Table 3.
Method | Performance Metrics (%) |
|||||
---|---|---|---|---|---|---|
Feature ExtractorLayer | Sensitivity (Recall) | Precision (PPV) | F1-score | Accuracy | Average Rank | |
87.47 (5) | 84.52 (7) | 85.86 (5) | 88.02 (4) | 5.3 | ||
91.97 (8) | 90.66 (7) | 91.22 (7) | 92.72 (7) | 7.3 | ||
Avg_pool | 88.11 (4) | 84.90 (6) | 86.35 (4) | 87.87 (5) | 4.8 | |
94.25 (6) | 91.26 (5) | 92.64 (5) | 93.58 (5) | 5.3 | ||
Avg_pool | 73.10 (11) | 76.76 (9) | 74.56 (11) | 78.74 (10) | 10.3 | |
91.45 (10) | 88.99 (9) | 90.12 (8) | 91.58 (9) | 9.0 | ||
pool5 | 83.76 (8) | 85.38 (5) | 84.38 (8) | 86.59 (8) | 7.3 | |
95.68 (3) | 94.35 (3) | 94.95 (3) | 95.72 (3) | 3.0 | ||
Avg_pool | 80.70 (9) | 76.38 (10) | 77.95 (9) | 80.46 (9) | 9.3 | |
92.60 (7) | 90.90 (6) | 91.70 (6) | 93.15 (6) | 6.3 | ||
Avg_pool | 75.04 (10) | 74.49 (11) | 74.75 (10) | 78.60 (11) | 10.5 | |
95.46 (4) | 89.00 (8) | 90.10 (9) | 91.73 (8) | 7.3 | ||
Avg_pool | 91.83 (3) | 91.60 (2) | 91.57 (2) | 92.87 (2) | 2.3 | |
96.59 (2) | 96.20 (2) | 96.39 (2) | 96.72 (2) | 2.0 | ||
Pool10 | 85.64 (6) | 84.51 (8) | 85.02 (7) | 87.30 (7) | 7.0 | |
85.39 (11) | 86.12 (11) | 85.45 (11) | 87.87 (11) | 11.0 | ||
Node_200 | 84.68 (7) | 85.95 (4) | 85.27 (6) | 87.73 (6) | 5.8 | |
91.80 (9) | 88.71 (10) | 90.10 (9) | 91.16 (10) | 9.5 | ||
fc7 | 92.08 (2) | 91.07 (3) | 91.39 (3) | 92.72 (3) | 2.8 | |
94.87 (5) | 91.99 (4) | 93.33 (4) | 94.15 (4) | 4.3 | ||
fc7 | 92.32 (1) | 92.58 (1) | 92.45 (1) | 93.30 (1) | 1.0 | |
96.64 (1) | 96.29 (1) | 96.46 (1) | 96.86 (1) | 1.0 | ||
Avg. on CNN Avg. on CNN+ | 85.88 | 84.38 | 84.50 | 86.75 | ||
93.34 | 91.32 | 92.04 | 93.20 |
*Bold numbers indicate the best performance.