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A B S T R A C T   

The world has experienced epidemics of coronavirus infections several times over the last two decades. Recent 
studies have shown that using medical imaging techniques can be useful in developing an automatic computer- 
aided diagnosis system to detect pandemic diseases with high accuracy at an early stage. In this study, a large 
margin piecewise linear classifier was developed to diagnose COVID-19 compared to a wide range of viral 
pneumonia, including SARS and MERS, using chest x-ray images. In the proposed method, a preprocessing 
pipeline was employed. Moreover, deep pre- and post-rectified linear unit (ReLU) features were extracted using 
the well-known VGG-Net19, which was fine-tuned to optimize transfer learning. Afterward, the canonical cor-
relation analysis was performed for feature fusion, and fused deep features were passed into the LMPL classifier. 
The introduced method reached the highest performance in comparison with related state-of-the-art methods for 
two different schemes (normal, COVID-19, and typical viral pneumonia) and (COVID-19, SARS, and MERS 
pneumonia) with 99.39% and 98.86% classification accuracy, respectively.   

1. Introduction 

The COVID-19 virus is very contagious and has been spreading 
worldwide, leading to an ongoing pandemic. The world has encountered 
occurrences of other severe coronavirus infections over the last few 
decades, including [1]:  

• The Severe Acute Respiratory Syndrome (SARS) epidemic origi-
nating in Guangdong, China in 2002–2003;  

• The Middle East Respiratory Syndrome (MERS) epidemic originating 
in Jeddah, Saudi Arabia in 2011;  

• The current COVID-19 pandemic that originated in Wuhan, China in 
2019. 

Various types of medical images can be used to diagnose this disease. 
Two commonly used types are Computed Tomography (CT) and x-rays 
of the chest [2]. 

In emerging diseases such as COVID-19, the number of available 
samples is initially small and, sometimes, insufficient to train deep 
learning models well because they tend to overfit the training data. The 
present study introduces a large margin piecewise linear (LMPL) clas-

sifier as a proper learning method to get the most out of the available 
training data. We took advantage of the efficiency of large margin 
classifiers to construct a piecewise linear model. The new algorithm, 
called LMPL, is a novel formulation with interesting benefits, such as 
more accurate results than the traditional approaches like support vec-
tor machine (SVM) classifiers and k-Nearest Neighbors (kNN). The 
proposed LMPL addresses the following challenges that are of great 
importance in machine learning:  

• Small sample size: Medical datasets are difficult to find due to privacy 
constraints that limit data sharing;  

• Overfitting to training data: This problem limits the generality of 
models to unseen data, but it is essential, particularly in transfer 
learning tasks, where the distribution of source and target can be so 
different.  

• Nonlinearity: Most classes or clusters in real-world problems are not 
linearly separable.  

• Multiclass classification: Some classifiers, e.g., SVMs, have a binary 
structure and need extensions to solve this problem, such as the One 
versus One (OvO) and One versus All (OvA) approaches. 
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• Multi-modality: When a class has several modalities, its samples are 
located in various positions of the search space. This makes it diffi-
cult for the most common classifiers to work well. 

In this paper, the VGG-net model [3] was used for feature extraction. 
Indeed, the deep VGG-Net19 model was retrained by transfer learning to 
learn deep features of x-ray images. The deep features were obtained 
from the seventh fully connected layer, i.e., the last layer before the 
output. The activation values of both pre- and post-rectified linear units 
(ReLU) were marked as deep features with feature vectors of dimension 
4096. A preprocessing pipeline was developed for quality improvement 
of x-ray images. The canonical correlation analysis (CCA) was per-
formed for feature fusion [4], and the fused features were passed to the 
LMPL classifier. 

The introduced approach was applied for two classification tasks in 
this study.  

I. Distinguishing COVID-19 from typical viral pneumonia and normal 
x-ray images  

II. Distinguishing COVID-19 from the two severe CoV family members, 
i.e., SARS and MERS 

1.1. Contribution 

The contributions of this paper are outlined as follows:  

• In order to learn discriminant and robust feature representations, a 
novel COVID-19 diagnostic method is introduced that integrates a 
deep feature extraction and fusion methodology.  

• To gain the most informative knowledge from limited labeled data, 
an LMPL classifier is introduced using a cellular structure to better 
exploit the limited training data. 

2. Related work 

Since the spread of COVID-19, there has been an increasing effort to 
advance deep models for COVID-19 detection using medical images, 
such as CT scans and x-rays. In a review of the literature, some of the 
recent developments in deep networks for COVID-19 diagnosis are 
mentioned herein. Ozturk et al. [5] developed DarkCovidNet to di-
agnose COVID-19 using raw chest x-ray images. Their network reached 
the accuracy of 98.08% and 87.02% in binary and multiclass schemes. 
Taik et al. [6] introduced the COVIDGR-1.0 dataset and proposed the 
COVID-SDNet method that combines segmentation, data-augmentation, 
and data transformation. They achieved a high generalization accuracy 
of 97.72%. Mahmud et al. [7] proposed a deep CNN called CovXNet, 
which uses depthwise dilated convolution for efficient feature extraction 
from x-ray images. At first, a large number of normal and Non-COVID 
pneumonia (viral and bacterial) were used to train the proposed Cov-
XNet. Then, transfer learning was used to fine-tune and retrain the net 
by a smaller number of COVID-19 and other pneumonia cases. CovXNet 
was designed and trained by various image resolutions, and a stacking 
algorithm was employed for optimization. CovXNet achieved an accu-
racy of 90.2% for multiclass classification into normal, COVID19, viral, 
and bacterial pneumonia. Rahman et al. [8] compiled a large x-ray 
dataset with its corresponding lung mask to identify COVID-19. They 
investigated the effect of different image enhancement techniques on 
COVID-19 detection. Various deep CNNs were trained on plain and 
segmented lung images. The method reached the best performance with 
96.2% accuracy in plain images by ChexNet and 95.11% classification 
accuracy in segmented lung images by DenseNet201. Jain et al. [9] 
compared multiple deep CNN models, including Inception V3, Xception, 
and ResNeXt, among which Xception had the best performance with the 
highest accuracy of 97.97% in classifying COVID-19 using chest x-ray 
images. Toğaçar et al. [10] restructured the COVID-19 dataset by 

employing the fuzzy color technique as a preprocessing method. The 
images organized together with the original images were stacked. 
SqueezNet and MobileNetV2 were used as deep feature extractors, along 
with the SVM classifier, and trained on the stacked dataset. They ob-
tained 96.28% classification accuracy using MobileNetV2. Hemdan 
et al. [11] introduced COVIDX-Net, which consists of seven CNN models. 
They employed a deep learning model to detect COVID-19 using x-ray 
images. Karakanis et al. [12] proposed a lightweight deep learning ar-
chitecture to detect COVID-19 from x-ray images. The authors used a 
conditional generative adversarial network for image augmentation by 
generating syntactic x-ray images. They achieved 98.7% accuracy in 
binary classification between COVID-19 and normal pneumonia and 
98.3% accuracy in a three-class model with normal, COVID-19, and 
bacterial pneumonia. Wang and Wong [13] developed an accurate deep 
network named COVID-Net for COVID-19 diagnosis with a classification 
accuracy of 92.4% in the two-class problem. Ioannis et al. [14] used 224 
COVID-19 images to develop a deep model. They achieved the accuracy 
of 98.75% for a two-class problem and 93.48% for a three-class problem. 
Jin et al. [15] introduced a hybrid ensemble method that includes three 
steps to identify COVID-19 using x-ray images. At first, pre-trained 
Alexnet is used as a feature extractor; then, the ReliefF method is 
adopted to sort extracted deep features; and after reducing features’ 
dimension, an SVM classifier is trained on selected features. They ob-
tained 98.64% overall accuracy in multiclass classification of normal, 
COVID-19, and viral pneumonia. Narin et al. [16] employed the 
ResNet50 model for COVID-19 diagnosis and obtained an accuracy of 
98% using chest x-ray images. Sethy and Behera [17] extracted deep 
features from x-ray images employing several CNN models and classified 
them with an SVM classifier. They reported the best performance for the 
model using the ResNet50 feature extraction and an SVM classifier. 
Minaee et al. [18] developed a deep learning framework to predict 
COVID-19 in chest x-rays. They fine-tuned four CNN models, including 
ResNet18, ResNet50, SqueezeNet, and DenseNet, and achieved prom-
ising results in several tasks. Various other studies have also been 
recently conducted on COVID-19 detection, employing several deep 
learning models with CT images [2,19–23] and Lung Ultrasound (LUS) 
[24]. 

A few studies have focused on the diagnosis of SARS and MERS with 
x-ray chest images. In a study on MERS, Hamimi [25] reported that 
features like the indicators of pneumonia could be found in the chest CT 
scan and x-ray images. Xie et al. [26] introduced a model to distinguish 
SARS from typical pneumonia using X-ray images. They employed three 
conventional classifiers: neural networks, C4.5, and Classification And 
Regression Tree (CART). Tahir et al. [27] employed CNN models for 
COVID-19 detection using a dataset containing SARS and MERS images. 
The authors developed a novel image preprocessing technique and deep 
learning algorithms and reported the outperformance of four CNN 
methods, including SqueezeNet, ResNet18, Inceptionv3, and Dense-
Net201, among which InceptionV3 achieved the highest accuracy 
(98.22%). Abbas et al. [28] proposed a method based on DeTraC deep 
CNN to classify COVID-19 using chest x-ray images. The DeTraC model 
consisted of three phases, i.e., Decomposition, Transfer, and Composi-
tion. DeTraC uses a class decomposition mechanism to investigate class 
boundaries with any irregularities in the image dataset. They achieved 
93.1% accuracy in a three-class problem, including normal, COVID-19, 
and SARS pneumonia. Xuanyang et al. [29] introduced a SARS detection 
system using a lung segmentation technique and feature extraction. 
They applied and compared several classification methods, including 
neural networks, decision trees, and regression trees. The highest 
detection accuracy was achieved from the regression trees. However, for 
pneumonia classification, NN-based models produced reasonably good 
results. 

As presented in this section, researchers worldwide have introduced 
several approaches to detect COVID-19, as well as SARS or MERS 
pneumonia. Since the features of lung infections are the same in these 
diseases, it is problematic for an expert to distinguish them; so, well- 

N. Azouji et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 139 (2021) 104927

3

trained models are needed to develop an accurate and useful method in 
the treatment and decision-making. This study devises an effective 
method to distinguish the current COVID-19 from a wide range of viral 
pneumonia, including the same CoV family members like SARS and 
MERS. 

3. Materials and methods 

This section provides the details of the proposed COVID-19 diag-
nostic method. After preprocessing, in order to enhance x-ray images, 
the popular VGG-Net is used as a deep feature extractor from x-ray 
images, and the CCA feature fusion technique is applied to merge the 
extracted features. The LMPL classifier is introduced for coronavirus 
detection. Fig. 1 illustrates a schema of the proposed COVID-19 diag-
nostic model. 

3.1. X-ray dataset 

In this research, several open-access chest x-ray datasets are com-
bined as a new large dataset on the coronavirus family. The combined 
dataset consists of six classes whose details are summarized in Table 1. 
The total number of images of the dataset is 3387. The dataset is 
balanced by image augmentation to reach 6179 images, as mentioned in 
Sec. III. 3) Image augmentation. 

3.2. Image preprocessing pipeline 

Medical images often contain a low dynamic range. This affects the 
overall performance of image processing approaches. Hence, it may 
become harder to evaluate them visually [8]. The preprocessing is 
performed to enhance the image information and visual quality through 
contrast enhancement. Another critical issue in medical imaging is 
imbalanced data, where the number of positive cases is lower than that 
of the negative ones.  

1) Resizing x-ray images 

In order to feed the images into CNNs, they should be resized to the 
input dimensions of the deep network. For VGG-Net, images are resized 
to 224 × 224 pixels.  

2) Contrast limited adaptive histogram equalization 

Histogram equalization (HE) is an ordinary method widely used to 

Fig. 1. Schematic of the overall proposed diagnostic system.  

Table 1 
Details of the X-ray image dataset.  

Types No. of X-ray 
Images 

Source Database 

Covid-19 423 SIRM-ITALIAN [31]  
Novel Coronavirus 2019 Dataset [32]  
Radiopaedia [33]  
Chest Imaging (Spain) at thread 
reader [34]  
COVID-19 Radiography Database 
[35] 

SARS 134 SARS, MERS X-ray Images Dataset 
[36] 

MERS 144 SARS, MERS X-ray Images Dataset 
[36] 

Normal 1341 Chest X-ray Images (pneumonia) [37] 
Typical Viral 

Pneumonia 
1345 Chest X-ray Images (pneumonia) [37]  

Fig. 2. CLAHE image enhancement. (a) COVID-19 X-ray image, (b) Histogram 
of (a), (c) CLAHE enhanced COVID-19 image, and (d) Histogram of (b). 
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improve the contrast of an image and make algorithms more robust 
under varying conditions. HE produces a uniform distribution by 
computing the transformation function and it can help adjust an image 
by spreading out the most common intensity values of pixels in the range 
of 0 (black) to 255 (white). The contrast limited adaptive histogram 
equalization (CLAHE) [30] is an improved HE approach that enhances 
local contrast and edges in small image regions by calculating the 
equalization for each part in the image. Fig. 2 illustrates the image 
enhancement by the CLAHE method. It can be seen that the histogram is 
stretched around the entire spectrum and over all pixels of the image, 
which should facilitate the extraction of homogeneous features across all 
datasets.  

3) Image augmentation 

In order to extend the number of training samples and avoid the risk 
of overfitting, the data is augmented by applying different types of 
transformations. This makes the dataset suitable for deep learning. Deep 

learning algorithms such as CNNs generally outperform a larger dataset 
rather than a smaller one. Besides, the imbalanced class distribution has 
a considerable impact on the effectiveness of the classification models. 
Consequently, the size of classes is balanced in the training set through 
data augmentation (see Fig. 3). Translation can be a very useful trans-
formation to avoid positional bias in the data. In other words, translation 
is very helpful as most lesions can be located almost anywhere in the 
image. 

In this work, rotation and translation operations are used to increase 
the number of images (upsampling) and balance the class instances with 
augmentation. Images are rotated 5, 10, 15, and 30◦, and instances are 
also translated in a horizontal or vertical direction by 5%, 10%, 15% in 
the SARS and MERS classes that have few images, i.e., 134 and 144 ones, 
respectively. Finally, 1072 and 1152 images are obtained in the SARS 
and MERS classes, respectively. In the COVID-19 class with 423 in-
stances, 15-degree rotation and 10% translation are performed to reach 
1269 images. No augmentation is applied on normal and typical viral 
Pneumonia with 1341 and 1345 images. All augmented x-ray images 
can be found in the Zenodo repository (https://zenodo.org/recor 
d/4691987). 

3.3. Deep feature extraction 

Deep features are extracted by pre-trained CNN models. The fully 
connected (FC) layers are used to extract deep features. Since VGG-Net 
[3] was successful in extracting deep features for various tasks, the 
VGG-Net is employed as the main feature extractor to obtain robust 
automatic features. 

The input image size in VGG networks is 224 × 224 × 2. Fig. 4 il-
lustrates an architectural overview of the VGG-Net. When applying 
VGG-Net as a deep feature extraction network, the classification layer, i. 
e., the last fully connected layer, is removed. The features can be 
extracted as raw values or after being transformed by a ReLU, where an 
output x is mapped to max(0, x). The activation values from the last 

Fig. 3. Image augmentation. (a) Image rotation by 30◦ counter-clockwise, and 
(b) Image translation in the horizontal and vertical direction by 15%. 

Fig. 4. VGG-Net architecture.  
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hidden layer are extracted as the first deep feature vector (pre-ReLU 
features, 4096), while the post-ReLU feature set (post-ReLU features, 
4096) is extracted as the second feature vector. For datasets not large 
enough, transfer learning can be used. In this paper, fine-tuning is 
applied with transfer learning. This is done by retraining VGG-Net (the 
weights of the model trained using the ImageNet dataset) on the COVID- 
19 x-ray images and transferring the deep features that are extracted to 
achieve better performance. When class labels are used to fine-tune the 
weights of the network, the extracted features are more discriminative in 
classifying the problem to distinguish COVID-19 from other viral 
pneumonia. 

3.4. Deep feature fusion 

The obtained deep features are combined to acquire more informa-
tive fusion features. This can help to minimize the impact of inadequate 
features obtained from a single CNN. Indeed, feature fusion efficiently 

produces features that comprise rich information describing the image 
well. Appropriately combining two or more feature sets is not a trivial 
task. In this study, a well-known parallel feature fusion technique, i.e., 
CCA, is used. Feature fusion based on CCA creates two sets of trans-
formations based on the correlation between two feature vectors 
resulting in transformed features with a higher correlation than the 
original feature sets. Suppose that X ∈ Rm×n and Y ∈ Rk×n are two 
feature sets, where n indicates the number of samples, and m and k 
denote the dimensions of X and Y, respectively. Let Sxx ∈ Rm×m and Syy ∈

Rk×k represent the covariance matrices of X and Y, respectively, and 
Sxy ∈ Rm×k be the covariance matrix between sets, in which Syx = ST

xy. 
The overall covariance matrix S = R(m+k)×(m+k) can be presented by (1): 

S=
(

cov(X) cov(X, Y)
cov(Y,X) cov(Y)

)

=

(
Sxx Sxy
Syx Syy

)

(1) 

The goal of CCA is to define a linear combination of these feature 
sets, as shown in (2). 

X* =WT
x X, Y* = WT

y Y (2)  

where Wx,Wy are associated coefficients of XandY, respectively, that 
maximize the pair-wise correlation across the two feature sets. This 
objective is presented in (3): 

corr(X*,Y*)=
cov(X*, Y*)

var(X*).var(Y*)
(3)  

where, cov(X∗, Y∗) = WT
x SxyWy, var(X∗) = WT

x SxxWx, and var(Y∗) =

WT
y SyyWxy. The combination of the transformed features is achieved by 

addition (summation) or concatenation, as follows in (4) and (5). 

Z =X* + Y* =

(
WX
WY

)T(X
Y

)

(4)  

Z =

(
X*

Y*

)

=

(
WX 0
0 WY

)T(X
Y

)

(5)  

where the resulting parallel fused feature matrix Z contains the canon-
ical correlation discriminant features. Fig. 5 describes the CCA deep 
feature fusion procedure, where deep features are extracted by VGG-net 
from the input x-ray images. 

3.5. Large margin piecewise linear (LMPL) classifier 

In the last stage, fused features are used for the classification by the 
proposed LMPL classifier. A cellular structure is developed in this study 
such that space is partitioned by more than one hyper-plane, unlike in 

Fig. 5. Canonical correlation analysis (CCA) feature fusion.  

Fig. 6. An example of nonlinear multi-class classification with the proposed LMPL classifier. (a) The initial grid structure is constructed by eight initial hyperplanes, 
and (b) The final piecewise linear decision boundary is obtained by the LMPL classifier. 
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traditional models, e.g., SVMs, into some regions called cells. At first, a 
grid of cells is generated by predefined hyper-planes, as shown in Fig. 6 
(a). 

In Fig. 6(a), there are three classes: star (red), square (blue), and 
diamond (violet). Then, a cell table is created to store the information of 
each cell, such as the number of samples and its class label. The class 
labels are assigned to cells based on majority voting in each cell. Af-
terward, the parameters of the hyperplanes are tuned one by one in it-
erations. In other words, one of the hyper-planes is adjusted, considering 
that the others are fixed. Changing this hyperplane changes the region of 
cells bound to it from one side. Hence, the covering cell of a few in-
stances may change. According to the actual label of each sample and 

the associated label of the cells, samples may prefer to be on a specific 
side of the hyper-plane. This preference is considered their virtual labels. 
For example, if an instance prefers the right side of the hyperplane, its 
virtual label is 1, and if it chooses the left side, its virtual label is − 1. 
After virtual labeling, there is a binary classification problem for the 
hyperplane under tuning. There are three sample groups in virtual la-
beling, as follows:  

1. Normal: These samples are classified correctly on one side of the 
hyperplane. Their loss function is defined by the famous hinge loss, 
as shown in (6): 

Fig. 7. Representation of classes by t-SNE Embedding. (a) Scatter plot in the two-dimensional space of Experiment1: Normal, COVID-19, and typical viral pneu-
monia, (b) 3D scatter plot of (a), (c) Scatter plot in the two-dimensional space of Expriment2: COVID-19, SARS, and MERS. and (d) 3D scatter plot of (c). according to 
its cell label. Cell labels are stored in the obtained cell table in the training phase. 

Fig. 8. Representation of the LMPL decision boundary on t-SNE embedding features with four initial hyperplanes (a) two remaining hyperplanes of Expriment1: 
Normal, COVID-19, and Typical Viral Pneumonia, and (b) three remaining hyperplanes in Expriment2: COVID-19, SARS, and MERS. 
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Table 2 
Comparison of deep CNNs as an end-2-end network and as a feature extractor along with the proposed LMPL classifier (CNN+) in Experiment 1: Normal, COVID-19, and 
typical viral pneumonia.  

Method Performance Metrics (%) 

Feature ExtractorLayer Sensitivity (Recall) Precision (PPV) F1-score Accuracy Average Rank 

ResNet18   96.40 (4) 96.35 (5) 96.37 (4) 96.17 (4) 4.3 

ResNet18+ 97.60 (7) 98.06 (6) 97.82 (6) 97.52 (6) 6.3 

ResNet50  Avg_pool 96.20 (7) 96.16 (6) 96.17 (6) 95.91 (6) 6.3 

ResNet50+ 98.43 (3) 98.49 (4) 98.45 (4) 98.10 (4) 3.8 

ResNetV2  Avg_pool 94.04 (10) 92.61 (10) 93.28 (11) 93.18 (10) 10.3 

ResNetV2+ 97.48 (8) 97.07 (10) 97.26 (10) 97.01 (9) 9.3 

Inception  pool5 96.40 (4) 96.40 (4) 96.35 (5) 96.01 (5) 4.5 

Inception+ 98.41 (4) 98.69 (3) 98.54 (3) 98.36 (3) 3.3 

InceptionV3  Avg_pool 95.80 (8) 94.95 (9) 95.35 (8) 95.11 (8) 8.3 

InceptionV3+ 98.26 (5) 98.10 (5) 98.18 (5) 97.75 (5) 5.0 

Xception  Avg_pool 92.00 (11) 92.11 (11) 92.05 (10) 91.73 (11) 10.8 

Xception+ 97.24 (9) 97.34 (9) 97.29 (9) 96.98 (10) 9.3 

DenseNet201  Avg_pool 97.48 (2) 97.66 (2) 97.56 (2) 97.30 (3) 2.3 

DenseNet201+ 98.85 (2) 98.86 (2) 98.85 (2) 98.58 (2) 2.0 
SqueezeNet  Pool10 95.14 (9) 95.13 (8) 95.06 (9) 94.76 (9) 8.8 

SqueezeNet+ 95.39 (11) 94.75 (11) 95.03 (11) 95.08 (11) 11.0 

ShuffleNet  Node_200 96.34 (6) 95.68 (7) 96.00 (7) 95.82 (7) 6.8 

ShuffleNet+ 97.20 (10) 97.56 (8) 97.36 (8) 97.07 (8) 8.5 

AlexNet  fc7 97.24 (3) 97.57 (3) 97.40 (3) 97.33 (2) 2.8 

AlexNet+ 97.67 (6) 97.84 (7) 97.75 (7) 97.39 (7) 6.8 

VGGNet19  fc7 98.21(1) 98.43 (1) 98.32 (1) 98.10 (1) 1.0 

VGGNet19+ 98.87 (1) 99.08 (1) 98.97 (1) 98.81 (1) 1.0 

Avg. on CNN Avg on CNNþ 95.93 95.73 95.81 95.58   
97.76 97.80 97.77 97.51  

*Bold numbers indicate the best performance. 

Table 3 
Comparison of deep CNNs as an end-2-end Network and as a feature extractor along with the proposed LMPL classifier (CNN+) in Experiment 2: COVID-19, SARS, and 
MERS pneumonia.  

Method Performance Metrics (%) 

Feature ExtractorLayer Sensitivity (Recall) Precision (PPV) F1-score Accuracy Average Rank 

ResNet18   87.47 (5) 84.52 (7) 85.86 (5) 88.02 (4) 5.3 

ResNet18+ 91.97 (8) 90.66 (7) 91.22 (7) 92.72 (7) 7.3 
ResNet50  Avg_pool 88.11 (4) 84.90 (6) 86.35 (4) 87.87 (5) 4.8 

ResNet50+ 94.25 (6) 91.26 (5) 92.64 (5) 93.58 (5) 5.3 

ResNetV2  Avg_pool 73.10 (11) 76.76 (9) 74.56 (11) 78.74 (10) 10.3 

ResNetV2+ 91.45 (10) 88.99 (9) 90.12 (8) 91.58 (9) 9.0 

Inception  pool5 83.76 (8) 85.38 (5) 84.38 (8) 86.59 (8) 7.3 

Inception+ 95.68 (3) 94.35 (3) 94.95 (3) 95.72 (3) 3.0 

InceptionV3  Avg_pool 80.70 (9) 76.38 (10) 77.95 (9) 80.46 (9) 9.3 

InceptionV3+ 92.60 (7) 90.90 (6) 91.70 (6) 93.15 (6) 6.3 

Xception  Avg_pool 75.04 (10) 74.49 (11) 74.75 (10) 78.60 (11) 10.5 

Xception+ 95.46 (4) 89.00 (8) 90.10 (9) 91.73 (8) 7.3 

DenseNet201  Avg_pool 91.83 (3) 91.60 (2) 91.57 (2) 92.87 (2) 2.3 

DenseNet201+ 96.59 (2) 96.20 (2) 96.39 (2) 96.72 (2) 2.0 
SqueezeNet  Pool10 85.64 (6) 84.51 (8) 85.02 (7) 87.30 (7) 7.0 

SqueezeNet+ 85.39 (11) 86.12 (11) 85.45 (11) 87.87 (11) 11.0 

ShuffleNet  Node_200 84.68 (7) 85.95 (4) 85.27 (6) 87.73 (6) 5.8 

ShuffleNet+ 91.80 (9) 88.71 (10) 90.10 (9) 91.16 (10) 9.5 

AlexNet  fc7 92.08 (2) 91.07 (3) 91.39 (3) 92.72 (3) 2.8 

AlexNet+ 94.87 (5) 91.99 (4) 93.33 (4) 94.15 (4) 4.3 

VGGNet19  fc7 92.32 (1) 92.58 (1) 92.45 (1) 93.30 (1) 1.0 

VGGNet19+ 96.64 (1) 96.29 (1) 96.46 (1) 96.86 (1) 1.0 
Avg. on CNN Avg. on CNNþ 85.88 84.38 84.50 86.75   

93.34 91.32 92.04 93.20  

*Bold numbers indicate the best performance. 
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l(x)
Normal̃y

= max
(
0, 1 − ỹ

(
wT .x + b

) )

where : ỹ = { − 1,+1}
(6)  

where ỹ is the virtual label of sample x, and the hinge loss function is 
convex.  

2. Negative don’t care: These samples are classified incorrectly on both 
sides of the hyperplane. Therefore, it is not important on which side 
they are located, unless it is tested and proved that changing the 
position of samples affects the hyperplane. If the sample is located on 
the positive side, it tries to be located on the negative side, and vice 
versa. In other words, they are forced to be near the hyper-plane. 

This loss function is defined by (7). By this function, the samples 
always get a penalty since they are misclassified. 

l(x)DontCare− =max(l(x)Normal(+1) , l(x)Normal(− 1) ) (7)    

3. Positive don’t care: These samples are classified correctly on both 
sides of the hyperplane. Like in the second gro (negative don’t care), 
it is not important on which side of the hyperplane they are. How-
ever, in this case, their distance to the hyper-plane is tested to be 
maximized. The total loss is defined by (8): 

l(x)DontCare+ =min(l(x)Normal(+1) , l(x)Normal(− 1) ) (8) 

The positive don’t care group is discarded here since its samples are 
classified correctly and help us to preserve convexity in the final 
objective function. Therefore, according to the two first groups, the 
proposed LMPL classifier optimizes each hyperplane based on the 
following objective function (9): 

minimize
w

1
2

w2 +

(

C1

∑

x∈Normal
l(x)

Normal(̃y)

)

+

(

C2

∑

x∈DC−

l(x)DontCare−

)

(9) 

The scalar values C1 and C2 control the balance between the struc-
tural and empirical error. In this paper, both C1 and C2 are set to 1000. 

The defined objective is optimized by quadratic programming. After 
optimizing each hyperplane, the cell table is updated in each iteration. 
Additional hyperplanes that fall out of the search space and are not 
useful in the classification are removed. After several iterations, the final 
piecewise linear decision boundary is constructed. In the test step, an 
unseen sample x is classified. 

As mentioned, the LMPL classifier utilizes the cellular structure (see 
Fig. 6. (a)). Each cell forms a rule with a decision space regarding its 
position with respect to the hyper-planes. By assigning a label to each 
cell, both multiclass classification and multi-modality are structurally 
supported (the same as a decision tree). However, contrary to decision 
trees, the separator hyper-planes are shared in many decision spaces to 
use both local and global attributes of the training sample for class 
separation. These cells are then adjusted by tuning the initial hyper-
planes from Fig. 6 (a) to Fig. 6 (b) to optimize a large margin classifier 
inspired by SVMs. The use of global hyper-planes and the large margin 
objective function allows the method to be generalized and prevents the 
training data’s overfitting. Fig. 6. (b) illustrates the obtained LMPL 
piecewise linear decision boundary where three classes are classified 
well by five remaining hyperplanes. As presented, the decision bound-
aries are in a piecewise linear form that makes the LMPL non-linearly 
separatable samples in the original space instead of using kernel 
methods. After adjusting hyperplanes, additional hyperplanes that are 

Table 4 
Comparison of commom classifiers with the proposed LMPL classifier in 
Experiment 1: Normal, COVID-19, and typical viral pneumonia.  

Method Performance Metrics (%) 

Sensitivity 
(Recall) 

Precision 
(PPV) 

F1- 
score 

Accuracy Average 
Rank 

NaiveBayes 97.94 (12) 97.63 (12) 97.78 
(12) 

97.75 
(12) 

12.0 

kNN (k = 3)  98.61 (6) 98.72 (6) 98.67 
(6) 

98.55 (6) 6.0 

kNN (k= 5)  98.53 (7) 98.75 (5) 98.64 
(7) 

98.52 (8) 6.8 

kNN (k = 7)  98.44 (8) 98.60 (8) 98.52 
(8) 

98.39 (9) 8.3 

OvO SVM 98.42 (10) 98.52 (10) 98.47 
(10) 

98.30 
(10) 

10.0 

OvA SVM 98.82 (3) 98.61 (7) 98.71 
(5) 

98.68 (4) 4.8 

Decision Tree 98.45 (9) 98.56 (9) 98.50 
(9) 

98.55 (6) 8.3 

AdaBoostM2 98.63 (5) 98.96 (4) 98.80 
(4) 

98.65 (5) 4.5 

TotalBoost 98.68 (4) 99.06 (3) 98.87 
(3) 

98.78 (3) 3.3 

Random 
Forrest 

98.84 (2) 99.00 (2) 98.92 
(2) 

98.84 
(1) 

1.8 

SoftMax 98.21 (11) 98.43 (11) 98.32 
(11) 

98.10 
(11) 

11.0 

Proposed 
LMPL 

98.87 (1) 99.08 (1) 98.97 
(1) 

98.81 (2) 1.3 

*Bold numbers indicate the best performance. 

Table 5 
Comparison of common classifiers with the proposed LMPL classifier in Exper-
iment 2: COVID-19, SARS, and MERS pneumonia.  

Method Performance Metrics (%) 

Sensitivity 
(Recall) 

Precision 
(PPV) 

F1- 
score 

Accuracy Average 
Rank 

NaiveBayes 89.20 (12) 94.23 (10) 91.25 
(12) 

92.58 
(12) 

11.5 

kNN (k = 3)  96.08 (2) 95.43 (4) 95.72 
(3) 

96.29 (3) 3.0 

kNN (k = 5)  95.31 (5) 94.95 (6) 95.08 
(6) 

95.72 (5) 5.3 

kNN (k = 7)  94.35 (8) 94.57 (9) 94.42 
(8) 

95.15 (8) 8.3 

OvO SVM 94.64 (7) 93.10 (11) 93.84 
(9) 

95.01 (9) 9.0 

OvA SVM 95.86 (4) 94.73 (7) 95.28 
(4) 

96.01 (4) 4.8 

Decision Tree 94.95 (6) 95.20 (5) 95.06 
(7) 

95.72 (5) 5.8 

AdaBoostM2 93.07 (10) 94.66 (8) 93.82 
(10) 

94.58 
(10) 

9.5 

TotalBoost 93.63 (9) 96.83 (1) 95.13 
(5) 

95.72 (5) 5.0 

Random 
Forrest 

96.03 (3) 95.86 (3) 95.93 
(2) 

96.58 (2) 2.5 

SoftMax 92.32 (11) 92.58 (12) 92.45 
(11) 

93.30 
(11) 

11.3 

Proposed 
LMPL 

96.64 (1) 96.29 (2) 96.46 
(1) 

96.86 
(1) 

1.3 

*Bold numbers indicate the best performance. 
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not useful in the classification are removed. Therefore, regarding not 
only the sample size but also the distribution and complexity of the 
decision boundaries, the complexity of the model is tuned by removing 
redundant hyperplanes. The large-margin approach forces the redun-
dant hyperplanes to be removed. This structure not only makes it 
feasible to work with small sample-size problems but also prevents 
overfitting of the training data by using a large-margin approach for all 
the hyperplanes. 

Fig. 7 represents classes by t-distributed Stochastic Neighbor 
Embedding (t-SNE) in 2-D and 3-D for both experiments. An extended 
version of this figure is shown in Fig. 8. A multiclass problem is shown 
with multi-modal small samples in each class. Class samples are 
segmented into parts. Hence, the class pairs may not be linearly 

separable or they would have a very small margin if can be separated, 
whereas others can be piecewise linearly separated with acceptable 
margins. 

Fig. 8 illustrates the obtained decision boundary of the introduced 
LMPL classifier on t-SNE embedding features with four initial hyper-
planes. After a few iterations, the LMPL adjusts hyperplanes and 
removes additional hyperplanes. Moreover, piecewise linear decision 
boundaries are obtained that can separate classes. The initial number of 
hyperplanes is random (possibly 8 or 16), and the number of iterations 
can be determined manually (for example, 100). Algorithm 1 indicates 
the whole process of the proposed diagnostic method, and the steps of 
the introduced LMPL classifier are shown in Algorithm 2. 

Table 6 
Comparison of without fusion and fusion methods with the proposed LMPL classifier in Experiment 1: Normal, COVID-19, and typical viral.  

Method Performance Metrics (%)  

Sensitivity (Recall) Precision (PPV) F1-score Accuracy Average Rank 

Without Fusion preRelu 98.64 (8) 98.81 (8) 98.72 (8) 98.52 (8) 8.0 
postRelu 98.87 (6) 99.08 (6) 98.97 (7) 98.81 (7) 6.5 

Concat Classical 99.22 (4) 99.33 (4) 99.28 (4) 99.13 (4) 4.0 
DCA 98.86 (7) 99.08 (6) 98.99 (6) 98.87 (6) 6.3 
CCA 99.37 (2) 99.48 (1) 99.42 (2) 99.32 (2) 1.8 

Sum Classical 99.27 (3) 99.38 (3) 99.33 (3) 99.20 (3) 3.0 
DCA 98.91 (5) 99.18 (5) 99.04 (5) 99.00 (5) 5.0 
CCA 99.42 (1) 99.47 (2) 99.45 (1) 99.39 (1) 1.3 

*Bold numbers indicate the best performance. 

Table 7 
Comparison of without fusion and fusion methods with the proposed LMPL classifier in Experiment 2: COVID-19, SARS, and MERS pneumonia.  

Method Performance Metrics (%)  

Sensitivity (Recall) Precision (PPV) F1-score Accuracy Average Rank 

Without Fusion preRelu 95.74 (8) 96.03 (8) 95.88 (8) 96.29 (8) 8.0 
postRelu 96.64 (5) 96.29 (7) 96.46 (7) 96.86 (7) 6.5 

Concat Classical 97.94 (4) 96.97 (4) 97.44 (4) 97.72 (4) 4.0 
DCA 96.44 (7) 96.88 (5) 96.66 (5) 97.00 (5) 5.5 
CCA 98.66 (2) 97.87 (2) 98.26 (2) 98.43 (2) 2.0 

Sum Classical 98.10 (3) 97.39 (3) 97.74 (3) 98.00 (3) 3.0 
DCA 96.48 (6) 96.58 (6) 96.52 (6) 97.00 (5) 5.8 
CCA 98.89 (1) 98.56 (1) 98.73 (1) 98.86 (1) 1.0 

*Bold numbers indicate the best performance. 

Table 8 
Comparison of different preprocessing methods in Experiment1: Normal, COVID-19, and typical viral.  

Method Performance Metrics (%) 

Sensitivity (Recall) Precision (PPV) F1-score Accuracy Average Rank 

No Preprocessing 96.09 (5) 95.89 (5) 95.99 (5) 96.40 (5) 5.0 
Image Adjustment 97.50 (2) 97.57 (2) 97.52 (2) 97.52 (2) 2.0 
Histogram Matching 96.93 (4) 96.64 (4) 96.78 (4) 97.01 (4) 4.0 
Histogram Equalization 97.42 (3) 97.39 (3) 97.39 (3) 97.43 (3) 3.0 
CLAHE 99.42 (1) 99.47 (1) 99.45 (1) 99.39 (1) 1.0 

*Bold numbers indicate the best performance. 

Table 9 
Comparison of different preprocessing methods in Experiment 2: COVID-19, SARS, and MERS pneumonia.  

Method Performance Metrics (%) 

Sensitivity (Recall) Precision (PPV) F1-score Accuracy Average Rank 

No Preprocessing 89.77 (5) 91.60 (4) 90.62 (5) 92.15 (5) 4.75 
Image Adjustment 97.57 (3) 96.63 (2) 97.09 (3) 97.57 (2) 2.5 
Histogram Matching 94.78 (4) 91.19 (5) 92.80 (4) 93.72 (4) 4.25 
Histogram Equalization 97.94 (2) 96.47 (3) 97.18 (2) 97.43 (3) 2.5 
CLAHE 98.89 (1) 98.56 (1) 98.73 (1) 98.86 (1) 1.0 

*Bold numbers indicate the best performance. 
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Algorithm 1. The Proposed Diagnostic Method. 

Algorithm 2. Large Margin Piecewise Linear (LMPL) Classifier. 

4. Experimental results 

4.1. Experimental setup 

The 5-fold cross-validation (CV) was utilized. Of the original labeled 
data, 80% were used as the training set, and the remaining samples 
(20%) were employed as the test set to evaluate the model (unseen in-
stances). Results were averaged to produce the final confusion matrix. 
MATLAB (2020a) was utilized for training, evaluating, and testing 
different algorithms. The experiments were run on a computer with an 
Intel Core i7 @4.0 GHz processor, 24 GB RAM, 128 GB SSD, and a 64-bit 
Windows 10 operating system. We used mini-batch gradient descent 
optimization with momentum update of β = 0.9 and learning rates of 
α = 1e− 4 and α = 3e− 4. Besides, we selected 16 images as the size of 
mini-batch and five back-propagation epochs. The details of the training 
and test instances in each fold can be found in the Zenodo repository 
(https://zenodo.org/record/4691987). 

4.2. Experimental results and analysis 

In this study, two experiments were carried out for two different 
classification problems:  

• Experiment1: Normal, COVID-19, and typical viral pneumonia  
• Experiment2: COVID-19, SARS, and MERS pneumonia  

1) Performance analysis 

Tables 2 and 3 compare several deep CNNs as an end-to-end network 
and as a feature extractor with the proposed LMPL (named CNN+). 
Experiments show that the proposed LMPL classifier performed better 
than the conventional SoftMax classifier in all CNNs. VGGNet and 
VGGNet+ were the best among the networks in both experiments. As 
illustrated in Tables 4 and 5, the proposed LMPL outperformed the 
conventional classifiers in terms of performance metrics in both 

Table 10 
Comparison of different augmentation techniques in Experiment1: Normal, 
COVID-19, and typical viral pneumonia.  

Method Performance Metrics (%) 

Sensitivity 
(Recall) 

Precision 
(PPV) 

F1- 
score 

Accuracy Average 
Rank 

No 
Augmentation 

96.12 (5) 96.88 (5) 96.48 
(5) 

96.37 (5) 5.0 

Brightness & 
Contrast 

98.48 (3) 98.22 (4) 98.35 
(3) 

98.10 (4) 3.5 

Cropping & 
Fliping 

98.50 (2) 98.40 (2) 98.45 
(2) 

98.20 (2) 2.0 

Gaussian & Salt 
and pepper 
noise 

98.34 (4) 98.24 (3) 98.29 
(4) 

98.20 (2) 3.25 

Rotation and 
Translation 

99.42 (1) 99.47 (1) 99.45 
(1) 

99.39 
(1) 

1.0 

*Bold numbers indicate the best performance. 

Table 11 
Comparison of different augmentation techniques in Experiment 2: COVID-19, 
SARS, and MERS pneumonia.  

Method Performance Metrics (%) 

Sensitivity 
(Recall) 

Precision 
(PPV) 

F1- 
score 

Accuracy Average 
Rank 

No 
Augmentation 

95.12 (5) 96.44 (5) 95.74 
(5) 

95.56 (5) 5.0 

Brightness & 
Contrast 

97.84 (3) 97.98 (3) 97.89 
(2) 

97.62 (3) 2.75 

Cropping & 
Fliping 

97.52 (4) 98.05 (2) 97.76 
(3) 

97.56 (4) 3.25 

Gaussian & Salt 
and pepper 
noise 

97.89 (2) 97.66 (4) 97.76 
(3) 

97.68 (2) 2.75 

Rotation and 
Translation 

98.89 (1) 98.56 (1) 98.73 
(1) 

98.86 
(1) 

1.0 

*Bold numbers indicate the best performance. 
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Experiments 1 and 2, compared to ensemble methods, including Ada-
boostM2, Total Boost, and Random Forests consisting of 100 trees as 
weak learners. Moreover, Tables 6 and 7 demonstrate the comparison of 
different feature fusion methods and pre-ReLU and post-ReLU deep 
features without fusion. Concatenation and summation techniques were 
used in Classical, CCA, and DCA feature fusion methods. The sum and 
concat operations generate 4096 and 4096 × 2 = 8192 final fused fea-
tures, respectively. 

The classical method is to group two sets of feature vectors which 
simply concatenates the two feature sets into a single vector. Discrimi-
nant Correlation Analysis (DCA) [38] maximizes the variance between 
classes, as well as the correlation among features through several feature 
sets. 

We observed that regarding the performance metrics, the CCA fusion 
method with summation achieved outstanding results with 99.39% and 
98.86% average accuracies in comparison with the other approaches. 

Tables 8 and 9 compare the final performance of the proposed 
method with the other preprocessing techniques for both experiments. 
The effectiveness of different augmentation techniques in the final 
performance of the proposed method is compared in Tables 10 and 11 
for both experiments using the following parameters.  

• Brightness: Brightness is the amount of hue. As brightness varies 
from 0 to 1, colors change from black to white. Brightness jitter shifts 
the darkness and lightness of an input image. The brightness of the 
input image is adjusted by an offset selected randomly from the 
range [0.1, 0.3]. As expected, the image appears brighter with the rise 
in brightness. 

• Contrast: The contrast jitter randomly adjusts the difference be-
tween the darkest and brightest regions in an input image. The 
contrast of the input image is adjusted by a scale factor selected 
randomly from the range [1.2, 1.4]. As the contrast increases, 
shadows become darker, and highlights become brighter.  

• Cropping: The image is cropped to the target size 800 × 800 from 
the center of the image.  

• Flipping: A reflection transformation is created that flips the input 
image in the left-right direction (X dimension) and top-bottom di-
rection (Y dimension).  

• Gaussian noise: A zero-mean, Gaussian white noise with a variance 
of 0.01 is added to the image.  

• Salt & pepper noise: Salt and pepper noise is added with a noise 
density of 0.1. This affects almost 10% of the pixels.  

2) Statistical analysis 

The Friedman test was used to further analyze the experimental 
performance of the comparable methods statistically. It is a simple, 
nonparametric test and safe for comparing at least three related samples. 
The test has no assumptions about the primary distribution of data. It 
ranks the algorithms for each metric independently such that the algo-
rithm with the highest performance is ranked first, the second-best is 
ranked second, and this procedure continues for the next ranks. Rj 
represents the average rank of the jth method depending on different 
metrics listed in Tables 2–11 

In other words, Rj is calculated as follows 

Rj =
1
n
∑n

i=1
rj

i (10) 

and rj
i denotes the rank of the jth method on the ith metric. In the case 

of ties, i.e., when two algorithms perform similarly, the same ranks are 
assigned. 

It can be seen from Tables 2–11 that the proposed method improved 
the performance significantly and achieved the best average rank in all 
cases. These tables show a significant difference in the effectiveness of 
the algorithms. Based on the Friedman test, the performance of the 
proposed MLPL classifier could be significantly better. In order to 
determine the best fusion method, the averaged ranks of different fusion 
techniques were calculated, as shown in Tables 6 and 7 As presented in 
the tables, CCA fusion techniques with summation improved the per-
formance considerably and achieved the best rank in both experiments. 

Fig. 9. False negative predictions in COVID-19 image classification (predicted as Viral pneumonia) and the corresponding heat maps: (a) first COVID-19 image (b) 
Heat map visualization of (a), (c) Second COVID-19 image, and (d) Heat map of (c). 
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Moreover, a comparison between preprocessing methods is per-
formed in Tables 8 and 9 As can be seen, CLAHE obtained the first rank. 
The proposed augmentation techniques (rotation and translation) also 
showed the best effectiveness and achieved the best rank in comparison 
to other augmentation techniques (see Tables 10 and 11).  

3) Visual analysis 

We provided the occlusion sensitivity [39] that provides a detailed 
visual analysis of the extracted deep features through the fine-tuned 
VGG-Net, as shown in Fig. 9. Occlusion sensitivity is a technique to 
generate visual descriptions of the CNN model predictions. It provides 

an insight into the internal workings of a classifier based on deep CNNs. 
Misclassifications or unpredicted results can be based on reasonable 

clarifications. Using heat maps, we investigated the prediction regions. 
False-negative examples were examined to find out the reasons under-
lying the hidden classification problem. The spatial parts that contrib-
uted most to false-negative predictions in COVID-19 classification were 
identified by occlusion sensitivity heat mapping, as shown in Fig. 9. The 
standard jet color-map is used where red and yellow denote regions with 
high contribution to the false-negative predictions, and blue indicates 
regions with a low contribution. Manual inspection showed that in these 
false-negative examples, the network incorrectly attended on some 
edges and corners of images that are not relevant to COVID-19. 

Table 12 
Literature review of the state–of–the-art deep models using X-ray images on associated datasets (PNA stands for pneumonia).  

Study No. of cases Method Accuracy (%) 

Ozturk et al. [5] 125 COVID-19 DarkCovidNet  
500 No-finding 98.08 
125 COVID-19  
500 Pneumonia  
500 No-finding 87.02 

Tabik et al. [6] 426 COVID-19 COVID-SD Net 97.72 
426 Normal 

Rahman et al. [8] 3619 COVID-19 ChexNet 96.29 
8851 Normal 
6012 Pneumonia 

Toğaçar et al. [10] 295 COVID-19 MobileNetV, SVM 96.28 
65 Normal 
98 Pneumonia 

Ioannis et al. [14] 224 COVID-19 VGG-19 93.48 
700 Pneumonia 
504 Healthy 

Karakanis et al. [12] 275 COVID-19 ResNet, CGAN  
275 Normal 98.7 
275 COVID-19  
275 Normal  
275 Bacterial PNA 98.3 

Wang and Wong [13] 53 COVID-19 COVID-Net 92.4 
8066 Healthy 

Sethy and Behra [17] 25 COVID-19 ResNet 50, SVM 95.38 
25 No-finding 

Jain et al. [9] COVID-19 Xception 97.97 
Normal 
Pneumonia 

Jin et al. [15] 543 COVID-19 AlexNet 98.64 
600 Normal 
600 Viral PNA 

Hemdan et al. [11] 25 COVID-19 COVIDX-Net 90.00 
25 No-finding 

Narin et al. [16] 50 COVID-19 Res-Net 50 98.00 
50 No-finding 

Mahmud et al. [7] 305 COVID-19 CovXNet  
305 Normal 97.4 
305 COVID-19  
305 Normal  
305 Viral PNA  
305 Bacterial PNA 90.3 

Minaee et al. [18] 184 COVID-19 SqueezeNet 92.30 
5000 Non-COVID 
6054 Pneumonia 

Abbaas et al. [28] 80 Covid-19 DeTraC 93.10 
105 Normal 
11 SARS 

Tahir et al. [27] 423 COVID-19 InceptionV3 97.73 
134 SARS 
144 MERS 

Proposed method (Transferred deep features of VGG-Net,  
deep feature fusion, the LMPL classifier) 

423 COVID-19 VGG-Net19  
1341 Normal  
1345 Viral PNA 99.39 
423 COVID-19  
134 SARS  
144 MERS 98.86  
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The latest deep models using x-ray images (on not necessarily com-
mon datasets) are summarized in Table 12. 

5. Discussion 

LMPL improved the performance of all CNNs significantly and ach-
ieved the best results with a few iterations (five ones in our experiments) 
to avoid overfitting with small sample sizes and achieve better gener-
alization. The LMPL outperformed conventional classifiers and provided 
very competitive results compared to ensemble methods with 100 trees 
as weak learners. However, the complexity of ensembles was high and 
needed space to train multiple models. The LMPL is simple and needs 
smaller space to produce a good model. 

We can conclude that the fusion of deep features is helpful and im-
proves the results even with classical concatenation and summation, 
which are fast and easy to apply. The obtained deep feature vectors were 
fused to acquire more informative features that minimized the impact of 
insufficient features obtained from one CNN model. Feature fusion 
efficiently produces features that comprise rich information describing 
the image well. Appropriately combining two or more features is not a 
trivial task. Due to similar visual features in various viral pneumonia, 
especially severe coronavirus of the SARS and MERS family, the DCA 
feature fusion strategy could not find useful information to maximize 
distances between classes. 

However, x-rays are widely available and the most common 
approach as they are low-cost. CT scans are a more powerful method, so 
a chest CT scan might be needed in some cases to get a better picture and 
a more detailed view. Indeed, x-rays can help as a first-line diagnostic 
tool in most cases if they are detectable by this technology. In this study, 
we studied how much x-ray images could help to identify COVID-19, and 
we plan to extend our model for CT scans as well. 

6. Conclusions and future work 

Early COVID-19 detection can benefit preparing an appropriate 
treatment plan and facilitate medical decision-making. In this study, an 
LMPL classifier was presented for the diagnosis of coronavirus among a 
wide range of other viral pneumonia using raw chest x-ray images. The 
introduced method was shown to solve two classification problems: 
normal, COVID-19, and typical viral pneumonia; COVID-19, SARS, and 
MERS pneumonia. The results showed the outstanding average accuracy 
of the proposed method, equal to 99.39% and 98.86%, respectively, for 
both schemes, compared to state-of-the-art deep models. 

In the future, the objective function of the introduced learning model 
can be extended to obtain clustering and semi-supervised models. To 
improve the LMPL classifier, positive don’t care samples can be 
considered in tuning hyperplanes to get larger margins and better 
generalization of the model. However, such loss functions are not 
convex. Therefore, the solutions to deal with non-convex objective 
functions like gradient descent should be investigated. Other binary 
classifiers could be developed by the proposed cellular model. Applying 
kernels in the proposed classifier may help to consider complicated 
nonlinear decision boundaries. Extracting more effective features to 
make a more accurate and robust model for treating other emerging 
diseases with insufficient data can be considered in the future. The 
proposed pipeline can be adapted for chest CT scans to diagnose COVID- 
19 pneumonia, as well as other image processing applications of in-
dustrial and healthcare systems such as industrial cameras, process 
control, industrial robotics, and object recognition. 
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