Table 2.
Method | Performance Metrics (%) |
|||||
---|---|---|---|---|---|---|
Feature ExtractorLayer | Sensitivity (Recall) | Precision (PPV) | F1-score | Accuracy | Average Rank | |
96.40 (4) | 96.35 (5) | 96.37 (4) | 96.17 (4) | 4.3 | ||
97.60 (7) | 98.06 (6) | 97.82 (6) | 97.52 (6) | 6.3 | ||
Avg_pool | 96.20 (7) | 96.16 (6) | 96.17 (6) | 95.91 (6) | 6.3 | |
98.43 (3) | 98.49 (4) | 98.45 (4) | 98.10 (4) | 3.8 | ||
Avg_pool | 94.04 (10) | 92.61 (10) | 93.28 (11) | 93.18 (10) | 10.3 | |
97.48 (8) | 97.07 (10) | 97.26 (10) | 97.01 (9) | 9.3 | ||
pool5 | 96.40 (4) | 96.40 (4) | 96.35 (5) | 96.01 (5) | 4.5 | |
98.41 (4) | 98.69 (3) | 98.54 (3) | 98.36 (3) | 3.3 | ||
Avg_pool | 95.80 (8) | 94.95 (9) | 95.35 (8) | 95.11 (8) | 8.3 | |
98.26 (5) | 98.10 (5) | 98.18 (5) | 97.75 (5) | 5.0 | ||
Avg_pool | 92.00 (11) | 92.11 (11) | 92.05 (10) | 91.73 (11) | 10.8 | |
97.24 (9) | 97.34 (9) | 97.29 (9) | 96.98 (10) | 9.3 | ||
Avg_pool | 97.48 (2) | 97.66 (2) | 97.56 (2) | 97.30 (3) | 2.3 | |
98.85 (2) | 98.86 (2) | 98.85 (2) | 98.58 (2) | 2.0 | ||
Pool10 | 95.14 (9) | 95.13 (8) | 95.06 (9) | 94.76 (9) | 8.8 | |
95.39 (11) | 94.75 (11) | 95.03 (11) | 95.08 (11) | 11.0 | ||
Node_200 | 96.34 (6) | 95.68 (7) | 96.00 (7) | 95.82 (7) | 6.8 | |
97.20 (10) | 97.56 (8) | 97.36 (8) | 97.07 (8) | 8.5 | ||
fc7 | 97.24 (3) | 97.57 (3) | 97.40 (3) | 97.33 (2) | 2.8 | |
97.67 (6) | 97.84 (7) | 97.75 (7) | 97.39 (7) | 6.8 | ||
fc7 | 98.21(1) | 98.43 (1) | 98.32 (1) | 98.10 (1) | 1.0 | |
98.87 (1) | 99.08 (1) | 98.97 (1) | 98.81 (1) | 1.0 | ||
Avg. on CNN Avg on CNN+ | 95.93 | 95.73 | 95.81 | 95.58 | ||
97.76 | 97.80 | 97.77 | 97.51 |
*Bold numbers indicate the best performance.