
CoolBox: a flexible toolkit for visual analysis
of genomics data
Weize Xu1,2, Quan Zhong3, Da Lin1,2, Ya Zuo1, Jinxia Dai1,2, Guoliang Li3,4,5,6* and Gang Cao1,2,3,4* 

Background
With the rapid development of Next-Generation Sequencing (NGS) technologies, more
and more genomic assays have been developed to profile the genome from various
aspects, such as RNA expression [1], protein-DNA binding [2], chromatin accessibility
[3] and 3D structure [4, 5]. By integrating data from such types of different assays or
the so-called multi-omics approach, biologists can comprehensively investigate genome
dynamics during biological processes. This methodology has been successfully applied
to many biological fields, such as neurological diseases [6], development of nervous sys-
tem [7] and virus infection [8, 9]. Data visualization, especially the genome track like
plots, are crucial for exploring or demonstrating some local or global properties of the
genomics data.

Abstract 

Background:  Data visualization, especially the genome track plots, is crucial for
genomics researchers to discover patterns in large-scale sequencing dataset. Although
existing tools works well for producing a normal view of the input data, they are not
convenient when users want to create customized data representations. Such gap
between the visualization and data processing, prevents the users to uncover more
hidden structure of the dataset.

Results:  We developed CoolBox—an open-source toolkit for visual analysis of genom-
ics data. This user-friendly toolkit is highly compatible with the Python ecosystem and
customizable with a well-designed user interface. It can be used in various visualization
situations like a Swiss army knife. For example, to produce high-quality genome track
plots or fetch commonly used genomic data files with a Python script or command
line, to explore genomic data interactively within Jupyter environment or web browser.
Moreover, owing to the highly extensible Application Programming Interface design,
users can customize their own tracks without difficulty, which greatly facilitate analyti-
cal, comparative genomic data visualization tasks.

Conclusions:  CoolBox allows users to produce high-quality visualization plots and
explore their data in a flexible, programmable and user-friendly way.

Keywords:  Genomics, Visualization, Genome browser

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Xu et al. BMC Bioinformatics (2021) 22:489
https://doi.org/10.1186/s12859-021-04408-w

*Correspondence:
guoliang.li@mail.hzau.edu.cn;
gcao@mail.hzau.edu.cn

4 College of Bio‑Medicine
and Health, Huazhong
Agricultural University,
Wuhan, China6 Hubei Key
Laboratory of Agricultural
Bioinformatics, Hubei
Engineering Technology
Research Center
of Agricultural Big Data, 3D
Genomics Research Center,
Huazhong Agricultural
University, Wuhan, China
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04408-w&domain=pdf

Page 2 of 9Xu et al. BMC Bioinformatics (2021) 22:489

Many visualization tools have been developed to meet these demands, and these tools
can be classified into three categories: (1) Command-line plotting tool [10, 11], (2) Graphi-
cal User Interface(GUI) software [12], and (3) Web-based track browser [13–15]. In
different situations, each kind of tools has its own advantages and limitations. As for com-
mand-line tools, they are convenient for bioinformaticians to produce plots or results easily
but require Linux command line skills. GUI tools are friendly to people who are not skilled
at programming and command line. Web-based browsers could share visualization results
between colleagues. However, they are not efficient in transmission and have relative high
latency between the websites and customers. Moreover, for program developers, GUI and
web-based tools are not as convenient as command-line tools and plotting packages, which
could be locally installed and easily called between stacks. Despite the above tools work
well for providing an overview of the input genomic data. However, during actual scien-
tific research, users need a detail comparative and analytical data visualization more than
just the basic view of the data. For example, to visualize the differential contact interaction
(DCI) of two Hi-C contact matrices [16] or predicted chromatin loops on the matrix [17].
In most cases, bioinformaticians work in programmatic and interactive environments like
RStudio, IPython console and Jupyter notebook to complete the data analysis, algorithm
development and visualization tasks. However, there is a gap between the data analysis eco-
system and the existing genomic data visualization tools. Researchers spend a lot of time
on unnecessary stuffs like file format conversion and environment switching. Therefore, a
versatile tool that fills the gap will significantly facilitate the genomics study.

To fill this gap, we developed CoolBox, a versatile toolkit for exploration-driven visualiza-
tion of genomic data. It combines advantages of existing tools and is highly compatible with
the Python scientific ecosystem, highly customizable, easy to use with intuitive interface
design and simple installation procedure. It can be used in different scenarios: (1) Python
script or another python package for data fetching and plotting; (2) Shell as a command-
line plotting tool; (3) Jupyter notebook environment for data fetching, plotting, and explo-
ration; and (4) Web application for exploration and demonstration within the web browser.

Implementation
The plotting system of CoolBox is based on the matplotlib package. A part of the plotting
code in the CoolBox is a fork from pyGenomeTracks package. [10] The data stored in big-
Wig, “.cool” and ”.hic” file format are loaded through pybbi (https://​github.​com/​nvict​us/​
pybbi), cooler [18] and straw [19] packages. Pairwise interaction data in Browser Extensible
Data Paired-End (BEDPE) and Pairs format is indexed and randomly accessed using the
pairix software (https://​github.​com/​4dn-​dcic/​pairix). Other text-based genomic feature
data format, like Browser Extensible Data (BED), Gene transfer format (GTF), and Bed-
Graph is indexed and random accessed using the tabix [20] software. The widget panel in
the GUI is implemented by using the ipywidgets package.

Results and discussion
Flexible and user‑friendly API and CLI for producing high‑quality genome track plots

CoolBox provides an Application Programming Interface (API) for Python script or
Jupyter environment as well as a Command Line Interface (CLI) for Shell. The inter-
face design is inspired by the popular R package ggplot2 [21]. It allows users to compose

https://github.com/nvictus/pybbi
https://github.com/nvictus/pybbi
https://github.com/4dn-dcic/pairix

Page 3 of 9Xu et al. BMC Bioinformatics (2021) 22:489 	

their figures with highly intuitive syntax. In CoolBox, users can use the “+” operator
in Python or “add” command in Shell to compose low-level track elements to a higher-
level figure. For example, to compose track objects of various kinds of genomic data into
a single frame and interactively review interested regions in genome browser with few
lines of Python codes or Shell commands (Fig. 1).

Besides the 1-dimensional viewing mode supported by most other visualization tools,
CoolBox supports a joint-view mode that enables users to visualize trans or cis-remote
regions in a Hi-C contact matrix (Fig. 2).

Most sets of commonly generated genomic assay data such as RNA-Seq, ChIP-Seq,
ATAC-Seq, Hi-C, HiChIP [22] data which stored in BedGraph, bigwig [23], cool [18],
.hic [19] and other file formats (see Table 1) can be visualized in CoolBox by different
kinds of tracks. Most tracks’ features (color, height, style, etc.) can also be configured
in the same way via the API or CLI. In the CoolBox plotting system, the plot contains
not only a single layer. Users can put another layer (Coverage) upon the original plot to
produce more comprehensive and high-quality figures. Furthermore, figures can be gen-
erated in different formats, including PNG, JPEG, PDF, and SVG. More details about the
API and CLI are available in the online documents and user manual.

Interactive exploration and reproducible analysis on genomic data

As shown in Fig. 3, CoolBox provides a GUI for interactive data visualization, by which
users can explore different genomic regions by operating a simple widget panel and visu-
alize the data within a specific region.

Besides, the data and the figures are bound together by Python objects. In this way,
users can get the precise data of each track within the current view of the genomic
region through the API. This design facilitates comparative visualization and statistical
analysis. CoolBox is also a general genomic-file reading package. Data within a particular

Fig. 1  CoolBox has a clear and intuitive syntax to compose genome browser in both API and CLI mode.
Inspired by the ggplot2 syntax, figures in CoolBox can be composed and adjusted (color, height, style
etc.) from different tracks and features by using the ‘+‘ operator in API or ‘add‘ in CLI, almost every figure
composed in the API mode has a paired CLI composing command that produces identical figures. This
design facilitates bioinformaticians who work regularly in both environments

Page 4 of 9Xu et al. BMC Bioinformatics (2021) 22:489

genome region can be retrieved in a short time, as almost all supported file formats can
be indexed and randomly accessed.

Moreover, by leveraging the power of the Jupyter notebook, the visualization result
and the entire process can be recorded in the notebook. It is convenient for sharing the
visualization result and reproducing the whole analysis by other researchers.

A testing and visualizing framework for new algorithm development

Owing to the user-friendly and highly extensible API design, users can imple-
ment their custom tracks without any difficulty, thus enabling seamless coopera-
tion in Python-based algorithm development and scientific research. The algorithm

Fig. 2  Joint (2d) view example, CoolBox can compose big figure which put frames around a center contact
matrix. This allows to visualize the trans or cis remote (off-diagonal) contact matrix along with genome
features. A Joint view on an on-diagonal region. B Joint view on an cis remote region, which shows the
magnified detail of the orange box marked loop region that contains two chromatin loops in (A)

Table 1  A part of CoolBox builtin tracks for visualizing different kinds of genomics data formats

Track type File format Description

XAxis None Coordinate of the reference genome

Spacer None For add vertical space between two tracks

BigWig .bigwig Track for bigWig file, draw the histogram

BedGraph .bedgraph Track for BedGraph file, draw the histogram

BAM .bam BAM track for visualize the coverage or alignment

BED .bed For visualization genome annotation, like refSeq genes and chromatin states

GTF .gtf Track of GTF file, for visualize gene annotation

Arcs .pairs, .bedpe Show the chromosome interactions get from ChIA-PET, HiChIP or Hi-C loop data

HiCMat .cool, .mcool, .hic Show the chromosome contact matrix from Hi-C data

Virtual4C .cool, .mcool, .hic Virtual 4C track, using Hi-C data to mimic 4C

DiScore .cool, .mcool, .hic Directional index of Hi-C matrix for detecting TAD

InsuScore .cool, .mcool, .hic Insulation score of Hi-C matrix for inferring TAD borders

HiCDiff .cool, .mcool, .hic Show the difference between two contact matrix

Selfish .cool, .mcool, .hic Apply the selfish algorithm [16] on two contact matrices to detect differential
contact interactions

SNP .tsv Track for show SNPs Manhattan plot

Page 5 of 9Xu et al. BMC Bioinformatics (2021) 22:489 	

developer can check and visualize the intermediate results produced by their algo-
rithm and adjust parameters simultaneously. In addition, as CoolBox uses an object-
oriented programming paradigm in its design, users can reuse each track’s codes by
inheritance, including data extraction and drawing-related functions. In most cases,
users only need to write algorithm-related core parts. The most tedious part includ-
ing raw-data reading, preprocessing, and figure drawing are handed over to Cool-
Box through inheritance (see method section and user manual for implementation

Fig. 3  A CoolBox figure representing differential interactions of Hi-C contact matrices. Shown Hi-C and
RNA-Seq data are produced from the process of hematopoietic differentiation [24]. Its clearly that there
is a topological association domain (TAD) formation at the Abca13 gene region and its RNA expression is
up-regulated at the same time after the differentiation. A The widgets panel of CoolBox browser, used for
zooming, sliding, and locating the genome region. When moving to a new region, the figure draw bellow will
be updated automatically. B Hi-C track of short-term hematopoietic stem cell (ST) shows the contact map
of ST sample. The color bar indicates the normalized value of the contact map. C Hi-C track of granulocyte
(GR). D Differential contact interaction result of the Selfish algorithm [16] on ST and GR Hi-C contact map.
The color bar indicates the q-value (BH adjusted p value) produced from the DCI analysis. Darker color means
this interaction has a lower q-value; that is to say, two contact maps are more diverse at this location. E Hi-C
Diff track. It shows the difference between GR and ST’s z-score normalized contact matrices. The red region
of the matrix indicates where GR has a more significant contact frequency compared to ST, and the opposite
for blue areas. F BigWig track of ST RNA-Seq data, showing the RNA expression level of ST in this region. G
BigWig track of GR RNA-Seq data. H A gene annotation track shows the corresponding genes within this
genomic region

Page 6 of 9Xu et al. BMC Bioinformatics (2021) 22:489

details). In this way, bioinformaticians can free themselves from those repetitive pro-
cedures and only focuses on the data post-processing.

We demonstrate the advantages by implementing a track that visualizes the outputs
of the Peakachu algorithm [17], which is a RandomForest based method for detecting
loops in the Hi-C contact matrix. As depicted in Fig. 4, the main part of the whole track
contains merely 20 lines of Python code. The data fetching and plotting functionality
are fully reused by inheriting Cool/ArcsBase Track base class. Furthermore, the custom-
defined track is empowered to be used in CLI, API, and browser mode in couple with
other built-in tracks. More details include a reproducible code block and can be found in
the online documents and user manual.

Comparison with other existing visualization tools

As stated before, there is an urgent need for better visualization tools to accelerate the
integration and mining of biological data. Therefore, more and more visualization tools
have been developed in recent years. A comparison of features between CoolBox and
these tools is listed in Table 2. Most of the visualization tools require a tedious installa-
tion process and are operated through the command line. Before visualization, the data
needs to be preprocessed through specific steps, and then a static or interactive web
interface is generated.

Fig. 4  An example to define custom tracks that display Hi-C contact matrix along with peaks detected
by Peakachu algorithm [17]. An example of peak prediction result is demonstrated in the right panel. The
upper triangular matrix shows the peak p-value output by Peakachu algorithm. The predicted peaks drawn
as blue squares upon the original matrix is shown in the lower triangular matrix. The Hi-C matrices and
the peaks upon them will be automatically recomputed and updated after the change of genome region.
The left panel is the full Runnable python codes used for generating the right panel. The custom track is
implemented by following the same intuitive and clear design pattern as other built-in tracks: i.e., reusing the
data fetching and plotting functionality as much as possible. For this figure, the functionality of fetching and
plotting contact matrix with peaks are totally reused by inheriting Cool/ArcsBase track base class, and the rest
of the codes merely calls the computing function of the peachachu package. After the track definition, we
can see that the custom track is born to support being used in a ggplot2-like syntax with other tracks, and
this capability is also valid in CLI and GUI mode

Page 7 of 9Xu et al. BMC Bioinformatics (2021) 22:489 	

The visualization and data processing of most visualization tools are dissociated,
which is not convenient for bioinformaticians whose routine works rely on Python-
based scientific computation ecosystem. Except for the CLI mode supported by most
visualization tools, the API that the CoolBox has been used internally and exposed
follows the same design as the CLI, making switching between these two modes with
no pain. More importantly, since the API in CoolBox combines computation and vis-
ualization, users can dynamically add different tracks or even custom tracks in the
python notebook while processing raw data or developing new methods.

Conclusion
CoolBox is a versatile toolkit for the visualization and exploration of multi-omics data
in the Python ecosystem. It provides a user-friendly ggplot2-like syntax for compos-
ing various kinds of tracks in CLI, API, GUI and web browser mode. More impor-
tantly, its built on a highly extensible plotting system that allows users to implement
their custom tracks without wasting time on data fetching and figure plotting pro-
cedures. Through the power of Jupyter notebook, it provides a convenient way for
bioinformaticians to exploit it’s versatility for better personalized data manipulation
and demonstration. It could also increase the reproducibility of genomic data visuali-
zation tasks as codes and figures are all organized into the same page.

Table 2  Summary of genomic visualization tools

Tools Programming
language

API plot CLI plot Online access

CoolBox Python � � �

pyGenomeTracks Python �

gcMapExplorer Python �

HiCPlotter Python �

HiGlass Python, HTML, CSS, JS � �

YueLab Browser HTML, CSS, JS �

WashU Browser HTML, CSS, JS �

TADkit HTML, CSS, JS �

JuiceBox.js HTML, CSS, JS �

JuiceBox Java

 GUI Input Installation Customization

Web and Jupyter Raw data Bioconda or PyPI Python knowledge, very easy

Raw data PyPI Python knowledge, easy

Local Preprocessed data PyPI Python knowledge, easy

Preprocessed data Manually install

Web and Jupyter Preprocessed data,
via network

Docker Web knowledge

Web Via network

Web Via network

Web Preprocessed data,
via network

Manually install

Web Via network

Local Raw data Download

Page 8 of 9Xu et al. BMC Bioinformatics (2021) 22:489

Availability and requirements

Project name: CoolBox
Project home page: https://​github.​com/​GangC​aoLab/​CoolB​ox
Operating system(s): Linux, macOS, Windows WSL
Programming language: Python
Other requirements: All software requirements are listed in https://​github.​com/​
GangC​aoLab/​CoolB​ox/​blob/​master/​envir​onment.​yml
License: GPLv3
Any restrictions to use by non-academics: GPLv3 licensing restrictions apply.

Abbreviations
NGS: Next-generation sequencing; GUI: Graphical user interface; API: Application programming interface; CLI: Command
line interface.

Acknowledgements
We thank everyone who contributed to this project on GitHub. We thank Khaista Rahman for helping to review and
improve our English writing.

Authors’ contributions
WX: Conceptualization, Investigation, Software design, Software maintain, Software test, Writing—Original Draft Prepara-
tion, Writing–Review and Editing. QZ: Conceptualization, Software design, Software maintain, Software test, Writing—
Original Draft Preparation, Writing—Review and Editing. DL: Conceptualization, Resources, Writing—Review and Editing.
YZ: Conceptualization, Writing—Review and Editing. JD: Conceptualization, Funding Acquisition, Supervision, Writing—
Review and Editing. LG: Conceptualization, Funding Acquisition, Investigation, Resources, Supervision, Writing—Review
and Editing. GC: Conceptualization, Funding Acquisition, Investigation, Resources, Supervision, Writing—Review and
Editing. All the authors have read and approved the final manuscript.

Funding
1. The Key Research and Development Program of Guangdong Province (Grant 2019B020211003 to Gang Cao). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
2. National Natural Science Foundation of China (NSFC) (Grants 31941014 to Gang Cao). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript. 3. National Natural Science
Foundation of China (NSFC) (Grants 31941005 to Huanchun Chen). The funders had no role in study design, data collec-
tion and analysis, decision to publish, or preparation of the manuscript. 4. National Natural Science Foundation of China
(Grants 31702196 to Ke Xiao). The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript. 5. China Postdoctoral Science Foundation (Grant 2019M662676, to Ke Xiao). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
Sample data designed to demonstrate most features of the software is provided at https://​github.​com/​GangC​aoLab/​
CoolB​ox/​tree/​master/​tests/​test_​data.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China. 2 State Key Laboratory of Agricultural
Microbiology, Huazhong Agricultural University, Wuhan, China. 3 College of Informatics, Huazhong Agricultural University,
Wuhan, China. 4 College of Bio‑Medicine and Health, Huazhong Agricultural University, Wuhan, China. 5 National Key
Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. 6 Hubei Key Laboratory
of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics
Research Center, Huazhong Agricultural University, Wuhan, China.

https://github.com/GangCaoLab/CoolBox
https://github.com/GangCaoLab/CoolBox/blob/master/environment.yml
https://github.com/GangCaoLab/CoolBox/blob/master/environment.yml
https://github.com/GangCaoLab/CoolBox/tree/master/tests/test_data
https://github.com/GangCaoLab/CoolBox/tree/master/tests/test_data

Page 9 of 9Xu et al. BMC Bioinformatics (2021) 22:489 	

Received: 2 June 2021 Accepted: 27 September 2021

References
	1.	 Morin RD, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh TJ, McDonald H, Varhol R, Jones SJ, Marra MA. Profiling

the HeLa s3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotech-
niques. 2008;45(1):81–94.

	2.	 Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A, et al.
Genome-wide profiles of stat1 DNA association using chromatin immunoprecipitation and massively parallel
sequencing. Nat Methods. 2007;4(8):651.

	3.	 Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for multimodal regula-
tory analysis and personal epigenomics. Nat Methods. 2013;10(12):1213.

	4.	 Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner
MO, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome.
Science. 2009;326(5950):289–93.

	5.	 Fullwood MJ, Ruan Y. Chip-based methods for the identification of long-range chromatin interactions. J Cell Bio-
chem. 2009;107(1):30–9.

	6.	 Corces MR, Shcherbina A, Kundu S, Gloudemans MJ, Frésard L, Granja JM, Louie BH, Eulalio T, Shams S, Bagdatli ST,
et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and
Parkinson’s diseases. Nat Genet. 2020;52(11):1158–68.

	7.	 Song M, Pebworth M-P, Yang X, Abnousi A, Fan C, Wen J, Rosen JD, Choudhary MN, Cui X, Jones IR, et al. Cell-type-
specific 3d epigenomes in the developing human cortex. Nature. 2020;587(7835):644–9.

	8.	 Heinz S, Texari L, Hayes MG, Urbanowski M, Chang MW, Givarkes N, Rialdi A, White KM, Albrecht RA, Pache L, et al.
Transcription elongation can affect genome 3d structure. Cell. 2018;174(6):1522–36.

	9.	 Cao C, Hong P, Huang X, Lin D, Cao G, Wang L, Feng B, Wu P, Shen H, Xu Q, et al. HPV-CCDC106 integration alters
local chromosome architecture and hijacks an enhancer by three-dimensional genome structure remodeling in
cervical cancer. J Genet Genomics. 2020;47(8):437–50.

	10.	 Lopez-Delisle L, Rabbani L, Wolff J, Bhardwaj V, Backofen R, Grüning B, Ramírez F, Manke T. pyGenome Tracks: repro-
ducible plots for multivariate genomic data sets. Bioinformatics. 2020;37:422.

	11.	 Akdemir KC, Chin L. Hicplotter integrates genomic data with interaction matrices. Genome Biol. 2015;16(1):198.
	12.	 Kumar R, Sobhy H, Stenberg P, Lizana L. Genome contact map explorer: a platform for the comparison, interactive

visualization and analysis of genome contact maps. Nucleic Acids Res. 2017;45(17):152.
	13.	 Wang Y, Song F, Zhang B, Zhang L, Xu J, Kuang D, Li D, Choudhary MN, Li Y, Hu M, et al. The 3d genome browser: a

web-based browser for visualizing 3d genome organization and long-range chromatin interactions. Genome Biol.
2018;19(1):1–12.

	14.	 Li D, Hsu S, Purushotham D, Sears RL, Wang T. Washu epigenome browser update 2019. Nucleic Acids Res.
2019;47(W1):158–65.

	15.	 Kerpedjiev P, Abdennur N, Lekschas F, McCallum C, Dinkla K, Strobelt H, Luber JM, Ouellette SB, Azhir A, Kumar N,
et al. Higlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 2018;19(1):1–12.

	16.	 Ardakany AR, Ay F, Lonardi S. Selfish: discovery of differential chromatin interactions via a self-similarity measure.
Bioinformatics. 2019;35(14):145–53.

	17.	 Salameh TJ, Wang X, Song F, Zhang B, Wright SM, Khunsriraksakul C, Ruan Y, Yue F. A supervised learning framework
for chromatin loop detection in genome-wide contact maps. Nat Commun. 2020;11(1):1–12.

	18.	 Abdennur N, Mirny LA. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics.
2019;36:311–6. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btz540.

	19.	 Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, Aiden EL. Juicer provides a one-click system for
analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3(1):95–8.

	20.	 Li H. Tabix: fast retrieval of sequence features from generic tab-delimited files. Bioinformatics. 2011;27(5):718–9.
	21.	 Wickham H. ggplot2: elegant graphics for data analysis. J Stat Softw. 2010;35(1):65–88.
	22.	 Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, Chang HY. Hichip: efficient and sensitive analysis

of protein-directed genome architecture. Nat Methods. 2016;13(11):919–22.
	23.	 Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. Bigwig and bigbed: enabling browsing of large distributed

datasets. Bioinformatics. 2010;26(17):2204–7.
	24.	 Zhang C, Xu Z, Yang S, Sun G, Jia L, Zheng Z, Gu Q, Tao W, Cheng T, Li C, et al. tagHi-C reveals 3d chromatin architec-

ture dynamics during mouse hematopoiesis. Cell Rep. 2020;32(13):108206.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btz540

	CoolBox: a flexible toolkit for visual analysis of genomics data
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Results and discussion
	Flexible and user-friendly API and CLI for producing high-quality genome track plots
	Interactive exploration and reproducible analysis on genomic data
	A testing and visualizing framework for new algorithm development
	Comparison with other existing visualization tools

	Conclusion
	Availability and requirements
	Acknowledgements
	References

