Skip to main content
. 2021 Sep 27;11:692774. doi: 10.3389/fonc.2021.692774

Table 2.

Prediction performance obtained in the different cancer datasets.

Cox_en RSF Deep_surv TRCN* a TRCN ATRCN
BRCA 0.553 (±0.081) 0.571 (±0.075) 0.588 (±0.103) 0.596 (±0.091) 0.617 (±0.082) 0.652 (±0.078)
HNSC 0.539 (±0.071) 0.547 (±0.064) 0.565 (±0.077) 0.573 (±0.072) 0.585 (±0.056) 0.602 (±0.064)
LIHC 0.570 (±0.074) 0.582 (±0.070) 0.636 (±0.095) 0.654 (±0.088) 0.667 (±0.073) 0.696 (±0.079)
LUAD 0.552 (±0.067) 0.555 (±0.062) 0.572 (±0.083) 0.580 (±0.074) 0.590 (±0.068) 0.605 (±0.070)
STAD 0.542 (±0.054) 0.541 (±0.048) 0.560 (±0.058) 0.555 (±0.060) 0.564 (±0.055) 0.583 (±0.051)
Average 0.551 0.559 0.584 0.592 0.605 0.628

BRCA, breast invasive carcinoma; HNSC, head and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; STAD, stomach adenocarcinoma; Cox_en, Cox regression model with elastic net regularization; Deep_surv, deep Cox neural network without transfer learning; RSF, random survival forest; ATRCN, adaptive transfer-learning-based deep Cox neural network.

a

TRCN* selected the farthest cancer cluster from the target for pre-training.