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Abstract

Motivation: Inter-residue distance prediction by convolutional residual neural network (deep ResNet) has greatly
advanced protein structure prediction. Currently, the most successful structure prediction methods predict distance
by discretizing it into dozens of bins. Here, we study how well real-valued distance can be predicted and how useful
it is for 3D structure modeling by comparing it with discrete-valued prediction based upon the same deep ResNet.

Results: Different from the recent methods that predict only a single real value for the distance of an atom pair, we
predict both the mean and standard deviation of a distance and then fold a protein by the predicted mean and devi-
ation. Our findings include: (i) tested on the CASP13 FM (free-modeling) targets, our real-valued distance prediction
obtains 81% precision on top L/5 long-range contact prediction, much better than the best CASP13 results (70%); (ii)
our real-valued prediction can predict correct folds for the same number of CASP13 FM targets as the best CASP13
group, despite generating only 20 decoys for each target; (iii) our method greatly outperforms a very new real-val-
ued prediction method DeepDist in both contact prediction and 3D structure modeling and (iv) when the same deep
ResNet is used, our real-valued distance prediction has 1–6% higher contact and distance accuracy than our own dis-
crete-valued prediction, but less accurate 3D structure models.

Availability and implementation: https://github.com/j3xugit/RaptorX-3DModeling.

Contact: jinboxu@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Immense progress has been made on protein structure prediction
due to the application of convolutional residual neural network
(deep ResNet) that can accurately predict inter-residue (atom) rela-
tionships (Abriata et al., 2019; Senior et al., 2020; Shrestha et al.,
2019; Wang et al., 2017; Xu, 2019; Yang et al., 2020) and recently
Transformer-like network implemented in AlphaFold2. The pre-
dicted inter-residue contact or distance is a key to currently many
successful structure prediction methods (Xu and Wang, 2019). Early
contact predictors such as SVMcon and MetaPSICOV use machine
learning methods like support vector machines or neural networks
to predict contacts individually (Jianlin Cheng, 2007; Jones et al.,
2015). However, this is suboptimal because they predict contacts be-
tween two atoms regardless of the other atoms. To address this,
RaptorX predicts all contacts of a protein (or a big chunk) simultan-
eously by ResNet (Wang et al., 2017), which may learn complex se-
quence-structure relationships and make use of high-order contact
correlation to achieve much better accuracy. Right after its success
on contact prediction, RaptorX moved to distance prediction by
ResNet because distance conveys more information for structure
modeling (Xiu, 2019; Zhu et al., 2018). Distance prediction is also

adopted by AlphaFold1 (Senior et al., 2020), a leading method in
CASP13. However, both RaptorX and AlphaFold1 formulate dis-
tance prediction as a multi-class classification problem.

Alternatively, as suggested by RaptorX (Xu et al., 2020), it is
also possible to predict real-valued distance. A natural question to
ask is how well real-valued distance can be predicted and how useful
it is for 3D structure modeling. DeepDist (Wu et al., 2020) is one of
the very few methods that predict real-valued distance by ResNet.
For 3D structure modeling, DeepDist converts real-valued predic-
tion to distance bounds and then feeds them into CNS (Brunger,
2007), a software designed for experimental structure determin-
ation. However, DeepDist did not report how well real-valued dis-
tance prediction alone can fold a protein, but only showed that
protein folding may be improved by adding real-valued and discrete-
valued predictions. Ding et al. developed another real-valued predic-
tion method by adding generative adversarial networks (GANs) on
top of ResNet to enforce global distance consistency (Ding and
Gong, 2020). Similar to DeepDist, Ding et al. also derived distance
bounds from real-valued prediction, which are then fed into CNS
for 3D structure modeling. However, it is challenging to train and
scale GANs (Salimans et al., 2016). Neither DeepDist nor Ding
et al. have compared their real-valued prediction to discrete-valued
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prediction by the same deep network and thus, cannot accurately
evaluate the strength and weakness of real-valued and discrete-val-
ued predictions.

Here, we present a new method for real-valued prediction of dis-
tance and inter-residue orientation. Our method differs from
DeepDist and Ding et al.’s method in that we predict both mean and
standard deviation (i.e. a normal distribution) of distance and orien-
tation while they predict only a single value (which can be inter-
preted as mean). Our prediction pipeline is much simpler than
DeepDist and easier to train than GANs. We also introduce a novel
way of using the predicted mean and deviation to build 3D models
that is distinct from how discrete distance is used. Our experimental
results show that our real-valued prediction exceeds the best in
CASP13 in terms of both contact accuracy and 3D structure model-
ing and that our method greatly outperforms DeepDist and com-
pares favorably to Ding et al.’s method. Finally, we rigorously
compare real-valued and discrete-valued predictions based upon the
same deep network, which is missing in both DeepDist and Ding
et al.’s work. We find that with the same ResNet, real-valued predic-
tion has slightly higher contact and distance accuracy, but less accur-
ate 3D models than discrete-valued prediction.

2 Materials and method

Method overview. Our real-valued prediction method consists of
two steps (i) predicting the mean and standard deviation of back-
bone conformation attributes by deep ResNet. We simultaneously
predict the distance of backbone atom pairs (Cb–Cb, Ca–Ca and N–
O) and inter-residue orientation angles defined in trRosetta (Yang
et al., 2020); (ii) fitting the harmonic function x�u

r Þ
2

�
with the pre-

dicted mean and deviation as constraints to build 3D structure mod-
els by gradient descent where u is the mean and r the standard
deviation. We use PyRosetta to build 3D models by performing gra-
dient-based minimization and then the fast relaxation protocol to
pack side chains and reduce steric clashes (Chaudhury et al., 2010).
In contrast, our discrete-valued prediction uses a spline function to
construct distance and orientation potential (Zhao and Xu, 2012).

For both real-valued and discrete-valued predictions, we train
six ResNet models of the same architecture on different subsets of
data and ensemble them to make predictions. Please see (Xiu, 2019)
for a detailed description of our ResNet. Here our ResNet has �60
ResNet blocks, each consisting of two 2D convolution layers and 2
batch normalization layers. On average, each convolutional layer
has �170 filters and in total a ResNet model has �50 million
parameters. More ResNet blocks tend to produce more accurate
predictions, so we use as many blocks as we can fit into the GPU.
We use mixed-precision training to reduce the training time and
GPU memory usage without losing accuracy (Micikevicius et al.,
2017). The ResNets for our real-valued and discrete-valued predic-
tions are the same except the output layer. For real-valued predic-
tion, the output layer generates two values for an atom (or residue)
pair, representing predicted mean and standard deviation. For dis-
crete-valued prediction, the output layer yields one value for each
discrete bin, representing its predicted probability.

We use the following input features for ResNet: (i) primary se-
quence represented by one-hot encoding; (ii) sequence profile
derived from multiple sequence alignments (MSA) that encode evo-
lutionary information at individual residues. We also use secondary
structure and solvent accessibility predicted from sequence profile;
(iii) co-evolution information including mutual information and the
CCMpred output matrices (Seemayer et al., 2014).

Training and validation data. We train and validate our models
on the Cath S35 protein dataset downloaded in December 2019,
which has 32511 CATH domains (https://www.cathdb.info/), any
two domains sharing at most 35% sequence identity. We remove
short domains (<25 residues) and those containing too many Ca
and Cb atoms without valid 3D coordinates in their structure files.
For each protein domain, we generate its multiple sequence align-
ment (MSA) by running HHblits with E-value¼0.001 on uniclust30
dated in October 2017 and then derive its input features (Mirdita
et al., 2017; Remmert et al., 2012). We randomly split the dataset

into a train and validation set (1800 domains). We generate six splits
and train ResNets on each split. As shown in Xu et al. (2020), there
is very little difference between this Cath S35 and the version dated
in March 2018. The ResNet models trained on them have almost
the same (contact prediction and 3D modeling) performance on the
CASP13 FM and FM/TBM targets.

Independent test data. We use the 45 CASP13 hard targets
(32 FM targets and 13 FM/TBM targets) to evaluate all methods.
Since T0953s1 and T0955 have very few long-range contacts, they
are not used to evaluate contact or distance accuracy. We use
HHblits (with E-value¼0.01) and TMalign to check sequence
profile and structural similarity between the CASP13 FM targets
and our training set. HHblits returns a large E-value (>10) for all
32 FM targets but T0975 and T1015s1. T0975 is related to 4ic1D
(HHblits E-value¼4.2E-12) and T1015s1 is related to 4iloA
(HHblits E-value¼0.024). However, both 4ic1D and 4iloA were
deposited to PDB well before 2018 and structurally they are not
similar to T0975 and T1015s1 (TMscore<0.5), it is fair to include
them into our training set.

MSA generation and input features. To generate MSAs for the
test targets, we run HHblits (Remmert et al., 2012) with E-
value¼1E-3 and 1E-5 on uniclust30 dated in October 2017 and
jackhammer (Johnson et al., 2010) with E-value¼ 1E-3 and 1E-5 on
uniref90 dated in March 2018. If any target has a shallow MSA
depth (ln(Meff)<6), we search metaclust dated in June 2018 to see if
more sequence homologs can be found. All these databases were cre-
ated before the start of CASP13, so they ensured fairness for com-
parisons. The input features include both sequential and pairwise
features. For sequential features, we use (i) primary sequence repre-
sented as a one-hot encoding; (ii) sequence profiles derived from
MSAs encoding evolutionary information at each residue; (iii) sec-
ondary structure and solvent accessibility predicted from sequence
profile by RaptorX-Property (Wang et al., 2016). Our pairwise fea-
tures include both mutual information and CCMpred (Seemayer
et al., 2014) output. The CCMpred output includes one L�L co-
evolution matrix and one full precision matrix of dimension
L�L�21�21 where L is the protein sequence length.

Protein structure representation. We represent protein backbone
conformation using inter-atom distance matrices (Ca–Ca, Cb–Cb and
N–O) and inter-residue orientation matrices as employed by
trRosetta (Yang et al., 2020). When training the real-valued ResNet
models, all distances greater than 20 Å are set to 20 Å so that our
ResNet focuses on learning small distances but not large distances.
We tried setting the distance limit to 16 Å, but did not obtain better
performance. We normalize distances and angles to be bounded by
0 and 1 and the dihedral angles to be bounded by -1 and 1. This nor-
malization not only allows the gradients to flow more easily in the
deep ResNet, but it also equally weights the loss function across the
inter-atom predictions. For discrete-valued prediction, we discretize
distance into 47 bins: 0–2 Å, 2–2.4 Å, 2.4–2.8 Å,. . .,19.6–20 Å
and >20 Å.

Deep model training. In training we randomly sample 40–60%
of the sequence homologs from an MSA (with at least 2 sequences)
and then derive input features from the sampled MSA. To save train-
ing time, we generated 10 different samples on disk for each MSA so
that our training program just needs to load one sample from the
disk. Our ResNet learns to predict the mean and standard deviation
of a normal distribution for real-valued distances and orientations
by minimizing the negative log-likelihood. Because it is challenging
to learn the mean and standard deviation simultaneously, we train
our ResNet in two steps: (i) the first step fixes the standard deviation
to be 1 and trains the model to predict the mean distance; (ii) the se-
cond step trains the parameters specific to standard deviation by
freezing all the other parameters. The actual loss function of the first
step is ðp� gÞ2where p and g are predicted distance and ground
truth, respectively, and p can be interpreted as the mean of the
normal distribution. The loss function of the second step is

p� gÞ2=r2 þ 1
2 log rð Þ

�
where r is the standard deviation to be

predicted and p is mean distance calculated from the trained param-
eters. We use the AdamW (Loshchilov and Hutter, 2017) optimizer
with b1 set to 0.1, b2 set to 0.001 and L2 regularization factor of
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0.35. We train our ResNet to predict the mean for 20 epochs with a
learning rate of 0.0002, 1 more epoch with a learning rate of
0.00004, and the last epoch with a learning rate of 0.000008. We
train the parameters specific to standard deviation similarly, but for
only 10 epochs because it converges much more quickly. We train
six ResNet models of the same hyperparameters and architecture on
different subsets of our data and ensemble them to predict the mean
and standard deviation. Instead of predicting a normal distribution
for the dihedral angles, we tried to predict the von Mises distribu-
tion (Gao et al., 2018) along with the normal distributions for atom
pairs. However, it is very hard for ResNet to learn two very different
loss functions (for distance and orientation) simultaneously. The val-
idation loss of those models plateaued early and underperformed the
deep models that predict the normal distribution of both distance
and orientation. We also tried to train our models to predict dis-
crete-valued and real-valued distance simultaneously but failed for
similar reasons. Even if only the von Mises function is trained, the
Adam optimizer does not always converge possibly because the
function is periodic. We did not use SGD since it is much slower
than Adam.

Building protein 3D models and model clustering. We build our
3D models from distance and orientation prediction with PyRosetta
as follows: (i) convert the predicted distance mean l and deviation r
to energy potential by fitting them to the harmonic function. That
is, the potential of an orientation angle x is ðx � lÞ2

r2 and the potential
of a distance d function is ðd � lÞ2

r2 if d is <19, otherwise ð19:0 � lÞ2
r2 ; (ii)

we use harmonic function for angles and circular harmonic function
for dihedral; (iii) minimize the energy potential by gradient-based al-
gorithm LBFGS. To get out of a local minimum, we perturb all phi/
psi angles by a small deviation and then apply LBFGS again to see if
a lower energy may be reached. We apply PyRosetta fast relaxation
to add side-chain atoms and reduce steric clashes. We generate
20 decoys for each test target and select 5 lowest-energy decoys as
predictions. We have also tried the Gaussian function for energy
potential, but it is slower in folding than the harmonic function since
the latter has a simpler derivative to compute. The harmonic
function also improves the average TMscore by about 0.01. For dis-
crete-valued prediction, we convert predicted distance probability
distribution into potential using the spline function and then build
3D models by the same protocol. DeepDist selects predicted distan-
ces <15Å and adds 60.1 Å as upper and lower distance bounds to
form distance constraints which are then used by CNS to build 3D
models. Ding et al. selected predicted distances between 4 and 16 Å
and used 0.4 Å around the predicted values as their bounds for CNS.
We predict both distance and orientations of atom pairs while
DeepDist and Ding et al. only predicts distances.

Performance metrics. We use precision and F1 to evaluate con-
tact prediction. The top L/k (k¼1, 2, 5) precision is the percentage
of correct among the L/k contacts with the highest predicted proba-
bilities. The top L/k (k¼1, 2, 5) recall is the number of correctly

predicted contacts among the top L/k predictions divided by the
number of true contacts. To convert discrete probability distribu-
tions over the bins to real-valued distance, we compute a weighted
average of the distance bins, which is detailed in Xiu (2019). To
evaluate distance accuracy, we use absolute error, relative error, pre-
cision, recall, F1, pairwise distance test (PDT) and high-accuracy
pairwise distance test (PHA). For all these metrics, we only consider
distance <15Å. Absolute error is the absolute difference between
predicted and native distance while the relative error is the absolute
error normalized by the average of predicted and native distance.
We measure the recall by the ratio of atom pairs with native distance
<15Å that are predicted to have distance <15Å and precision by the
ratio of atom pairs with predicted distance <15Å that have native
distance <15Å. To calculate PDT and PHA, we calculate the frac-
tion (R(i)) of predicted distance with an absolute error less than i
(i¼0.5, 1, 2, 4 and 8 Å). PDT as the average of R(1), R(2), R(4) and
R(8) and PHA is the average of R(0.5), R(1), R(2) and R(4). We use
TMscore (Xu and Zhang, 2010) to evaluate quality of a 3D model,
which measures its structure similarity with its experimental struc-
ture. TMscore ranges from 0 to 1 and a 3D model with
TMscore�0.5 is assumed to have a correct fold.

3 Results

3.1 Accuracy of predicted contacts on CASP13 FM and

FM/TBM targets
Using the predicted mean and deviation, we may estimate the prob-
ability of two residues forming a contact (i.e. having distance<8Å).
As shown in Table 1, our real-valued contact prediction has slightly
better accuracy than our discrete-valued prediction, both outper-
forming the best methods in CASP13 by a good margin. Our real-
valued method greatly outperforms DeepDist, a very new method
for real-valued distance prediction. While our top L/5, L/2 and L
contact precisions (L is sequence length) for the 43 FM and FM/
TBM targets are 84.6%, 72.6% and 61.8%, DeepDist’s contact pre-
cisions are 78.6%, 64.5% and 49.6% (Wu et al., 2020). Our meth-
ods also have better contact precision than trRosetta (Yang et al.,
2020), a method developed after CASP13 that employs discrete-val-
ued prediction, although trRosetta used a newer sequence database
uniclust30 (dated in August 2018) and larger metagenome databases
to generate MSAs.

Real-valued versus discrete-valued prediction. We use the same
hyperparameters that are optimized on the discrete-valued ResNet
for our real-valued ResNet. Our real-valued prediction has margin-
ally better (0.5–1.0%) top L long-range contact accuracy than our
discrete-valued prediction. When the extra long-range contact pre-
diction is evaluated, our real-valued method achieves a top L/5, L/2
and L precision of 65.5%, 55.4% and 49.2%, respectively, whereas
our discrete-valued prediction has precision 63.1%, 53.6% and

Table 1. Precision and F1 (%) of long-range contact prediction of FM and FM/TBM CASP13 targets by several competing methods

31 CASP13 FM targets 12 CASP13 FM/TBM targets

Top L/5 Top L/2 Top L Top L/5 Top L/2 Top L

F1 of long-range contact prediction

AlphaFold in CASP13 22.7 36.9 41.9 31.4 48.7 55.1

RaptorX in CASP13 23.3 36.2 41.1 28.8 43.2 51.8

Zhang in CASP13 21.2 34.1 39.2 28.4 43.3 49.5

Discrete (our work) 27.5 44.1 51.1 31.9 52.9 62.0

Real-Valued (our work) 27.9 44.6 51.8 31.8 52.4 62.4

Precision of long-range contact prediction

RaptorX in CASP13 70.0 58.0 45.0 85.8 70.1 56.9

Zhang in CASP13 65.7 54.8 39.1 82.3 70.0 54.8

trRosetta 78.5 66.9 51.9 NA NA NA

Discrete (our work) 80.2 67.6 57.6 93.9 83.5 70.7

Real-Valued (our work) 81.2 68.7 58.1 93.6 82.8 71.3

Note: The F1 of AlphaFold is taken from Xu (2019). The trRosetta result is taken from Yang et al. (2020).
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47.8%, respectively. We say one contact is extra long-range if its
two involving residues are separated by at least 48 residues along
the primary sequence. There is a high correlation (CC¼0.98) be-
tween our discrete-valued and real-valued L/5 contact precision on
the 43 hard targets, but there are still 9 test proteins with precision
difference greater than 5%, indicating that there are situations
where real-valued prediction may be more useful (Fig. 1).

3.2 Distance prediction accuracy on CASP13 FM and

FM/TBM targets
We use a few metrics to evaluate distance accuracy of our real-val-
ued and discrete-valued predictions, including absolute error, rela-
tive error, precision, recall, F1, pairwise distance test (PDT) and
high-accuracy pairwise distance test (PHA), which are explained in
section Methods. While evaluating distance prediction, we consider
only those long-range atom pairs with predicted distance <15Å and
native distances <15Å. To evaluate our discrete-valued prediction,
we convert discrete probability distributions to real-valued distance
by computing the expected value of a discrete distribution, which is
detailed in Xiu (2019). As shown in Table 2 and Supplementary
Figure S1, our real-valued distance prediction is better than our own
discrete-valued prediction by 1–6% in terms of all the metrics except
recall. We do not compare our distance accuracy with Ding et al.’s
method because they only reported distance accuracy on their valid-
ation set but not on the CASP13 targets. In addition, because it is
not clear how DeepDist precisely defines their distance measures, it
is challenging for us to compare our distance accuracy with
DeepDist, but we have much better contact accuracy than DeepDist.

3.3 Accuracy of predicted 3D models on CASP13 FM

and FM/TBM targets
We use the predicted real-value attributes to generate only 20 decoys
for each target and then select 5 decoys with the lowest energy as
predicted 3D models. On the 32 CASP13 FM targets, the average
quality [measured by TMscore (Xu and Zhang, 2010)] of the first
and best (of 5) models is 0.582 and 0.599, respectively. On the 13
FM/TBM targets, the average TMscore of the first and best models
is 0.641 and 0.651, respectively. When the best models are consid-
ered and TMscore>0.5 is used to judge if a predicted 3D model has
a correct fold or not, our real-valued method predicts correct folds

for 23 of the 32 FM targets and 11 of the 13 FM/TBM targets.
Despite generating only 20 decoys per target, our real-valued
method performs as well as AlphaFold in CASP13, which has an
average TMscore 0.583 for the first models of the 32 FM targets
and correctly folds 23 of the 32 targets (Senior et al., 2020). Note
that AlphaFold generated thousands of decoys per target (Senior
et al., 2020).

DeepDist reported an average TMscore 0.487 and 0.522 for the
first and best models of the 43 CASP13 FM and FM/TBM targets, re-
spectively. In total DeepDist predicted correct folds for 23 of the 43
targets (Table 3). In contrast, our real-valued prediction method
obtains an average TMscore of 0.604 and 0.619 for the first and best
models, respectively, and predicts correct folds for 33 of the 43 tar-
gets. Our method also vastly outperforms another distance-based fold-
ing method DMPfold (Greener et al., 2019), which has average
TMscore 0.438 for the first models. Ding et al. evaluated their real-
valued prediction on only 20 FM and FM/TBM targets and reported
an average TMscore of 0.620, whereas we can achieve a similar
TMscore of 0.612 with real-valued prediction (Ding and Gong, 2020;
Greener et al., 2019). However, the comparison with Ding et al.’s re-
sult is not rigorous, as they used the official domain sequences as
inputs while we do not. To simulate the real-world prediction scen-
arios, we predicted 3D models on the domains determined by our ser-
ver during the CASP13 season in the absence of the native structures.
When evaluating the quality of our predicted 3D models, we only
count the segments that overlap with the official domains. As such,
when our own domain definition deviates significantly from the offi-
cial one, our predicted 3D models have low quality score.

Real-valued versus discrete-valued prediction. Similarly, we also
generate 20 decoys for each target using our discrete-valued prediction
and select the 5 lowest-energy decoys as predicted 3D models. On the
32 CASP13 FM targets, the average TMscore of the first and best
models generated by our discrete-valued prediction is 0.646 and
0.672, respectively. On the 13 FM/TBM targets, the average TMscore
of the first and best 3D models is 0.671 and 0.683, respectively. Our
discrete-valued method can predict correct folds for 26 of the 32 FM
targets and 11 of the FM/TBM targets. That is, although our real-val-
ued prediction generates better contact accuracy, its 3D modeling ac-
curacy is worse than our discrete-valued prediction. The correlation
between our real-valued 3D model quality (measured by TMscore)
and discrete-valued model quality is 0.95, but our discrete-valued
method predicts better 3D models for nearly all targets (Fig. 2). The
correlation between the top L/2 contact precision of the 31 FM targets
with their first model TMscore is 0.626 for discrete-valued prediction
and 0.543 for real-valued prediction. That is, there is still room for
improvement in real-value-based 3D structure modeling. This also
implies that contact precision is a better indicator for 3D model qual-
ity of discrete-valued prediction than real-valued prediction. The cor-
relation between the logarithm of MSA depth [i.e. ln(Meff)] and
model quality for real-valued and discrete-valued predictions is 0.572
and 0.557, respectively. When ln(Meff)>4.0, our discrete-valued
method can predict the correct folds for all targets while our real-val-
ued method fails on one target (Supplementary Fig. S2).

3.4 Strength and weakness of real-valued prediction
Real-valued prediction has both advantages and down-sides. First,
only two parameters (mean and standard deviation) are used for
real-valued prediction while dozens of parameters are used for a dis-
crete distance distribution. Second, discretizing distance possibly
reduces the amount of information that can be learned by a machine
learning method. Indeed, our experiments showed that real-valued
prediction has slightly better contact and distance accuracy. Since
we use the harmonic function of only two parameters to represent
our real-valued energy function, it is symmetric across the mean and
much smoother than our discrete-valued potential. As shown in
Supplementary Figure S3, discrete distance potentials have troughs
followed by peaks followed by another through, which is an un-
desirable characteristic for energy minimization. The smoothness of
real-valued energy function makes gradient-based minimization eas-
ier. However, discrete-valued prediction uses dozens of parameters
to define a probability distribution and thus, result in a higher

Fig. 1. Top L/5 contact precision of our discrete-valued and real-valued methods on

the 43 FM and FM/TBM CASP13 targets. A dot above the diagonal line indicates

that real-valued prediction is better than its corresponding discrete-valued

prediction
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resolution energy function than real-valued prediction. With only
two parameters, our real-valued energy function may not be very ac-

curate at a distance far away from the predicted mean distance.
Contact prediction depends on only the predicted probability of dis-

tance falling in the interval [0, 8Å] while 3D modeling depends on
the predicted potential of all the distance up to 15 or 20Å, so it is
not unexpected that real-valued prediction may lead to better con-

tact precision but worse 3D modeling.

3.5 Case study
Our real-valued and discrete-valued methods perform differently

on two CASP13 hard targets T0990-D1 and T1008-D1. For

T0990-D1, our discrete-valued prediction works better, while for
T1008-D1 our real-valued prediction works better. T0990-D1 has
76 residues and the logarithm of its MSA depth is 3.308. Our real-
valued and discrete-valued predictions have similar contact preci-
sion. The top L/5, L/2 and L long-range contact precision of both
methods are 0.933, 0.605 and 0.6. The top L/5 short-range contact
precision is 0.733. But our real-valued prediction has better top L/5
medium-range contact precision (0.8) than discrete-valued predic-
tion (0.667). Both methods have slightly different distance accuracy.
Our discrete-valued prediction has a smaller relative and absolute
distance prediction error (0.124, 1.424) than our real-valued predic-
tion (0.145, 1.624). Our discrete-valued prediction also has slightly
better PDT and PHA (0.794, 0.619) than our real-valued prediction
(0.764, 0.580). However, our discrete-valued prediction produces
much better 3D models than real-valued prediction in terms of
TMscore (0.75 versus 0.382), RSMD (2.512 versus 9.819), GHA
(0.536 versus 0.276) and GDT (0.75 versus 0.418). This suggests
that contact accuracy may not necessarily be a good predictor of 3D
model quality as it does not capture the overall information of the
predicted distance map. In addition, the real-valued prediction may
not necessarily predict better distance than the discrete-valued
method.

For T1008-D1, our discrete-valued prediction has top L/5, L/2
and L long-range contact precision 0.933, 0.684 and 0.508, respect-
ively, better than our real-valued prediction (0.933, 0.631 and
0.492). Our real-valued prediction has better predicted distance ac-
curacy in terms of relative error (2.633 versus 3.014), absolute error
(0.213 versus 0.231), PDT (0.608 versus 0.574) and PHA (0.385
versus 0.352). The 3D model built from our real-valued prediction
is better across all metrics, including TMscore (0.587 versus 0.433),
GDT (0.444 versus 0.416), RMSD (3.671 versus 7.923) and GHA
(0.393 versus 0.312). This suggests that an improved distance pre-
diction can help improve 3D structure modeling (Figs 3 and 4).

4 Conclusion and discussions

We have presented a new method for real-valued distance prediction
by ResNet. This method can achieve a top L/5 contact precision of
81.2%, more than 10% greater than the best methods in CASP13.
Even generating only 20 decoys per target, our method can correctly
fold the same number of CASP13 FM targets as the best human
group in CASP13. Our method outperforms existing real-valued
prediction methods such as DeepDist in terms of both contact accur-
acy and 3D modeling. With the same ResNet our real-valued predic-
tion can achieve a 1–6% improvement over its discrete version in
terms of contact and distance accuracy, but it falls short in 3D struc-
ture modeling. Even though the energy function predicted by our
real-valued method is smoother and more symmetric, its resolution
is not as high as our discrete-valued prediction.

There is still much room to improve real-valued prediction. For
example, DeepDist trains both real and discrete predictions at the
same time to improve contact accuracy and 3D modeling. Ding
et al. show that using the GAN on top of ResNet can further

Table 2. Average distance accuracy of our real-valued and discrete-valued prediction methods compared across CbCb, CaCa or NO atom

distances

CbCb CaCa NO

Real Discrete Real Discrete Real Discrete

Abs. error 4.069335 4.232118 3.759566 3.974853 3.643687 3.872508

Rel. error 0.241389 0.251571 0.220723 0.232381 0.215353 0.227033

Precision 0.682059 0.650375 0.691564 0.670452 0.692480 0.676140

Recall 0.712129 0.736852 0.728711 0.745034 0.748851 0.759924

F1 0.686266 0.679169 0.698683 0.694299 0.710045 0.705230

PHA 0.431603 0.412376 0.462826 0.444350 0.481869 0.464568

PDT 0.610425 0.589494 0.637133 0.617010 0.650349 0.630967

Note: The accuracy is measured by absolute error, relative error, precision, recall, F1, PHA and PDT.

Table 3. Average TMscore obtained by 3 competing methods on

the 43 CASP13 FM and FM/TBM targets

Method Top 1 Top 5 No. of correct folds

Ours 0.604 0.619 33

DeepDist 0.487 0.522 23

DMPfold 0.438 0.449 16

Note: The DeepDist and DMPfold results are taken from the DeepDist

paper (Wu et al., 2020).

Fig. 2. TMscore of the first models of our discrete-valued versus real-valued predic-

tions for the 32 CASP13 FM targets
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improve the global consistency of distance prediction, which is

something worth trying. It is also possible that we can employ better
loss functions to deal with the class imbalances in distance predic-
tion (Cao et al., 2019). Recently, there has been much progress in

making convolution layers more efficient and powerful, and it
would be interesting to see how this can improve (Bello et al., 2019;

Chen et al., 2018; Tan and Le, 2019a,b; Wang et al., 2020). There
has also been interest in end-to-end training for protein structure
prediction, which can improve the learned relationship between

structure and output while speeding up prediction (AlQuraishi,
2018; Ingraham et al., 2019; Li, 2019). And lastly, we would con-

tinue to investigate ways in which we can reduce the gap between
real-valued and discrete-valued prediction in 3D modeling. For ex-
ample, we may develop a custom real-valued constraint function

that can better take advantage of real-valued predictions as opposed
to using the out-of-the-box harmonic function.
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