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Abstract

Motivation: Single-cell gene expression distributions measured by single-cell RNA-sequencing (scRNA-seq) often
display complex differences between samples. These differences are biologically meaningful but cannot be
identified using standard methods for differential expression.

Results: Here, we derive and implement a flexible and fast differential distribution testing procedure based on the
2-Wasserstein distance. Our method is able to detect any type of difference in distribution between conditions. To
interpret distributional differences, we decompose the 2-Wasserstein distance into terms that capture the relative
contribution of changes in mean, variance and shape to the overall difference. Finally, we derive mathematical
generalizations that allow our method to be used in a broad range of disciplines other than scRNA-seq or
bioinformatics.

Availability and implementation: Our methods are implemented in the R/Bioconductor package waddR, which is
freely available at https://github.com/goncalves-lab/waddR, along with documentation and examples.

Contact: roman.schefzik@medma.uni-heidelberg.de, or a.goncalves@dkfz.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A typical task in genomic analyses is to identify genes whose expres-

sion varies across biological conditions. When comparing the single-
cell expression distribution of a gene between two samples measured
with single-cell RNA-sequencing (scRNA-seq), complex differences

can often be observed between two distributions (Bacher and
Kendziorski, 2016), including: shifts in the mean of the distribu-

tions, differences in the variance, differences in the shape of the dis-
tribution (e.g. from unimodal to multimodal), changes in the
abundance of zeros or a combination of these (Fig. 1). Such differen-

ces may be attributable to biologically meaningful changes, includ-
ing for instance the induction of novel subpopulations or transient

cell-states upon treatment of an otherwise homogeneous population
of cells (Kolodziejczyk et al., 2015), changes in the proportion of
zeros from transcriptional bursting (Marinov et al., 2014) or an in-

crease in transcriptional variance during ageing (Martinez-Jimenez
et al., 2017).

Despite the potential of scRNA-seq to reveal such complex pat-
terns, the detection of these differences is beyond the scope of trad-
itional methods for identifying differential expression. In general,

statistical tools developed for detecting differential expression, such

as DESeq2 (Love et al., 2014), edgeR (Robinson et al., 2010) and
most scRNA-seq-specific methods, assume that each gene has a la-
tent unimodal level of expression within a biological condition, and
have been designed to detect shifts in the mean of these distributions
across conditions only. More flexible approaches are required to
better characterize differences between single cells across conditions.
Some methods such as BASiCS (Vallejos et al., 2016) have gone be-
yond testing for differences in means and additionally test for differ-
ences in variance.

Here, we present a flexible method for detecting differential dis-
tributions (DDs) based on the 2-Wasserstein distance (Panaretos and
Zemel, 2019; Rüschendorf, 2001), that is sensitive to testing for any
type of difference between two conditions. Our method can be used
to test for differences between two expression distributions of a
gene, e.g. between two cell-types within a sample (variant A).
Alternatively, it can be used to test for differences between two con-
ditions, e.g. when comparing the same cell-type between treatment
conditions with multiple replicates (variant B). By simulation, we
validate our decomposition approach and demonstrate substantial
speed improvements over alternative methods for variant A testing.
To demonstrate our novel approach in variant B, we apply our
methods in a case study of detecting DDs between natural killer

VC The Author(s) 2021. Published by Oxford University Press. 3204

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(19), 2021, 3204–3211

doi: 10.1093/bioinformatics/btab226

Advance Access Publication Date: 1 April 2021

Original Paper

https://orcid.org/0000-0002-3890-7658
https://github.com/goncalves-lab/waddR
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab226#supplementary-data
Deleted Text: ,
Deleted Text: Figure 
Deleted Text: s
https://academic.oup.com/


(NK) cells resident in human decidua versus blood (Vento-Tormo
et al., 2018), and highlight instances of biologically meaningful but
hitherto unseen expression complexity. Our method is implemented
in the R/Bioconductor package waddR, and generalizations are pro-
vided for the application to continuous data.

2 Materials and methods

2.1 The 2-Wasserstein distance and its decomposition
For two continuous cumulative distribution functions (CDFs) FA

(with mean lA and standard deviation rA) and FB (with mean lB

and standard deviation rB) that model the distributions for condi-
tions A and B, respectively, the squared 2-Wasserstein distance d,
referred to as the ‘2-Wasserstein distance’ for convenience through-
out the text, is given by (Panaretos and Zemel, 2019; Rüschendorf,
2001)

d:¼dðFA;FBÞ¼
ð1
0

jF�1
A ðuÞ�F�1

B ðuÞj
2du

¼ðlA�lBÞ2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
location

þðrA�rBÞ2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
size

þ2rArBð1�qA;BÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
shape|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

variability

;

where qA;B2½0;1� is the Pearson correlation coefficient of the points
in the quantile–quantile (Q–Q) plot of FA and FB. In this useful de-
composition of d, differences in location and size are quantified by
the squared differences of the means and standard deviations, re-
spectively, while differences in shape may refer to differences with
respect to modalities or skewness and are mainly covered by the cor-
relation coefficient qA;B (Irpino and Verde, 2015). Typically, the dis-
tributions FA and FB are not explicitly given and information is only
available in the form of samples. Here we use the corresponding em-
pirical CDFs F̂A and F̂B to approximate the distributions
(Supplementary Material S1).

2.2 Semi-parametric permutation test with generalized

Pareto distribution approximation (waddR SP)
To test whether two distributions (CDFs) FA and FB represented by
two samples are significantly differentially distributed, we specifical-
ly test the null hypothesis H0 : FA ¼ FB against the alternative H1 :
FA 6¼ FB using the 2-Wasserstein distance. In a semi-parametric (SP)
testing procedure we combine a classical permutation test with a
generalized Pareto distribution (GPD) approximation to derive a P-
value (similar but not identical to Matsui et al., 2016). We employ
the sample-based 2-Wasserstein distance d � 0 as a test statistic here
and test H0 : d ¼ 0 against H1 : d > 0 to identify differences in dis-
tributions. As it is usually computationally infeasible to compute all

permutations, we use a subset of size Nsub of all the permutations.
Moreover, to avoid P-values of exactly zero we insert a pseudo-
count. Consequently, the P-value has a lower bound of
1=ðNsub þ 1Þ. However, in high-dimensional applications, such as in
genomics, a very high resolution for the P-values is often required,
because the threshold for statistical significance may be close to zero
due to multiplicity correction (Benjamini and Hochberg, 1995). To
address this, we use the approach in Knijnenburg et al. (2009) and
model the tail of the distribution of the test statistic values obtained
by permutations using a GPD (Supplementary Material S1).

2.3 Different testing scenarios in scRNA-seq

experiments
We distinguish two different scenarios in the context of DD testing
for discrete scRNA-seq data: in the first setting A, gene expression
data are only available from one replicate per condition (e.g. when
comparing two cell types within a sample), while in the second scen-
ario B, there are expression data from multiple replicates per condi-
tion (e.g. when comparing the same cell-type under different
experimental conditions). As the starting point for our waddR
approaches, we assume a pre-processed (normalized) scRNA-seq
data matrix consisting of expression values for multiple genes over
multiple cells.

2.3.1 Variant A: one replicate per condition

In the setting in which expression data is only available for one repli-
cate per condition, the aim is to test whether two expression distri-
butions of a gene are significantly different. To incorporate the
special role of zero expression in scRNA-seq data, i.e. the point
mass at zero, we divide the procedure into two parts and propose
the following two-stage approach: (i) test for differential propor-
tions of zero expression (DPZ) between the two conditions using a
Bayesian logistic regression model, taking account of the cellular de-
tection rate in order to correct for differences in total counts per cell
(Finak et al., 2015; Korthauer et al., 2016); and (ii) separately test
for differences in non-zero expression by applying the semi-paramet-
ric waddR SP testing procedure to the non-zero expression values
only. This approach yields two P-values, P:zero and
P:nonzero ¼ PSP. The P-values P:zero and P:nonzero can be com-
bined into an overall P-value P:comb for DD using the classical
Fisher method (Supplementary Material S1, Supplementary Fig. S2).

2.3.2 Variant B: testing between two conditions with multiple

replicates

In our second setting, expression data is available from multiple rep-
licates per condition. Here, data may be unpaired or paired. In the
unpaired setting, data come from two separate sets of independent
and identically distributed samples, e.g. when data for condition A
stem from multiple instances that are different from those in
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Fig. 1. Probability density functions illustrating different types of DDs. The corresponding decomposition of the 2-Wasserstein distance d between distributions into location,

shape and size terms is shown below each example
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condition B. In the paired setting, data for condition A arise from
the same instances as for condition B. A typical example of a paired
setting would be data stemming from the same individual tested

under two different conditions A and B.

1. For DPZ testing for the paired setting we employ the Cochran-

Mantel-Haenszel (CMH) test, a multi-dimensional generaliza-

tion of the classical Fisher’s exact proportion test, yielding a re-

spective P-value P:zero. For DPZ testing for the unpaired

setting, with possibly different numbers of replicates per condi-

tion, log-linear models may be used.

2. For non-zero expression testing we employ the following pro-

cedure based on 2-Wasserstein distances, which can in principle

be applied to both paired and unpaired settings. Based on R rep-

licates and two conditions A and B, we calculate the 2-

Wasserstein distances DBC for all comparisons between the con-

ditions and the 2-Wasserstein distances DWC for all comparisons

within the conditions. Finally, we employ the Wilcoxon rank

sum test to test for mean differences between the distance values

in DBC and DWC, yielding a corresponding P-value P:nonzero.

An overall decomposition of the distance into location, size and

shape components can be readily calculated as an average of the

DBC decomposition fractions.

As for variant A, the P-values P.zero and P.non-zero can be com-

bined into an overall P-value P.comb for DD using the classical
Fisher method.

2.4 Generalization to applications beyond scRNA-seq
waddR is potentially useful in a diverse range of practical applica-
tions beyond scRNA-seq, i.e. whenever the aim is to test whether

there are significant differences between two distributions.
Examples include methylation array experiments (Matsui et al.,
2016) or fluorescence-activated cell sorting (FACS) data, but may
also go beyond bioinformatics applications, e.g. ensemble forecasts
in modern weather prediction (Buizza, 2018). For applications

which can be assumed to come from continuous distributions, we
have implemented the waddR ASY variant that makes use of an
asymptotic result for the null distribution of the 2-Wasserstein dis-

tance (Supplementary Material S1, Supplementary Fig. S1). This
variant substitutes the computationally expensive permutation pro-

cedure SP, that is used in the context of scRNA-seq data, for con-
tinuous data.

3 Results

3.1 Simulation experiments to validate waddR SP and

waddR ASY testing procedures
To validate the decomposition of the 2-Wasserstein distance and the

SP and ASY testing procedures, we demonstrate that waddR shows
reasonable performances regarding detection power and type I error

and is able to identify the causes of the differences between two dis-
tributions correctly in a set of simulations studies based on normal
(Supplementary Material S2, Supplementary Figs S3–S9,

Supplementary Tables S2 and S3) and Gamma distribution models
(Supplementary Material S3, Supplementary Figs S10–S12,
Supplementary Tables S4 and S5).

3.2 Simulation experiments based on scRNA-seq data

for waddR variant a
Here we perform investigations based on simulations adapted to the
context of scRNA-seq data and in comparison to two alternative
methods for testing one replicate per condition (variant A).

3.2.1 Methods for comparison

A number of methods specialized for scRNA-seq differential expres-
sion testing between conditions with multiple replicates have been
developed in recent years [reviewed in Miao and Zhang (2016),
Jaakkola et al. (2017), Dal Molin et al. (2017), Soneson and
Robinson (2018), Wang et al. (2019) and Supplementary Table S6].
Of these, the majority tackle the problem of testing for differences in
means while addressing the statistical challenges posed by high levels
of technical noise and intrinsic biological variability in single-cell
experiments. Some methods such as BASiCS (Vallejos et al., 2016)
and DEsingle (Miao et al., 2018), have gone beyond testing for
differences in means and additionally test for differences in variance
(BASiCS) or differences in the proportion of zeros (DEsingle).
Our method tests instead for any change in the full distribution, thus
capturing the highly complex expression patterns frequently
observed in scRNA-seq datasets (Korthauer et al., 2016). To our
knowledge, no other method is readily applicable to testing for DD
shape between conditions with replicates (variant B).

For variant A, we compare our approach to two previously pub-
lished methods, scDD (Korthauer et al., 2016) and SigEMD (Wang
and Nabavi, 2018), which have been developed to explicitly test for
differences in shape between two distributions. Given that both
scDD and SigEMD use the same approach to detect DPZs as waddR,
we limit our comparisons to the non-zero part.

scDD (Korthauer et al., 2016) models non-zero, multi-modal ex-
pression using a Dirichlet process mixture of normals. It provides a
characterization of the type of the DD by explicitly modelling the
following patterns: traditional mean-based differential expression
(DE), differential modality (DM), differential mode weights (DP)
and a combination of the previous two (DB). To calculate a P-value,
scDD originally uses a permutation test based on Bayes factor scores.
As this procedure is computationally expensive, a second, computa-
tionally faster, option is provided which employs a KS test instead.
However, the KS test as used in scDD is originally designed for con-
tinuous data, and is not the best choice for the scRNA-seq setting in
which we have expression data derived from discrete read counts.

waddR is conceptually simpler than scDD and requires fewer (virtu-
ally no) assumptions or modelling, thus requiring less computation
time. While for non-zero differential expression, scDD provides a single
category of DD as an output (categorization), waddR provides informa-
tion on differences via the decomposition of the 2-Wasserstein distance
test statistic. For example, it is possible to combine results from different
replicates with our method, by averaging the corresponding fractions of
location, size and shape components for each replicate as discussed be-
fore. This is not directly possible with the categorical output of scDD.

The second reference approach, SigEMD (Wang and Nabavi,
2018), employs the Earth Mover’s distance (EMD) for DD analysis
of expression values distributions. Compared to SigEMD, waddR
uses the 2-Wasserstein distance including its decomposition and not
the EMD, which is in fact the 1-Wasserstein distance and for which
there is no similar decomposition readily available. The calculation of
the Wasserstein distance in SigEMD is based on solving an optimization
problem, following an alternative, original, definition of the Wasserstein
distance, which is computationally intensive. In contrast, waddR makes
use of an equivalent quantile representation of the Wasserstein distance,
which can be conveniently interpreted and directly computed, while
allowing for a computationally faster implementation.

3.2.2 Setting of the simulation study

We created simulated scRNA-seq data based on the simulation pro-
cedures in Korthauer et al. (2016), using the example dataset, de-
fault hyperparameter choices and simulation function from the
scDD package. In particular, we generate G :¼ 1000 genes across
two conditions with C cells each, where we here employ the three
different numbers of cells (i.e. sample sizes) C 2 f50; 100; 500g.

In each scenario, 100 of the G¼1000 genes are generated as dif-
ferentially distributed and equally divided into the following four
different categories of DDs (i.e. 25 genes per category):

• traditional differential expression (DE): two unimodal distribu-

tions with different means,
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• differential proportions of cells within each component (DP):

two bimodal distributions with the same modes, but with differ-

ent proportions of cells of each mode,
• differential modality (DM): one unimodal distribution and one

bimodal distribution with one mode being identical to that of the

univariate distribution,
• both differential modality and different component means (DB):

one unimodal distribution and one bimodal distribution with no

common modes.

We generated the remaining 900 genes as non-DD genes by cre-
ating one half (i.e. 450 genes) from the same unimodal distribution
[corresponds to the equivalent expression (EE) category in scDD]
and the other half (i.e. 450 genes) from the same negative binomial
model with two components [corresponds to the equivalent propor-
tion (EP) category in scDD]. Finally, we consider three different
degrees of DDs (weak, medium, strong) by varying the fold changes
between the modes for the DP, DM and DB settings from 2 over 4
to 6, while fixing standard deviations of the fold changes to 2, see
Korthauer et al. (2016) and the scDD package manual for details.
For each method, 1000 permutations are used to obtain the respect-
ive testing results.

3.2.3 Simulation results

We evaluate the performance of waddR and the reference methods
by considering sensitivity, specificity, precision, accuracy and the re-
ceiver operating characteristic (ROC) curves with corresponding
area under the curve (AUC) values (Fig. 2A, C and Supplementary
Figs S13 and S14). Overall, waddR shows good performances that
typically get better with increasing number of cells and more pro-
nounced degrees of DD (Supplementary Figs S13 and S14). In par-
ticular, waddR outperforms scDD or performs similarly well in the
majority of the considered cases. In some cases, SigEMD performs a
little better than waddR and scDD. Overall, waddR yields good de-
tection powers (sensitivity) with respect to the four different scDD
categories for simulated DD genes, especially when there is a me-
dium or strong degree of DD and a reasonably large number of cells
(Fig. 2B and Supplementary Fig. S15). There are only certain weak-
nesses in detecting DDs of the type DP and DB for small numbers of
cells and when the degree of DD is not very pronounced. However,
this also holds for the other methods and confirms results obtained
in previous simulation studies (Korthauer et al., 2016; Wang and
Nabavi, 2018).

The behaviour of the decomposition with respect to the different
DD categories DE, DP, DM and DB is shown in Figure 2D. Similar
tendencies can also be found in the other settings (Supplementary
Fig. S16). For the DE category, both differences in location and size
make up the overall difference. In contrast, the shape component is
negligible. This is in agreement with the definition and construction
of the DE category in scDD, where only shifts in location and size
are expected. For the DP category, each of the location, size and
shape components may contribute to the overall distance, with the
shape component typically taking on a more pronounced role than
size, when compared to the other categories. The DM and DB cate-
gories show a similar behaviour regarding the decomposition of the
2-Wasserstein distance. In both cases, the size component is very
pronounced, while the location and in particular the shape compo-
nents are rather small. However, when looking at the correlation
coefficients q, a difference with respect to shape is also apparent.
The very strong influence of the size component, i.e. the large differ-
ence between the standard deviations, causes the shape term to be-
come negligible in the decomposition, even though the values of the
correlation coefficient q suggest that there are also differences with
respect to shape (Fig. 2E and Supplementary Fig. S16).

The main advantage of waddR compared to the reference meth-
ods scDD and SigEMD is the reduced computational running time
(Tables 1 and 2). In general, computation time depends on the num-
ber of genes, the number of cells, the degree of the DD and the

number of the permutations employed in the analysis method.
Regarding our simulation studies here, we have G :¼ 1000 genes
and 1000 permutations. All methods were run on the same com-

puter, using the default settings of the reference methods. We report
average approximate running times over the three different degrees

of DD, for each number of cells separately (Table 1). Interestingly,
the running times were typically consistent across the different
degrees of DDs for scDD and waddR, whereas they were consider-

ably different for SigEMD, in that the stronger the degree of DD the
longer the computation takes. waddR is by far the fastest of all con-

sidered permutation-based approaches, due to its simpler underlying
concept and implementation, but also as it employs a fast and effi-
cient Cþþ implementation of the permutation procedure and the

calculation of the 2-Wasserstein distance(s). The benefit of waddR
becomes more obvious when looking at the running times when

using 10000 permutations, which is typically a more reasonable
number of permutations to obtain reliable results. Table 2 shows a
comparison of the running times based on using 1000 or 10000 per-

mutations, respectively, for the computationally cheapest setting of
C¼50 with a weak degree of DD. While an increase in the number
of employed permutations increases the running time of scDD dras-

tically (by several days) and that of SigEMD considerably (by ap-
proximately a day), the increase for waddR is very moderately (by

several minutes). Further, running times are also expected to in-
crease with the number of genes. As typical scRNA-seq datasets
comprise much more than 1000 genes as considered in our simula-

tion studies, computational running times may get even more im-
portant, with waddR providing the fastest of all considered

implementations.
In summary, in our simulation studies of variant A, waddR is

equivalent or outperforms the reference methods scDD and SigEMD
with respect to common performance criteria. The most obvious
benefit of waddR is a reduced computation time, even though, as

scDD and SigEMD, it is based on a permutation testing procedure.
waddR also benefits from its conceptual simplicity, as it comes

without sophisticated modelling (scDD) or the need to solve opti-
mization problems (SigEMD) that may be computationally intense.

3.3 Benchmarking waddR variant B using real

scRNA-seq data
To validate the performance of waddR variant B for multiple repli-
cates, we apply our method to the real Fluidigm C1 platform-based
scRNA-seq dataset of Tung et al. (2017). For this dataset, there

exists a matching bulk RNA-seq dataset, from which we derive a list
of reference differentially expressed genes that we employ as the

ground truth to compare against. Furthermore, we investigate the
impact of the number of replicates and the use of some of the most
widely used normalization methods on performance (Supplementary

Material S5).
In this benchmarking study, waddR shows adequate ROC curves

(Supplementary Fig. S17) and FDR curves (Supplementary Fig. S18),
with a reasonable balance between sensitivity and specificity
(Supplementary Table S7). Moreover, waddR exhibits a good con-

trol of type I errors (Supplementary Figs S19 and S20). The results
are consistent across different considered normalization methods

(Supplementary Figs S17–S20, Supplementary Table S7). Moreover,
the performance of waddR variant B meaningfully increases with the
number of replicates. This is to be expected, as the powers of the

involved testing procedures, in particular the Wilcoxon rank sum
test, rise with increasing number of replicates (Supplementary Figs

S21–S24, Supplementary Table S8). Along with the benefit of dras-
tically reduced computation times, waddR variant B furthermore
outperforms or is competitive to the scDD and SigEMD reference

approaches, which are not explicitly designed to handle replicates,
with respect to all the evaluation criteria mentioned before

(Supplementary Figs S25–S29, Supplementary Table S9).
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3.4 Case study: detecting DDs between tissue-resident

and blood NK cells
3.4.1 Details of the case study

In order to test waddR variant B in a real-data case study, we apply
it to a subset of the scRNA-seq dataset in Vento-Tormo et al. (2018)
for first-trimester placentas with matched maternal blood and decid-
ual cells. Specifically, we consider the subset of those cells that have

been classified as natural killer (NK) cells in Vento-Tormo et al.
(2018), and we use the 10� Genomics sequencing platform-based
scRNA-seq data of four replicates for which both measurements in
decidua and blood are available. The comparison we look at is NK
cells in decidua (condition A) versus NK cells in blood (condition
B). After normalizing and filtering out those genes that show zero
expression in all cells across both conditions and across all
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Fig. 2. (A–C) Performance metrics when simulating a weak degree of DD and with P-value threshold of 0.05: (A) Sensitivity and specificity depending on the number of cells.

(B) Detection powers for the different DD categories according to Korthauer et al. (2016), depending on number of cells C. (C) ROC curves with AUC values, depending on

number of cells C. (D) Decomposition of the 2-Wasserstein distance for C¼500 and a strong degree of DD for the different DD categories, shown for those genes that have

been detected as DD. Note that there is no exact one-to-one correspondence and interpretation between the scDD categories and the terms of the decomposition of the 2-

Wasserstein distance. (E) Violin plots of the correlation coefficient q in the decomposition of the 2-Wasserstein distance for C¼ 500 and a strong degree of DD for the different

DD categories, based on those genes that have been detected as DD

Table 1. Approximate running times averaged across all degrees of

DD within the simulation studies, depending on the number of cells

C

C¼ 50 C¼ 100 C¼ 500

scDD � 10 h � 18 h � 38 h

SigEMD � 41 h � 52 h � 82 h

waddR � 1 min � 1 min � 1 min

Table 2. Approximate running times for C¼ 50 and a weak degree

of DD in the simulation study when employing 1000 and 10000 per-

mutations, respectively

1000 permutations 10000 permutations

scDD � 10 h � 3 days

SigEMD � 5 h � 28 h

waddR � 1 min � 8 min
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replicates, this dataset comprises log-normalized expression distri-
butions for 21138 genes (Table 3).

Our goal is to compare the analysis results from waddR to those
obtained when applying the edgeR approach (Robinson et al.,
2010), which originally has been designed for differential expression
analysis for bulk RNA-seq measurements. To mimic bulk values
from the single-cell dataset in Vento-Tormo et al. (2018), we com-
pute for each gene and for each replicate separately the sum of the
expression values (counts) over all respective cells and take this as a
bulk input for edgeR. As we want to compare a bulk to a single-cell
approach here, no filtering with respect to genes or cells is done
here, since otherwise the mimicked bulk counts for edgeR could be
distorted.

For the bulk edgeR method, we use the default normalization
and the quasi-likelihood F test to check for differential expression as
provided by the package, while explicitly accounting for the paired
setting encountered.

For the single-cell-based analysis, the Seurat package (Butler
et al., 2018) is used for normalizing the data, using the default set-
tings of log-normalization with scale factor 104. Then, the waddR
approach for multiple replicates (variant B) is applied to this pre-
processed data. Our procedure gives three different P-values: a P-

value P:zero referring to differences in proportions of zero expres-
sion (DPZ), a P-value P:nonzero referring to difference in non-zero
expression (non-zero DD) and a combined P-value P:comb of over-

all DD. These P-values are then adjusted for multiple testing using
the method of Benjamini and Hochberg (1995), yielding

P:adj:zero; P:adj:nonzero and P:adj:comb, respectively. In contrast,
the bulk edgeR method offers a single adjusted P-value P:adj as an
overall result for differential expression.

3.4.2 Genes detected by both methods

Overall, edgeR detected 3987 differentially expressed genes
[Benjamini-Hochberg (BH) adjusted P-value � 0:05], 99% of

which were also detected by waddR (BH adjusted combined P-value
� 0:05; Fig. 3A). Of the genes detected by both tools, 99% showed

a significant difference in proportion of zeros (DPZ), while 19%
showed a difference in the non-zero part. For such genes, that would
otherwise be discovered using conventional tools, new insights can

be gained by the decomposition into location, size and shape. For in-
stance, the activation marker CD69 has been previously proposed to
be an over-expressed marker of tissue-resident NK cells when com-

pared to conventional, peripheral blood NK cells (Jabrane-Ferrat,
2019). The decomposition of the distribution of CD69 indicates that

the Wasserstein distance is mostly explained by size (51%), followed
by location (40%, Fig. 3B), suggesting that rather than a difference
in expression, decidual NK cells are more variable with regard to

CD69 expression (Fig. 3B). Indeed, when subsetting the decidual
NK cells by the 3 sub-populations of dNK cells newly identified by

Vento-Tormo et al. (2018), it becomes apparent that the expression
of two sub-populations of decidual NK cells (dNK1 and dNK2) is
similar to the expression of blood NK cells and that the increase in

Table 3. Setting of the real-data case study

Decidua Blood

Donor F19 3249 NK cells 569 NK cells

Donor F20 282 NK cells 107 NK cells

Donor F25 2245 NK cells 360 NK cells

Donor F27 4016 NK cells 325 NK cells

Fig. 3. (A) Venn diagram of the number of genes detected as DD by waddR (BH-adjusted combined P-value � 0:05) and by edgeR (BH-adjusted P-value � 0:05). (B)

Expression of CD69 over the NK cells of four donors. Red: NK cells isolated from peripheral blood. Blue: NK cells isolated from the decidua. For purely illustrative purposes,

we fit a density to the samples. However, note that the density itself is not used for the actual testing procedures, nor for the calculation of the decomposition. (C) Distribution

of expression across the cells from all donors, coloured by the newly identified NK subsets from Vento-Tormo et al. (2018). (D) Venn diagram of the number of genes detected

as DD by waddR. (E) Histograms of expression of KIR receptors KIR3DL1 and KIR3DL2 for each of the four donors
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variance comes from a change in mean in the third population only
(dNK3, Fig. 3C).

3.4.3 Genes detected only by waddR
Compared to edgeR, waddR identified an additional 5233 differen-
tial genes, 63% of which showed a significant DPZ, while 30%
showed a difference in the non-zero part (Fig. 3D). Among those
genes uniquely identified by waddR, there is an enrichment of genes
known to be differentially expressed between peripheral-blood NK
cells and decidua resident NK cells, including KIR3DL1, KIR3DL2
and CD53. Interestingly, while both KIRs are expected to have
higher expression in decidual NK cells compared to blood
(Koopman et al., 2003), we observe the opposite: when KIRs are
expressed in blood NK cells they are expressed at a higher level than
in decidua NK cells (Fig. 3E). The discrepancy between these results
can be explained by the observation that proportionally fewer blood
cells express KIRs compared to the decidual cells (5% average dif-
ference in proportion of zeros), a distinction that is beyond the reach
of bulk expression assays.

4 Discussion

ScRNA-seq expression distributions typically show multi-modality,
an abundance of zeros and increased variability (Bacher and
Kendziorski, 2016). The detection of differences in such potentially
biologically meaningful patterns is beyond the scope of traditional
differential expression testing approaches. Here, we present methods
derived from multiple, disconnected literature results for the 2-
Wasserstein distance and put them into a unifying and overarching
context particularly useful for single-cell applications. Our method
can be used in two fundamentally different ways, to test for differen-
ces between two (and only two) distributions, treating cells as repli-
cate observations (variant A); or to test for DDs between two
conditions with replicate observations (variant B). The latter is the
more important level of replication as different samples will neces-
sarily be generated if the experiment is to be replicated (Amezquita
et al., 2020). Differential expression analyses that treat cells as repli-
cates fail to properly model sample-to-sample variability (Lun and
Marioni, 2017). Our method provides a framework for DD testing
that can handle both variants and offers substantial speed improve-
ments over alternative approaches for variant A testing, without
compromising on detection performance.

In addition to applications in scRNA-seq data, the waddR frame-
work is applicable to any other domain where two distributions are
compared. For continuous data in particular, a newly derived asymp-
totic testing procedure allows for further speed improvements.

Future extensions of the waddR methods should deal with mul-
tiple conditions and multivariate data. In particular, log-linear mod-
els may provide an alternative to the Cochran-Mantel-Haenszel test
for variant B DPZ testing. Such a frame would allow for the inclu-
sion of covariates, for example by including the cellular detection
rate as covariate in order to correct for differences in total counts
per cell.

4.1 Usage notes for the waddR R package
We implemented our method as a package for the statistical environ-
ment R and distribute it within the Bioconductor project. As input
for scRNA-seq analysis, it expects a table of pre-filtered and normal-
ised count data. As filtering and normalisation are important steps
that can have a profound impact in a scRNA-seq workflow (Cole
et al., 2019), these should be tailored to the specific question of
interest before applying waddR. waddR is applicable to data from
any scRNA-seq platform (demonstrated here for 10� Genomics and
Fluidigm C1 Smart-Seq2) normalised using most common methods,
such as those implemented in the Seurat (Butler et al., 2018) or
scran (Lun et al., 2016) packages. Normalisation approaches that
change the shape of the gene distributions (such as quantile normal-
ization) and gene-wise scaling or standardizing should be avoided
when using waddR.
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