Table 2.
Cox_en | RSF | Deep_surv | TRCN* a | TRCN | ATRCN | |
---|---|---|---|---|---|---|
BRCA | 0.553 (±0.081) | 0.571 (±0.075) | 0.588 (±0.103) | 0.596 (±0.091) | 0.617 (±0.082) | 0.652 (±0.078) |
HNSC | 0.539 (±0.071) | 0.547 (±0.064) | 0.565 (±0.077) | 0.573 (±0.072) | 0.585 (±0.056) | 0.602 (±0.064) |
LIHC | 0.570 (±0.074) | 0.582 (±0.070) | 0.636 (±0.095) | 0.654 (±0.088) | 0.667 (±0.073) | 0.696 (±0.079) |
LUAD | 0.552 (±0.067) | 0.555 (±0.062) | 0.572 (±0.083) | 0.580 (±0.074) | 0.590 (±0.068) | 0.605 (±0.070) |
STAD | 0.542 (±0.054) | 0.541 (±0.048) | 0.560 (±0.058) | 0.555 (±0.060) | 0.564 (±0.055) | 0.583 (±0.051) |
Average | 0.551 | 0.559 | 0.584 | 0.592 | 0.605 | 0.628 |
BRCA, breast invasive carcinoma; HNSC, head and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; STAD, stomach adenocarcinoma; Cox_en, Cox regression model with elastic net regularization; Deep_surv, deep Cox neural network without transfer learning; RSF, random survival forest; ATRCN, adaptive transfer-learning-based deep Cox neural network.
TRCN* selected the farthest cancer cluster from the target for pre-training.