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Background
With the rapid development of Next-Generation Sequencing (NGS) technologies, more 
and more genomic assays have been developed to profile the genome from various 
aspects, such as RNA expression [1], protein-DNA binding [2], chromatin accessibility 
[3] and 3D structure [4, 5]. By integrating data from such types of different assays or 
the so-called multi-omics approach, biologists can comprehensively investigate genome 
dynamics during biological processes. This methodology has been successfully applied 
to many biological fields, such as neurological diseases [6], development of nervous sys-
tem [7] and virus infection [8, 9]. Data visualization, especially the genome track like 
plots, are crucial for exploring or demonstrating some local or global properties of the 
genomics data.

Abstract 

Background:  Data visualization, especially the genome track plots, is crucial for 
genomics researchers to discover patterns in large-scale sequencing dataset. Although 
existing tools works well for producing a normal view of the input data, they are not 
convenient when users want to create customized data representations. Such gap 
between the visualization and data processing, prevents the users to uncover more 
hidden structure of the dataset.

Results:  We developed CoolBox—an open-source toolkit for visual analysis of genom-
ics data. This user-friendly toolkit is highly compatible with the Python ecosystem and 
customizable with a well-designed user interface. It can be used in various visualization 
situations like a Swiss army knife. For example, to produce high-quality genome track 
plots or fetch commonly used genomic data files with a Python script or command 
line, to explore genomic data interactively within Jupyter environment or web browser. 
Moreover, owing to the highly extensible Application Programming Interface design, 
users can customize their own tracks without difficulty, which greatly facilitate analyti-
cal, comparative genomic data visualization tasks.

Conclusions:  CoolBox allows users to produce high-quality visualization plots and 
explore their data in a flexible, programmable and user-friendly way.

Keywords:  Genomics, Visualization, Genome browser

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Xu et al. BMC Bioinformatics          (2021) 22:489  
https://doi.org/10.1186/s12859-021-04408-w

*Correspondence:   
guoliang.li@mail.hzau.edu.cn; 
gcao@mail.hzau.edu.cn 

4 College of Bio‑Medicine 
and Health, Huazhong 
Agricultural University, 
Wuhan, China6 Hubei Key 
Laboratory of Agricultural 
Bioinformatics, Hubei 
Engineering Technology 
Research Center 
of Agricultural Big Data, 3D 
Genomics Research Center, 
Huazhong Agricultural 
University, Wuhan, China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04408-w&domain=pdf


Page 2 of 9Xu et al. BMC Bioinformatics          (2021) 22:489 

Many visualization tools have been developed to meet these demands, and these tools 
can be classified into three categories: (1) Command-line plotting tool [10, 11], (2) Graphi-
cal User Interface(GUI) software [12], and (3) Web-based track browser [13–15]. In 
different situations, each kind of tools has its own advantages and limitations. As for com-
mand-line tools, they are convenient for bioinformaticians to produce plots or results easily 
but require Linux command line skills. GUI tools are friendly to people who are not skilled 
at programming and command line. Web-based browsers could share visualization results 
between colleagues. However, they are not efficient in transmission and have relative high 
latency between the websites and customers. Moreover, for program developers, GUI and 
web-based tools are not as convenient as command-line tools and plotting packages, which 
could be locally installed and easily called between stacks. Despite the above tools work 
well for providing an overview of the input genomic data. However, during actual scien-
tific research, users need a detail comparative and analytical data visualization more than 
just the basic view of the data. For example, to visualize the differential contact interaction 
(DCI) of two Hi-C contact matrices [16] or predicted chromatin loops on the matrix [17]. 
In most cases, bioinformaticians work in programmatic and interactive environments like 
RStudio, IPython console and Jupyter notebook to complete the data analysis, algorithm 
development and visualization tasks. However, there is a gap between the data analysis eco-
system and the existing genomic data visualization tools. Researchers spend a lot of time 
on unnecessary stuffs like file format conversion and environment switching. Therefore, a 
versatile tool that fills the gap will significantly facilitate the genomics study.

To fill this gap, we developed CoolBox, a versatile toolkit for exploration-driven visualiza-
tion of genomic data. It combines advantages of existing tools and is highly compatible with 
the Python scientific ecosystem, highly customizable, easy to use with intuitive interface 
design and simple installation procedure. It can be used in different scenarios: (1) Python 
script or another python package for data fetching and plotting; (2) Shell as a command-
line plotting tool; (3) Jupyter notebook environment for data fetching, plotting, and explo-
ration; and (4) Web application for exploration and demonstration within the web browser.

Implementation
The plotting system of CoolBox is based on the matplotlib package. A part of the plotting 
code in the CoolBox is a fork from pyGenomeTracks package. [10] The data stored in big-
Wig, “.cool” and ”.hic” file format are loaded through pybbi (https://​github.​com/​nvict​us/​
pybbi), cooler [18] and straw [19] packages. Pairwise interaction data in Browser Extensible 
Data Paired-End (BEDPE) and Pairs format is indexed and randomly accessed using the 
pairix software (https://​github.​com/​4dn-​dcic/​pairix). Other text-based genomic feature 
data format, like Browser Extensible Data (BED), Gene transfer format (GTF), and Bed-
Graph is indexed and random accessed using the tabix [20] software. The widget panel in 
the GUI is implemented by using the ipywidgets package.

Results and discussion
Flexible and user‑friendly API and CLI for producing high‑quality genome track plots

CoolBox provides an Application Programming Interface (API) for Python script or 
Jupyter environment as well as a Command Line Interface (CLI) for Shell. The inter-
face design is inspired by the popular R package ggplot2 [21]. It allows users to compose 

https://github.com/nvictus/pybbi
https://github.com/nvictus/pybbi
https://github.com/4dn-dcic/pairix
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their figures with highly intuitive syntax. In CoolBox, users can use the “+” operator 
in Python or “add” command in Shell to compose low-level track elements to a higher-
level figure. For example, to compose track objects of various kinds of genomic data into 
a single frame and interactively review interested regions in genome browser with few 
lines of Python codes or Shell commands (Fig. 1).

Besides the 1-dimensional viewing mode supported by most other visualization tools, 
CoolBox supports a joint-view mode that enables users to visualize trans or cis-remote 
regions in a Hi-C contact matrix (Fig. 2).

Most sets of commonly generated genomic assay data such as RNA-Seq, ChIP-Seq, 
ATAC-Seq, Hi-C, HiChIP [22] data which stored in BedGraph, bigwig [23], cool [18], 
.hic [19] and other file formats (see Table 1) can be visualized in CoolBox by different 
kinds of tracks. Most tracks’ features (color, height, style, etc.) can also be configured 
in the same way via the API or CLI. In the CoolBox plotting system, the plot contains 
not only a single layer. Users can put another layer (Coverage) upon the original plot to 
produce more comprehensive and high-quality figures. Furthermore, figures can be gen-
erated in different formats, including PNG, JPEG, PDF, and SVG. More details about the 
API and CLI are available in the online documents and user manual.

Interactive exploration and reproducible analysis on genomic data

As shown in Fig. 3, CoolBox provides a GUI for interactive data visualization, by which 
users can explore different genomic regions by operating a simple widget panel and visu-
alize the data within a specific region.

Besides, the data and the figures are bound together by Python objects. In this way, 
users can get the precise data of each track within the current view of the genomic 
region through the API. This design facilitates comparative visualization and statistical 
analysis. CoolBox is also a general genomic-file reading package. Data within a particular 

Fig. 1  CoolBox has a clear and intuitive syntax to compose genome browser in both API and CLI mode. 
Inspired by the ggplot2 syntax, figures in CoolBox can be composed and adjusted (color, height, style 
etc.) from different tracks and features by using the ‘+‘ operator in API or ‘add‘ in CLI, almost every figure 
composed in the API mode has a paired CLI composing command that produces identical figures. This 
design facilitates bioinformaticians who work regularly in both environments
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genome region can be retrieved in a short time, as almost all supported file formats can 
be indexed and randomly accessed.

Moreover, by leveraging the power of the Jupyter notebook, the visualization result 
and the entire process can be recorded in the notebook. It is convenient for sharing the 
visualization result and reproducing the whole analysis by other researchers.

A testing and visualizing framework for new algorithm development

Owing to the user-friendly and highly extensible API design, users can imple-
ment their custom tracks without any difficulty, thus enabling seamless coopera-
tion in Python-based algorithm development and scientific research. The algorithm 

Fig. 2  Joint (2d) view example, CoolBox can compose big figure which put frames around a center contact 
matrix. This allows to visualize the trans or cis remote (off-diagonal) contact matrix along with genome 
features. A Joint view on an on-diagonal region. B Joint view on an cis remote region, which shows the 
magnified detail of the orange box marked loop region that contains two chromatin loops in (A)

Table 1  A part of CoolBox builtin tracks for visualizing different kinds of genomics data formats

Track type File format Description

XAxis None Coordinate of the reference genome

Spacer None For add vertical space between two tracks

BigWig .bigwig Track for bigWig file, draw the histogram

BedGraph .bedgraph Track for BedGraph file, draw the histogram

BAM .bam BAM track for visualize the coverage or alignment

BED .bed For visualization genome annotation, like refSeq genes and chromatin states

GTF .gtf Track of GTF file, for visualize gene annotation

Arcs .pairs, .bedpe Show the chromosome interactions get from ChIA-PET, HiChIP or Hi-C loop data

HiCMat .cool, .mcool, .hic Show the chromosome contact matrix from Hi-C data

Virtual4C .cool, .mcool, .hic Virtual 4C track, using Hi-C data to mimic 4C

DiScore .cool, .mcool, .hic Directional index of Hi-C matrix for detecting TAD

InsuScore .cool, .mcool, .hic Insulation score of Hi-C matrix for inferring TAD borders

HiCDiff .cool, .mcool, .hic Show the difference between two contact matrix

Selfish .cool, .mcool, .hic Apply the selfish algorithm [16] on two contact matrices to detect differential 
contact interactions

SNP .tsv Track for show SNPs Manhattan plot



Page 5 of 9Xu et al. BMC Bioinformatics          (2021) 22:489 	

developer can check and visualize the intermediate results produced by their algo-
rithm and adjust parameters simultaneously. In addition, as CoolBox uses an object-
oriented programming paradigm in its design, users can reuse each track’s codes by 
inheritance, including data extraction and drawing-related functions. In most cases, 
users only need to write algorithm-related core parts. The most tedious part includ-
ing raw-data reading, preprocessing, and figure drawing are handed over to Cool-
Box through inheritance (see method section and user manual for implementation 

Fig. 3  A CoolBox figure representing differential interactions of Hi-C contact matrices. Shown Hi-C and 
RNA-Seq data are produced from the process of hematopoietic differentiation [24]. Its clearly that there 
is a topological association domain (TAD) formation at the Abca13 gene region and its RNA expression is 
up-regulated at the same time after the differentiation. A The widgets panel of CoolBox browser, used for 
zooming, sliding, and locating the genome region. When moving to a new region, the figure draw bellow will 
be updated automatically. B Hi-C track of short-term hematopoietic stem cell (ST) shows the contact map 
of ST sample. The color bar indicates the normalized value of the contact map. C Hi-C track of granulocyte 
(GR). D Differential contact interaction result of the Selfish algorithm [16] on ST and GR Hi-C contact map. 
The color bar indicates the q-value (BH adjusted p value) produced from the DCI analysis. Darker color means 
this interaction has a lower q-value; that is to say, two contact maps are more diverse at this location. E Hi-C 
Diff track. It shows the difference between GR and ST’s z-score normalized contact matrices. The red region 
of the matrix indicates where GR has a more significant contact frequency compared to ST, and the opposite 
for blue areas. F BigWig track of ST RNA-Seq data, showing the RNA expression level of ST in this region. G 
BigWig track of GR RNA-Seq data. H A gene annotation track shows the corresponding genes within this 
genomic region
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details). In this way, bioinformaticians can free themselves from those repetitive pro-
cedures and only focuses on the data post-processing.

We demonstrate the advantages by implementing a track that visualizes the outputs 
of the Peakachu algorithm [17], which is a RandomForest based method for detecting 
loops in the Hi-C contact matrix. As depicted in Fig. 4, the main part of the whole track 
contains merely 20 lines of Python code. The data fetching and plotting functionality 
are fully reused by inheriting Cool/ArcsBase Track base class. Furthermore, the custom-
defined track is empowered to be used in CLI, API, and browser mode in couple with 
other built-in tracks. More details include a reproducible code block and can be found in 
the online documents and user manual.

Comparison with other existing visualization tools

As stated before, there is an urgent need for better visualization tools to accelerate the 
integration and mining of biological data. Therefore, more and more visualization tools 
have been developed in recent years. A comparison of features between CoolBox and 
these tools is listed in Table 2. Most of the visualization tools require a tedious installa-
tion process and are operated through the command line. Before visualization, the data 
needs to be preprocessed through specific steps, and then a static or interactive web 
interface is generated.

Fig. 4  An example to define custom tracks that display Hi-C contact matrix along with peaks detected 
by Peakachu algorithm [17]. An example of peak prediction result is demonstrated in the right panel. The 
upper triangular matrix shows the peak p-value output by Peakachu algorithm. The predicted peaks drawn 
as blue squares upon the original matrix is shown in the lower triangular matrix. The Hi-C matrices and 
the peaks upon them will be automatically recomputed and updated after the change of genome region. 
The left panel is the full Runnable python codes used for generating the right panel. The custom track is 
implemented by following the same intuitive and clear design pattern as other built-in tracks: i.e., reusing the 
data fetching and plotting functionality as much as possible. For this figure, the functionality of fetching and 
plotting contact matrix with peaks are totally reused by inheriting Cool/ArcsBase track base class, and the rest 
of the codes merely calls the computing function of the peachachu package. After the track definition, we 
can see that the custom track is born to support being used in a ggplot2-like syntax with other tracks, and 
this capability is also valid in CLI and GUI mode
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The visualization and data processing of most visualization tools are dissociated, 
which is not convenient for bioinformaticians whose routine works rely on Python-
based scientific computation ecosystem. Except for the CLI mode supported by most 
visualization tools, the API that the CoolBox has been used internally and exposed 
follows the same design as the CLI, making switching between these two modes with 
no pain. More importantly, since the API in CoolBox combines computation and vis-
ualization, users can dynamically add different tracks or even custom tracks in the 
python notebook while processing raw data or developing new methods.

Conclusion
CoolBox is a versatile toolkit for the visualization and exploration of multi-omics data 
in the Python ecosystem. It provides a user-friendly ggplot2-like syntax for compos-
ing various kinds of tracks in CLI, API, GUI and web browser mode. More impor-
tantly, its built on a highly extensible plotting system that allows users to implement 
their custom tracks without wasting time on data fetching and figure plotting pro-
cedures. Through the power of Jupyter notebook, it provides a convenient way for 
bioinformaticians to exploit it’s versatility for better personalized data manipulation 
and demonstration. It could also increase the reproducibility of genomic data visuali-
zation tasks as codes and figures are all organized into the same page.

Table 2  Summary of genomic visualization tools

Tools Programming 
language

API plot CLI plot Online access

CoolBox Python � � �

pyGenomeTracks Python �

gcMapExplorer Python �

HiCPlotter Python �

HiGlass Python, HTML, CSS, JS � �

YueLab Browser HTML, CSS, JS �

WashU Browser HTML, CSS, JS �

TADkit HTML, CSS, JS �

JuiceBox.js HTML, CSS, JS �

JuiceBox Java

 GUI Input Installation Customization

Web and Jupyter Raw data Bioconda or PyPI Python knowledge, very easy

Raw data PyPI Python knowledge, easy

Local Preprocessed data PyPI Python knowledge, easy

Preprocessed data Manually install

Web and Jupyter Preprocessed data, 
via network

Docker Web knowledge

Web Via network

Web Via network

Web Preprocessed data, 
via network

Manually install

Web Via network

Local Raw data Download
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Availability and requirements

Project name: CoolBox
Project home page: https://​github.​com/​GangC​aoLab/​CoolB​ox
Operating system(s): Linux, macOS, Windows WSL
Programming language: Python
Other requirements: All software requirements are listed in https://​github.​com/​
GangC​aoLab/​CoolB​ox/​blob/​master/​envir​onment.​yml
License: GPLv3
Any restrictions to use by non-academics: GPLv3 licensing restrictions apply.

Abbreviations
NGS: Next-generation sequencing; GUI: Graphical user interface; API: Application programming interface; CLI: Command 
line interface.
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