengths of ≤7 days [36, 37]. Using overall metrics in these studies 
may underestimate the associations between irregular sleep and 
health outcomes [36]. While it may be possible to derive correc-
tions to group-averages of StDev and IS values for short-duration 
studies, it would be more difficult to correct for the bias on an in-
dividual level. Future studies should explore potential remedies 
for the short-duration bias in overall metrics or consider this 
limitation in study and analysis planning.

Sample size  In general, we found that consecutive metrics re-
quire larger sample sizes than overall metrics to achieve equiva-
lent statistical power. We have provided detailed data tables in 
the Supplemental Material to help investigators determine ap-
propriate values for their planned or finished studies, including 
mean values, 95% CIs, standard deviations, and sample sizes. 
The tables can be used for several purposes. For instance, most 
previous studies have used overall metrics, in particular StDev. 
Investigators may know what StDev to expect in their study 
population based on previous reports (e.g. sleep–wake vari-
ability has been consistently reported to be higher in younger 
than in older populations) [31, 38], but may be uncertain about 
the corresponding SRI value. Data in Supplemental Table 
S1 provide such transformations among metrics, including 
matching standard deviations needed to determine sample 
sizes. Supplemental Table S2 can be used in study design when 
investigating sleep regularity prospectively, allowing the study 
to be appropriately powered by balancing sample size, study 
length, and the type of metric. It can also guide post-hoc selec-
tion of metrics. We note that these power calculations are based 
on detecting a significant difference in sleep regularity between 
two groups. The required number of participants will likely be 
different when sleep regularity is not the outcome but the ex-
posure variable. We do, however, still expect required sample 
sizes to be larger for consecutive than overall metrics, based on 
their wider 95% CIs.

Daily-value vs. whole-signal metrics: StDev/CPD vs. IS/SRI
Multiple vs. single sources of variability  IS and SRI are whole-
signal metrics, meaning they use the entire sleep–wake time 
series. As a consequence of this approach, they combine vari-
ability from both sleep timing and duration, as well as other 
sources of variability, including naps and WASO. Very distinct 
sleep–wake patterns can result in identical values of sleep re-
gularity for these metrics, for example, an SRI value of 70 can 
be achieved by highly fragmented but otherwise stable sleep 
(same sleep onset and offset) or by non-fragmented sleep that 
varies from day to day. The fact that SRI and IS are whole-signal 

measures possibly explains why they are useful predictors for 
a wide range of health outcomes that may have very different 
underlying etiology. This is both a strength and a weakness: they 
can detect lower regularity associated with a range of pheno-
types but are consequently non-specific.

We found that both IS and SRI are more sensitive to changes 
in midsleep (with constant sleep duration) than to changes in 
sleep duration (with constant midsleep). This can be attrib-
uted to the fact that a 1-h change in sleep duration (constant 
midsleep) reduces the amount of overlap between two sleep epi-
sodes by 0.5 h at each end, whereas a 1-h change in midsleep 
(constant sleep duration) reduces the overlap by 1 h at each end.

Daily-value metrics, such as StDev and CPD, measure vari-
ability in a single aspect of sleep (e.g. midsleep time). As a re-
sult, they do not capture other forms of variability (e.g. naps and 
WASO), but their interpretation is consequently more straight-
forward. For example, a recent study examined the impact of 
irregular sleep on cardiovascular events by calculating StDev for 
sleep onset and sleep duration, and found that both were simi-
larly associated with the outcome [36]. These metrics can also 
be more readily applied to data other than sleep; for example, 
calculating CPD when the timing but not duration of events is 
known, such as repeated cognitive performance, fatigue ratings, 
or caloric intake diaries [18]. Studies using daily-value metrics 
need to make a priori assumptions about where variability is 
expected or perform exploratory analyses involving multiple 
testing.

Both daily-value and whole-signal metrics can be calculated 
from any type of multi-day recording that enables estimation 
of sleep and wake times (e.g. sleep diaries, actigraphy, PSG). The 
whole-signal metrics IS and SRI require an assessment of sleep/
wake state or activity across all 24 h of the multi-day recording. 
In practice, and in our simulations, this means that whole-signal 
metrics both require knowledge of and are sensitive to the 
timing of naps and awakenings. Sleep diary formats that collect 
less complete information, such as diaries that only measure 
the onset and offset timing of the main sleep episode and do 
not collect timing of naps or awakenings, may therefore system-
atically differ in their estimation of IS and SRI, compared with 
diary formats that do collect this information. A similar issue 
may arise with actigraphy data if naps are ignored, as some 
scoring algorithms only allow one sleep episode per 24 h [39]. In 
contrast, StDev and CPD metrics require only knowledge of the 
onset and offset timing of the main sleep episode. Notably, we 
found that IS and SRI values were sensitive to the total amount 
of time awake per night, rather than the specific timing/fre-
quency of awakenings. In the case of diary formats where the 
nightly duration but not the specific timing of awakenings is 
collected, it may therefore be valid to treat the awakenings as 
equally distributed across the nighttime sleep episode for cal-
culation of IS or SRI.

Sensitivity to naps or awakenings  The whole-signal metrics, IS 
and SRI, are the preferred metrics when there are multiple sleep 
episodes (e.g. naps) and/or sleep–wake patterns appear to be 
fragmented by awakenings. The daily-value metrics, StDev and 
CPD, are not designed to properly assess such patterns, as they 
make assumptions about the structure of sleep (e.g. one main 
sleep episode per day). The relative sensitivity of IS and SRI to 
these patterns differed. Compared to a consolidated sleep–wake 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab103#supplementary-data
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pattern (no naps or awakenings), the occurrence of naps lowered 
sleep regularity by up to ~10% of the scale range for both IS and 
SRI, whereas awakenings had a relatively greater impact on IS 
(up to ~50% for IS vs. ~15% for SRI). These findings indicate that 
IS and SRI may differentially associate with outcomes in sam-
ples that involve non-consolidated and/or highly fragmented 
sleep (e.g. shift workers, older adults).

Sensitivity to “all-nighters”  We found a striking difference in 
the behavior of IS compared with other sleep regularity metrics 
when simulating all-nighters. By increasing the number of all-
nighters, we found that values of StDev, CPD, and SRI ultimately 
returned to a “perfectly regular” score for constant wakefulness 
(no sleep at all), whereas IS yielded monotonically lower (“less 
regular”) values. This occurred in the calculation of IS because 
the column variance (i.e. variance within the same epoch across 
all days) decreased at a faster rate than the overall variance. 
While this scenario is admittedly unrealistic, it uncovered a fun-
damental property of IS. Beyond regularity, IS also measures the 
rhythmicity of a sleep–wake pattern: for a sleep–wake rhythm to 
be considered regular by IS, alternating sleep and wake states 
are required, whereas for other metrics, consistency is suffi-
cient. Under more common scenarios, where all-nighters occur 
only occasionally (less than 10% of nights), this property has 
little practical significance, but it may be relevant to metric per-
formance under extreme conditions such as rotating shiftwork 
with extended (>24  h) work shifts [40] or in early-chronotype 
night-shift workers [41].

Strengths and limitations

In this paper, we used simulated sleep–wake patterns to illus-
trate fundamental properties of the sleep regularity metrics we 
considered. Rather than basing our analysis on any particular 
dataset, we used simplified scenarios to precisely identify the 
effects of specific factors on measurements of sleep regularity. 
This approach is both a strength and a weakness. The strength 
of this approach is that it enables determination of the precise 
quantitative effects of each factor, without results depending 
on idiosyncrasies or size of any particular sample. The weak-
ness of this approach is that our results may not generalize to 
all populations. Real datasets may include co-variation between 
different sources of variance in ways that we have not modeled 
and may include different statistical distributions from those 
we have modeled. For example, rotating shift workers would not 
be expected to follow independent, normally distributed sleep 
patterns [42]. The ranges we have simulated at times also ex-
ceed levels of variability reported in the literature or are even 
unrealistic (e.g. 100% all-nighters); we chose to include such 
cases to determine how the metrics behaved under extreme 
conditions (e.g. if a U-shaped relationship would indeed return 
to the starting value).

The five metrics selected here to quantify sleep regularity 
are not exhaustive. Other metrics and approaches have been 
used in this space, including the coefficient of variation (CoV) 
[43], square of successive differences (SSD) [44, 45], mean range 
of n-day moving window [46], statistical modeling [47, 48], and 
other custom measures [49]. Another popular metric, often com-
puted alongside IS, is intradaily variability (IV), which is used to 
assess sleep fragmentation, for example, by naps and awaken-
ings [13]. We did not include IV here because our aim was to 

compare metrics that assess variability between days, rather 
than variability within days. Our findings demonstrate that 
fragmented sleep–wake patterns can be a source of variability 
between days. Studies in samples that involve sleep fragmen-
tation are encouraged to include IV alongside sleep regularity 
metrics to help discriminate between within-day and between-
day variability.

Conclusion
Our findings demonstrate that deciding which sleep regularity 
metric is most appropriate for a given study depends on a com-
bination of the type of data gathered, the study parameters 
(length and sample size), and which aspects of sleep regularity 
are considered most pertinent to the research question. We have 
exemplified such a decision process in Figure 7.

Type of data

Figure 7 (left panel): In cases where the whole epoch-by-epoch 
sleep–wake signal cannot be reconstructed (e.g. limited assess-
ments of sleep timing), investigators will be restricted to using 
daily-value metrics for sleep regularity (StDev and CPD). In 
cases where the whole sleep–wake signal is available, investiga-
tors should prefer whole-signal metrics for sleep regularity (IS 
and SRI) if naps and/or awakenings are an important feature to 
capture.

Study parameters

Figure 7 (middle panel): In the case of small samples or short 
studies, investigators should carefully consider our findings re-
lating to statistical power for each metric, as well as bias in some 
sleep regularity metrics for assessments of ≤7  days. In cases 
where multiple metrics are suitable based on the type of data 
and study parameters, consecutive metrics (CPD and SRI) are 
more likely to capture the biological impact of irregular sched-
ules via the circadian system, since day-to-day misalignment is 
what ultimately underpins circadian disruption [50].

Research question

Figure 7 (right panel): Finally, for more exploratory analyses, 
which are designed to understand the mechanisms that link 
irregularity to specific health outcomes, it may be worthwhile 
using multiple sleep regularity metrics to provide comple-
mentary information; for example, by understanding the de-
gree to which irregularity is driven by SJL (daily vs. weekly 
variation). Which metrics to combine depends on which 
aspects of irregular sleep are assumed to drive the outcome 
of interest. If an investigator wishes to determine the contri-
bution of sleep fragmentation (e.g. in populations with fre-
quent awakenings or napping, such as patients with insomnia 
or neurodegenerative diseases, or young children), combining 
a daily-value metric (which is insensitive to fragmentation) 
and a whole-signal metric (which is sensitive to fragmen-
tation) is recommended. If an investigator wishes to deter-
mine the relative importance of variability in sleep duration 
vs. sleep timing (e.g. in populations where late sleep times 
conflict with social demands to get up early) we propose 
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calculating a daily-value metric (e.g. CPD) separately for sleep 
timing and sleep duration. In populations with frequent all-
nighters, such as college students and rotating shift workers, 
researchers may wish to compare IS and SRI, to determine the 
degree to which effects are driven by rhythmicity vs. regularity 
of sleep–wake patterns, given the metrics’ differing responses 
to all-nighters. Finally, in cases where an investigator wishes 
to determine the importance of circadian disruption (e.g. in 
night shift workers), we suggest combining one overall metric 
with one consecutive metric, due to the different timescales 
they capture. Although we give examples of specific popula-
tions here, it is important to note that the choice of metrics to 
combine is ultimately driven by the research question, not the 
research population.

Sleep regularity metrics have added an important dimension 
to the measurement of sleep behaviors. Sleep regularity associ-
ates with a wide range of outcomes, often in cases where other 
dimensions of sleep behavior do not. This is possibly because ir-
regular sleep can signify certain aspects of circadian disruption, 
which traditional sleep metrics do not capture. Sleep regularity 
can be interpreted as a proxy for variability in the timing of 
zeitgebers, such as light and meals. Our understanding of sleep 
regularity and its associations with health will therefore be fur-
ther enriched by taking additional parallel measures of behav-
iors that co-vary with sleep schedules, including new ways of 
measuring variability in light exposure [51] or meal timing [18]. 
Analyses of these and other behaviors and timescales could be 
performed using methods similar to those we described here for 
sleep regularity. Each of these facets of behavior will ultimately 
help to map the mechanistic pathways from irregular schedules 
to poor health outcomes.
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