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Abstract

Recent advancements in multiphoton imaging and vascular reconstruction algorithms have 

increased the amount of data on cerebrovascular circulation for statistical analysis and 

hemodynamic simulations. Experimental observations offer fundamental insights into capillary 

network topology but mainly within a narrow field-of-view typically spanning a small fraction 

of the cortical surface (less than 2%). In contrast, larger-resolution imaging modalities, like 

computed tomography (CT) or magnetic resonance imaging (MRI), have whole-brain coverage 

but capture only larger blood vessels, overlooking the microscopic capillary bed. To integrate 

data acquired at multiple length scales with different neuroimaging modalities and to reconcile 

brain-wide macroscale information with microscale multiphoton data, we developed a method for 

synthesizing hemodynamically equivalent vascular networks for the entire cerebral circulation. 

This computational approach is intended to aide in the quantification of patterns of cerebral blood 

flow and metabolism for the entire brain.

In part I, we described the mathematical framework for image-guided generation of synthetic 

vascular networks covering the large cerebral arteries from the Circle of Willis through the 

pial surface network leading back to the venous sinuses. Here in part II, we introduce novel 

procedures for creating microcirculatory closure that mimics a realistic capillary bed. We 

demonstrate our capability to synthesize synthetic vascular networks whose morphometrics match 

empirical network graphs from three independent state-of-the art imaging labs using different 

image acquisition and reconstruction protocols. We also successfully synthesized twelve vascular 

networks of a complete mouse brain hemisphere suitable for performing whole brain blood 

flow simulations. Synthetic arterial and venous networks with microvascular closure allow whole 

brain hemodynamic predictions. Simulations across all length scales will potentially illuminate 
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organ-wide supply and metabolic functions that are inaccessible to models reconstructed from 

image data with limited spatial coverage.
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1 Introduction

Mathematical models of cerebral circulation for hemodynamic simulations combine 

biophysical principles with vascular anatomical data from medical images. Increasingly, 

models are becoming an indispensable research tool to integrate and reconcile direct 

imaging observations1–6, predict cerebral blood flow patterns7–16, oxygen exchange 

from blood vessels to tissue11–12, elucidate mechanisms of blood flow control, and 

quantify disruption in pathological states17–20. Previously, we identified shortcomings when 

reconstructing vascular anatomical networks from raw image data21. As a compliment or 

alternative to purely image-based network models (=empirical VAN or simply denoted as 

VAN), network synthesis can systematically integrate imaging data from diverse modalities 

(μCT, MRI, multiphoton, SEM, etc.) acquired at different length scales to create synthetic 
vascular networks (sVAN) that match structural, hemodynamic and metabolic properties 

of empirical VAN. In this combination of papers, we present a large-scale algorithm 

entitled image-based Cerebral Network Synthesis (iCNS) for synthesizing physiologically 

sound, anatomically complete cerebrovascular networks. The iCNS algorithm allows us 

to not only create synthetic counterparts to experimental templates, but also to generate 

network models of the entire cerebral circulation by extending connectivity and topological 

information obtained from multimodal neuroimage data to the whole brain. In part I of this 

series21, we redesigned and significantly expanded constrained constructive optimization 
(CCO) principles. The iCNS algorithm expands traditional CCO algorithms by methods 

for integrating image data such as surface reconstructions (=STL files) and reconstructed 

vascular networks (=backbones). iCNS allows emulation of essential anatomical features 

(=ring structures without tree-like connectivity) such as the Circle of Willis and the unique 

spatial arrangement of the large lateral segments that adhere tightly to the cortical surface 

(=pial networks of the ACA, MCA, PCA territories). Although we believe that minimization 

of vascular lumen is an elemental building principle for blood supply networks, additional 

physiological constraints need to be imposed in order to meet the metabolic demands of 

specific organs. For example, the cerebral arterial blood vessels follow the leptomeningeal 

surface of the gyrated human cortex. Such additional building principles, when suitably 

input into our method, enable the generation of artificial networks that reproduce functional 

blood supply. We will demonstrate our approach to integrate organ specific anatomical 

constraints for synthesizing consistent cerebrocirculatory networks. Specifically, during 

step-wise growth of iCNS we enforce leptomeningeal passage of the main pial arteries 

and veins tracking the cortical surface (pia), the alignment of arterioles and veins penetrating 

the brain tissue perpendicular to the cortical surface or the branching patterns of long and 

short penetrating arterioles and veins. Anatomical constraints can be implemented through 
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novel methods such as SampleGenerators that limit the geometric location where artificial 

segment addition is permitted to occur; and Constraint Functors to enforce desired metric 

specifications (=position, orientation, size, etc.) that must be followed during each growth 

stage.

Here in part II, we will investigate the critical innovation of microvascular closure for the 

generation of mesh-like network structures that connect the arterial and venous circulation 

through an artificial capillary bed that is both hemodynamically (=shares equivalent blood 

flow properties) and physiologically consistent (=structural similarity) with image-derived 

counterparts. Robustness and reproducibility of the iCNS algorithm will be demonstrated by 

synthesizing hundreds of microvascular networks matching vascular structures from three 

cohorts (total of N=15 unique image-derived networks) from the murine cerebral vasculature 

acquired by independent groups using state-of-the-art in-vivo and ex-vivo multiphoton 

imaging techniques. We will show an approach to map key structural properties affecting 

hemodynamics computations such as length, diameter, tortuosity spectra, and vessel count 

from empirical VANs onto synthetic clones (sVANs) with a high degree of statistical 

agreement. We will also quantify the key structural properties related to hemodynamics 

for sVAN and assess their statistical similarity to the empirical VANs. We further incorporate 

macro-, meso- and microanatomical information from various imaging modalities to 

synthesize twelve cerebrovascular networks (=arteries+capillaries+veins, N=12) spanning 

the entire hemisphere in mouse.

2 Methods and Materials

2.1 Microcirculatory data acquisition from three different sources

Microcirculatory image data.—We first characterized the cerebral microcirculation of 

the vibrissa primary sensory cortex using data acquired independently in three state-of

the-art imaging labs3,22,23. These data from three cohorts of mice were acquired with 

different multiphoton imaging techniques as described in Appendix A and in more detail 

elsewhere3,22,23. The datasets (VANs) constitute a representative cross section of state-of

the-art imaging data available for the murine microcirculation. The Kleinfeld (KF) cohort 

(n=4) used ex vivo imaging. The Boas (n=5) and Dunn (n=6) cohorts applied in vivo 

imaging with open cranial windows. Based on imaging data, vascular network graphs 

(VANs) were reconstructed as described previously3,24,25.

Segmentation-independent morphometric statistics were computed using cubic Bezier spline 

segments for all murine image-derived vascular networks as described in Appendix B. We 

calculated probability density functions (PDFs) and normalized cumulative density functions 

(CDFs) for length, diameter, surface area, volume, and tortuosity spectra. We also generated 

global network statistics of segment density, total intravascular volume, volume fraction. For 

visual inspection of microstructural geometric properties (such as vertical bias of vessels 

or simulation results), Walk-in-Brain26, a custom in-house 3D immersive visualization 

platform was used. An overview of dimension and aspects of empirical data sets is given in 

Figure 1.
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2.2 Large vessel morphometrics and construction of main vascular trees

Morphometric reconstructions of the cortical circulation as well as positions and orientations 

of the main cerebral arteries (carotid, Circle of Willis that served as backbones for 

hemisphere growth) were acquired with μCT imaging27 and confirmed with mouse atlases28. 

More information on the data acquisition and reconstruction can be found in part I 

of this sequence21. For the synthesis of large cerebrovascular trees extending from the 

main arterial trunks down to the precapillaries, we use the iCNS algorithm21,29 which 

significantly extends constrained constructive optimization principles29–32 as described in 

part I. We derive the mathematical framework of iCNS for generating vascular trees by 

segment addition that minimized the tree volume, while satisfying hemodynamic blood flow 

constraints as summarized conceptually in system (1):

For N segments close to new terminal T do (for eacℎ possible connection y do)
min

x
V (x)

s . t .
A(ξ, η) −C1

(I − D)C1
T D

q
p = 0

Dp x(α(ξ, η), p(ξ, η), q(ξ, η))
(1)

where, V is the total vascular tree volume, X is the vector of unknowns which includes 

the optimal bifurcation coordinates (ξ,η), A is the diagonal resistance matrix, C1 is the 

graph incidence matrix, q is bulk blood flow, p is blood pressure, p is the desired perfusion 

pressure, and D a diagonal decision matrix to enforce boundary pressures,p. The solution of 

the optimization problem during each segment addition step gives the optimal bifurcation 

point position (ξ and η) within the bifurcation plane. We refer to part I for a detailed 

discussion of the essential recursive formulae21 for computing optimal bifurcation point 

coordinates and segment calibers without the need for inverting the entire flow matrix 

system. The relationships between diameters and diameter ratios are briefly summarized in 

Appendix C for completeness.

2.3 Microvascular closures

Microvascular closure aims at synthesizing microvascular structures that connect the 

arterial and venous sides of the vascular networks in a physiologically consistent fashion. 

We emphasized achieving hemodynamic equivalence between the empirical and the 

synthetic VANs. Since blood flow and perfusion are primarily functions of blood vessel 

lengths, diameters and connectivity, two networks are hemodynamically equivalent if they 

have similar graph connectivity as well as equal segment length and diameter spectra. 

Accordingly, we synthesized the arterial and venous branches from the large pial vessels 

down through the vertical penetrators to the smallest capillaries with number of splined 

segments, nsgm, of each vessel type matching our image data bases of VANs. This 

generates trees (an arterial tree and a venous tree), each with a large number of open 

distal terminal nodes (nTerminals=nsgm/2). Microvascular closure then entails the synthesis 

of new microvessel segments so that blood can flow from the arterial to the venous side 

through the capillary bed without any gaps, holes, or dead ends (terminals). In other words, 

a microvascular closure embodies a network of microvessels which connects open terminal 
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nodes of the arterial tree to segments of the venous tree and conversely, all open terminals of 

the venous tree will be connected to the arterial side.

Unfortunately, microvascular beds cannot be generated by constrained constructive 

optimization directly, because its logic only applies to a single binary tree. However, 

when trying to connect the arterial to the venous graph through new capillary segments, 

the respective trees would merge thus losing the binary connectivity. Moreover, segment 

count, diameters, and orientation, as well as connectivity and branching patterns of synthetic 

networks should match the in vivo microcirculatory angioarchitecture as close as possible. In 

addition, space filling properties such as tortuosity, mean distance between bifurcations, and 

closest distance from tissue to nearest capillary are significant metrics for solute exchange 

across the blood brain barrier and should also be carefully considered. To address these 

requirements, we developed three microvascular closure algorithms.

Matching terminal closure.—The first method (illustrated conceptually in the top row 

of Figure 2-top) entails the creation of microcirculatory segments by pairing free arterial 

terminals with free terminals of the venous tree. While this approach is the most obvious 

way to connect two sets of terminals, it has several drawbacks. First, finding unique 

pairings between arterial and venous terminals is a combinatorial problem (specifically, a 

non-polynomial hard problem), whose computational effort scales exponentially with tree 

size, making this method intractable for large structures such as the mouse brain.

The combinatorial explosion can be circumvented by using suitable SampleGenerators (see 

details in part I) that furnish the coordinates of free arterial segments to the final segment 

growth stage of the complimentary venous tree, and vice versa. This implementation 

automatically guarantees that terminal arterial and venous branches fuse into each other 

without leaving gaps by directing terminal segments into a unique terminal node that is 

perfused from both sides. However, this method produces microcirculatory segments with 

further problems. First, because all terminals must be connected to a corresponding terminal 

on the opposing tree, the segment length cannot be controlled in all connections, meaning 

the resulting capillary bed will have undesirable length and diameter spectra. For the same 

reason, the orientation and angles between segments also cannot be controlled, leading to 

connections that are not physiologically sound. We do not recommend this method and only 

mention it for conceptual purposes.

Single bifurcation closure.—The second method connects each terminal of the first 

tree (e.g. arterial) to the other tree (i.e. venous) by generating a new segment between 

the open terminal and attaching it to an existing segment belonging to the complimentary 

tree. The node at which this new segment intersects the complimentary tree forms a new 

bifurcation as shown in Figure 2-middle. This method benefits from simplicity enabling 

efficient implementation. Unfortunately, this technique also introduces many new connective 

microsegments with “kinks”, which refers to the often quite acute angle between the 

segment upstream of the terminal node and the new closure segment resembling a kinked 

garden hose. Kinked segments introduce a high degree of tortuosity, τ, in the synthetic 

capillary bed often exceeding the physiological range. Specifically, the tortuosity range 

of the image-derived VANs has an upper limit of three, τ = [1..3], whereas kinked 
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segments can reach τ~8. The unwanted induction of excessive tortuosity caused by kinked 

segments can be corrected by replacing the two fused terminal segments (=upstream and 

closure segment) with a single straight or nearly moderately tortuous segment. This remedy 

overwrites and, in fact, alters the original position of the terminal node which was initially 

supplied by the carefully characterized SampleGenerator to precisely meets anatomical 

constraints (e.g. mean distance to other segments). In other words, rectifying tortuosity 

can injure, or partially undue anatomical construction constraints carefully enforced in 

the prior synthesis stage. Furthermore, we note that single bifurcation closure can easily 

meet a desired total segment count (nsgm, as defined in terms of splined segments which 

includes all vessel subsections between adjacent bifurcations as described in Appendix 

B), because closure segment addition does not alter overall segment count or density. We 

may recommend this closure for simplified hemodynamic simulations, where tortuosity is 

of minor importance and only preservation of segment lengths and graph connectivity is 

necessary. On the other hand, this method is not ideal for simulations in three dimensions of 

oxygen exchange and solute transfer to brain tissue across the blood brain barrier11,12,44.

Double bifurcation closure.—The third algorithm is harder to implement but offers the 

highest degree of control over vessels length/orientation and sample generation at every level 

of the capillary bed creation. This method creates two new microsegments that connect one 

terminal to two existing microsegments of the complimentary tree as illustrated in Figure 

2-bottom. Each of the two connections from the open terminal to the complimentary tree 

is similar to a single bifurcation addition presented above, but with the unique advantage 

that the terminal becomes a new bifurcation point. The point where each new segment 

attaches to the complimentary tree can be decided using rigorous optimization or by relaxed 

(no optimization) segment addition using a geometric heuristic. In both cases, anatomical 

constraints can be enforced with constraint functors as introduced in part I. Because of 

the ability to control angles and segment lengths with construction constraints, double 
bifurcation closure offers the highest level of control over critical morphological parameters 

such as segment length, angles and segment density, which is necessary for synthesizing 

a microvascular bed with desired morphometrics. The double bifurcation closure does not 

suffer from the computational intractability of the matching terminal closure. It also avoids 

the introduction of excessive tortuosity of the single bifurcation closure. This method proved 

to be the most effective method for synthesizing sVANs that closely match hemodynamic 

and morphological statistics of the three cohorts of empirical VANs. We used this method 

to generate synthetic digital twins for all cohorts of cortical mouse data (N=100 for Cohort 

1, N=5 for Cohort 2, and N=5 for Cohort 3). Implementation details for double bifurcation 

closure are given in Appendix H.

3 Results

3.1 Characterization of morphometrics of cortical circulation with three different sources

Three cohorts of empirical microcirculatory data sets covering the secondary cortex in 

mouse were analyzed as described in the methods section (KF: N=4; Boas: N=5; Dunn: 

N=6). This set serves as representative collection of imaging data available for the murine 

microcirculation. Structural properties and dimensions of the Dunn, Boas and Kleinfeld 
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(KF) cohort of empirical VANs can be inspected in Figure 1. Splined segments (cubic Bezier 

splines) were used for analysis (as described in Appendix B) to remove any artifacts in 

raw segment counts caused by image resolution or segmentation choices. CDFs of diameter, 
length, volume, surface area were calculated for each spline in the network as visualized 

in Figure 3. We also calculated the cumulative network statistics of segment density, total 
intravascular volume, volume fraction. These properties are also listed in Table 1.

Assessment of network variability.—The high degree of similarity between the 

statistics of VANs within each cohort reflects the excellent reproducibility and accuracy of 

the imaging and reconstruction protocols. However, due to inherent differences between the 

methodology used to acquire each cohort, domain sizes (imaging window size and cortical 

depth penetration) vary considerably between VANs from different cohorts. For example, 

the KF sets reach down to a depth of more than 1500 μm thus capturing the full length of 

penetrating arteries down to the grey/white matter interface. In contrast, the Boas and the 

Dunn VANs penetrate about 600 μm into the cortical depth. As a consequence, absolute 

quantities (cortical tissue volume specific quantities) such as spline segment count, total 

intravascular tree length, as well as intravascular volume, length, surface area, and surface 

area vary significantly from cohort to cohort as would be expected from the large variability 

between tissue volume sizes between cohorts.

Additionally, even relative properties (cortical tissue volume independent quantities) such 

as blood volume fraction and segment density exhibit a high degree of variance between 

cohorts as can be seen from the boxplots in Figure 3 despite the fact that the images 

represent similar regions of the cortex. For example, the blood volume fraction is less 

than 2% in all KF sets but exceeds 5% in the Dunn cohort with the Boas cohort in 

between. Moreover, segment density is lowest in Boas at an average of 6,665 nsgm/mm3 

compared to 8,573 and 11,473 nsgm/mm3 in Dunn and KF cohorts, respectively. These 

deviations can be attributed to differences in image acquisition protocols and underscores 

the unavoidable presence of experimental variability in image reconstructions of the cerebral 

microcirculation.

We noticed high variability in the diameter, length, and tortuosity information between 

cohorts. These spectra strongly depend on choices of animal preparation, imaging protocol, 

and reconstruction methods. For instance, the diameters were generally larger from cohorts 

using in-vivo imaging (9.15 ± 4.8 μm in the Dunn group and 7.37 ± 4.16 μm in the Boas 

group) when compared to the ex-vivo counterparts (3.87 ± 2.21 μm in the KF group). For 

length, segments in the Boas group (76.0 ± 66.6 μm) were longer than those in the Dunn and 

KF group (67.1 ± 53.5 μm, and 57.0 ± 46.0 μm respectively).

Long/short penetrating vessels.: We studied the connectivity patterns of observable 

penetrating arterioles and ascending venules in more detail. Upon close inspection, we 

detected the existence of two distinct types of penetrating vessels emanating from the pial 

surface and launching into the depth of the cortex. These previously scarcely characterized 

groups included long penetrators (LPA) and short penetrators (SPA). Long and short 

penetrators can be differentiated by segment thickness and maximum depth as highlighted 

in Figure 4. Specifically, long penetrating arteries with an occurrence frequency of 6.7 
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± 1.6 nsgm/mm2 of the cortical surface are thicker (which range d > 10 μm at the pial 

surface) and dive down all the way to neuronal layers V/VI. Short penetrating arteries 

(9.4 ± 5.3 nsgm/mm2 of the cortical surface) have capillary-like diameters (d<10 μm 

at the pial surface) and reach only to Layer IV. Additionally, short penetrators have a 

bush-like appearance with only a few branches distributed uniformly along its length. 

Long penetrators have sparser trunks but branch numerously in deep Layers IV-VI, thus 

resembling inverted tree trunks. The distinction of penetrators was most clearly visible 

in the KF set because of its deeper reach into the cortex. For veins, there are 7.6 ± 3.1 

nsgm/mm2 long (LAV) and 16.2 ± 5.2 nsgm/mm2 short ascending veins as measured per 

mm2 of cortical surface are, whith all statistics also listed in Table 1. We also found that 

the prevalence of long penetrating arteries (LPAs) was nearly equal to the number long 

ascending venules (LAVs) in each VAN, specifically the frequency of LAVs to LPAs is 

1.29:1. In short penetrators (SAVs and SPAs), we observed a 2.12:1 ratio.

Diameter variability with depth.: We investigated the variability of the diameter spectra 

as a function of depth, we discovered trend by grouping the segment depths within defined 

cortical layers22,33,34 with data gathered from the KF cohort, because it is the only cohort 

to span all neuronal layers (Layers I-VI). We detected layer-dependency depicted in Figure 

5, which revealed that the diameter spectra near the surface of the cortex (Layer I) was 

markedly different than lower layers (Layer II-VI). The mean and variability decrease along 

the depth of the subcortical region. As an example, we show the spectra of network E2.1 in 

Figure 5 which displays a stark contrast between the full width at half maximum (FWHM) 

in Layer I when compared to the lower layers (Layers II-VI). FWHM = the width of the 

PDF at half the peak frequency. Specifically, the diameter variance is 6.24 um in Layer 

I, gradually dropping to merely 0.93 um in layer VI. Moreover, the deepest layers have a 

more prominent peak diameter, meaning there is a high frequency of vessels with similar 

diameters, indicating higher uniformity. The boxplots of diameter within each layer also 

reveal that the median is smaller at deeper layers and the spread narrows (=lower variance in 

lower layers). In general, this trend seems to reflect a higher degree of order in deeper layers 

of the cortex compared to the surface.

3.2 Synthesis of cortical microcirculatory networks (=digital twin network)

In order to emulate the angioarchitecture of the cortical circulation, we used a staged 
growth paradigm employing the SampleGenerators methodology of the iCNS algorithm as 

described in part I of this series21. The domain dimensions (given in mm x mm x mm) and 

the segment density for each vessel type served as input to the synthetic growth. Sample 

generators helped to enforce anatomically consistent growth rules at each length scale to 

render statistically matching vessel dimensions, orientations and connectivity. Each stage 

operated with different sample generators, vessel densities, and sets of constraints. More 

details on this implementation and pseudocodes are given in Appendix E.

Figure 7 illustrates five main stages required for the synthesis of cortical sVANs. The 

first step begins with a backbone onto which segments are added using three stages of 

tree growth, each generating vessels of the three distinct types (pials, penetrators, and 

capillaries). These stages mirror the complex anatomy of the microvascular bed with highly 
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structured connectivity following three distinct types of vessels: large, lateral pial vessels 
that convey blood across the surface of the pia matter, penetrating vessels that transmit 

the blood from the pials deep into the tissue (which further break into long and short 

penetrators), and an interconnected capillary bed comprised of small vessels that join the 

penetrating arteries to the ascending venules. More details on the capillary growth stage can 

be found in appendix E. The final stage (closure) is used to fuse the arterial tree to the 

venous tree with no gaps as described next.

The network synthesis method offers control over the formation of highly structured or 

hierarchical connectivity patterns. Specifically, new segments for a new category (or stage), 

their attachment can be restricted to certain groups of prior branches; for example new 

penetrating vessels can only connect to pial vessels. Penetrating arteries cannot connect 

to the ascending venules or pial veins, it must connect to pial arteries. To control and 

track the hierarchical order of new attachments, new segments are labeled during with 

unique identifiers for each synthesis stage. This can be programmatically achieved with 

an anatomical labeling array spanning all arcs in the VAN with each vessel assigned an 

anatomical group label. For convenience, we list the anatomical groups onto which new 

samples can be attached at each stage of growth in Table 2. These groups are also visualized 

in the middle row of in Figure 7.

Tissue domain size, segment, and morphological constraints were used to synthesize 

artificial networks with same dimensions, vascular density and hemodynamic properties 

of the Kleinfeld (KF) cohort (N=100, digital twins). We also fed spectra and domain sizes 

of the networks in the Boas and Dunn cohort as listed in Table 1. The network naming 

convention is listed in Appendix A. One sample VAN and its digital twin sVAN are shown 

alongside statistical comparison of all VANs and sVANs for each cohort in Figure 6. The 

statistical charts in Figure 6 and Table 3 show excellent agreement between the empirical 

and synthetic datasets.

Comparison and analysis.—We compared the distribution of diameter, length, surface 

area, volume, and tortuosity of the empirical networks to their synthetic counterparts. We 

considered the sVANs in agreement with their empirical counterparts because the difference 

between VANs and its synthetic clone was smaller than the intra-variability amongst the 

empirical data sets within each cohort as enumerated in Table 3 for the Kleinfeld cohort. 

The variability between the empirical networks and their respective synthetic clones (the 

synthetic-empirical deviation) is significantly smaller than the deviation between different 

networks of the Kleinfeld cohort (empirical-empirical deviation).

We found the segment-by-segment measurements of structural properties relevant to 

hemodynamic simulations (length, diameter) show excellent agreement between the 

empirical and synthetic networks in the KF (Kleinfeld) group (E1.1 – E4.1), Boas group 

(EB1.1 – EB5.1) and Dunn group (ED1.1 – ED4.2) as seen in Figure 6. The surface 

area (SA) and volume (V) spectra reflect the joint agreement in length and diameter 

for each segment. In other words, SA and V spectra reflect simultaneous match in 

both length and diameter. We note that to achieve this high degree of congruency in 

morphological parameters for these cortical subsections, we tuned properties of the network 
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after the growth stages are complete, to add curvature to the capillaries (to reflect the 

naturally tortuous nature of the imaged vessels) and the diameter (to match diameter peaks 

surrounding the imaging threshold) as listed in Appendix D. The final length, tortuosity, and 

diameter spectra are reasonably close as seen in Figure 6 and listed in Table 3. The networks 

were compared by measuring the value of the CDF at a frequency of 0.5. This deviation is 

normalized by the empirical value at the same frequency to give the specific deviation.

This specific frequency shows excellent alignment between the synthetic networks and their 

empirical clones (with detailed statistics between CDF of synthetic-empirical listed in row 

1 of Table 3) when compared to the larger error between the different empirical clones 

(empirical-empirical row 2 of Table 3). A preliminary analysis of hemodynamic simulations 

shows that synthetic networks are equivalent in blood flow and total flow resistance across 

the entire range of perfusion pressures as detailed in Appendix G. A detailed analysis of 

hemodynamics states in the microcirculation is beyond the scope of this paper, more details 

on quality of hemodynamic simulations using synthetic networks can be found elsewhere17.

3.3 Network synthesis of the MCA territory and the whole mouse brain.

In Figure 7 bottom row, we also illustrate the growth of the vascular network fed by the 

anterior cerebral artery (ACA) as one of the stages to synthesize the murine hemisphere. We 

define the murine cerebral hemisphere as the brain regions supplied by the anterior cerebral 

artery (ACA), middle cerebral artery (MCA), posterior cerebral artery (PCA) where each 

territory is synthesized using the same process as the ACA territory but covering different 

regions of the cortex. All arterial territories are finally drained through the veins of the 

superior sagittal sinus (SSS).

The morphometric data of the cortex and main arterial branches (=backbones) for 

hemisphere growth were reconstructed from images collected through μCT27 and a mouse 

atlas28. More information on the data acquisition and backbone reconstruction can be found 

in part I of this sequence21. First, we reconstructed the pial surfaces of two murine cortices 

from neuroimages27,28 generating STL files. The arterial territories (ACA, MCA, and PCA) 

were labelled manually using ANSYS ICEM (Canonsburg, PA) and an open-source brain 

atlas28. We set the vessel density equal to the microcirculation data in the KF datasets. 

The synthesis of the murine ACA territory also serves as a demonstration how diverse 

physiological data from several imaging sources across different relevant length scales 

(here, μCT imaging for the large vessels and multiphoton imaging for microvessels) can 

be seamlessly integrated with the iCNS algorithm to create a more complete structure 

that approximates murine cerebral circulation at the organ-wide scale. The synthesis took 

less than 14 CPU hours and the runtime could be drastically reduced by using hashing 

techniques to accelerate near-neighborhood segment finding. This was not necessary for the 

synthesis of the mouse hemisphere.

Anatomical variations in hemisphere.—The hemisphere has unique anatomical 

characteristics that are not observed in the smaller cuboid cortical subsections created in 

Section 3.2. For example, the hemisphere has three main arterial territories (=three arterial 

trees) draining through a single venous tree (=one venous tree). Additionally, the arterial 
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territories (ACA, MCA, PCA) are supplied with blood from the Circle of Willis (which 

is not a tree, but a ring-shaped loop). Finally, the cortical subsections were generated in 

vertically aligned structured Cartesian meshes.

To account for these geometrical features, the iCNS algorithm synthesized each tree 

independently. Pial vessels were synthesized while adhering to the triangulated surface mesh 

representing the cortical surface (as described in part I of this series) but each sample must 

only be drawn from triangles corresponding to the anatomically correct vascular territory 

(ACA, PCA, or MCA). Hemisphere closure was achieved with the single bifurcation 

closure. Although this is not a limitation of the proposed methodology, morphometric 

differences for different cortical regions were not considered in this first demonstration. 

We executed the synthesis algorithm multiple times for each of the two mouse brains27,28 

to create a total of twelve (12) artificial specimen as visualized in Figure 8. An inventory 

of networks and the naming convention is given in Figure 8 with visualizations performed 

using specialized in-house Walk-In Brain software 26,35. Sample whole-mouse circulation 

networks can also be downloaded from a network repository (instructions and links can be 

found our public repository36).

3.4 Preliminary simulation of blood distribution patterns for the entire brain

These massive synthetic networks that encompass an entire murine cerebral hemisphere 

may serve for numerical investigation of the entire cerebral circulation in mouse. We have 

previously shown10,12,17 that simulations at the whole-organ scale may reveal trends that 

are harder to identify in smaller cortical sub-sections. The circulatory networks spanning the 

entire hemisphere are ideally suited for exploring global trends across whole brain regions. 

Simulation methods described elsewhere17 enabled prediction of blood pressure, blood flow, 

and red blood cell content (i.e. hematocrit) of every vessel in the hemisphere network in less 

than 30 CPU minutes and 13.5 GB of memory, with outcomes of blood flow, blood pressure 

and hematocrit distribution shown in Figure 8. The successful simulation runs demonstrate 

that our approach makes massive whole brain simulations tangible for a standard desktop 

workstation.

We observed global trends, in brief: (i) the main pressure drop occurs in the capillary bed, 

(ii) the pial vessels convey blood along the surface so that vessels closer to the Circle of 

Willis carry more blood than more distal pials in addition to supplying blood vertically 

down into the cortex to their penetrating arteries, (iii) the red blood cell density varies as a 

function of depth (denser RBCs at deeper cortical layers), and (iv) the cortical blood supply 

is highly heterogeneous (depth dependent) and cannot be represented well by a unique 

averaged value. These findings are in agreement with our previous work simulating the 

cortical subsections and validated with a model of the MCA territory in mouse17.

Boundary condition assignment.—Additionally, one of the most impactful 

assumptions in hemodynamic simulations is the assignment of boundary conditions at 

terminal nodes of the vascular network. In traditionally reconstructed vascular network 

models (open arterial trees with no closure or severed capillaries), one must assign numerous 

(hundreds to thousands) unknown pressure or flow values at the distal terminals, which 
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are generally not directly measurable and exhibit a high degree of variability. In contrast, 

due in our fully-connected synthetic vascular networks, hemodynamic simulations for the 

entire circulation in a mouse brain hemisphere require only four boundary assignments at 

the basilar artery, the two Carotid arteries, and at the superior sagittal sinus vein. Blood flow 

or even blood pressure in the basilar and carotid arteries have been measured extensively 

across many species4,37,38, thus making our boundary conditions at these macroscopically 

observable inlets more reliable than previously needed assumptions for the distal tree nodes 

that cannot be reliably measured.

4 Discussion

In this series of papers (part I,21 and part II, this manuscript), we emphasized the need 

for microvascular closure which forms a physiologically functional connection between the 

arterial and venous blood flow. A key innovation of this manuscript is our proposed closure 

algorithms to create artifical microvascular beds that match hemodynamic properties of 

in vivo specimen. Our double bifurcation closure was found to provide the most realistic 

sVANs as a result of its ability to control segment length, orienation, and tortuosity. 

In the capillary growth stage, it is possible to relax the volume optimization principle 

to place the optimal bifurcation point without the need for rigorous optimization which 

can become time consuming. Closure fuses the arterial tree to the venous tree with 

no gaps. The microcirculation thus comprises segments created and in capillary growth 

stage together will all closure segments. It is worth noting that closures were previosuly 

achieved using Voronoy tesselation10,20, homogenization without discrete capillaries39, or 

shortcircuiting segments18. To the best of our knowledge, our algorithm is the first closure 

that connects arterial and venous tree to a microcircuit which simultanously matches several 

morphometric properties essential for hemodyanics simulations (specifically diameters, 

tortuosity and vessel density) of real capillary beds.

Multiphoton data was collected from three separate neuroimaging labs and served as three 

cohorts (named after the labs they were collected from: Kleinfeld (KF): N=4, Boas: N=5, 

and Dunn: N=6; that represent a cross-section of available microanatomical data about the 

murine cortical blood supply derived from state-of-the-art neuroimaging and reconstruction 

protocols. The statistical properties of these cohorts were analyzed in detail to obtain 

the relevant anatomical parameters necessary to synthesize hemodynamically equivalent 

networks (sVANs). Hemodynamically relevant properties (listed in Table 1) including 

branching order, connectivity, vessel caliber, and tortuosity guided our iCNS algorithm 

for creating sVANs with similar blood perfusion to their experimentally-derived VAN 

counterparts.

We then applied the iCNS algorithm, complete with a novel capillary closure to generate 

sVANs with matching critical topological aspects for all three cohorts of VANs from 

the murine vibrissa primary sensory cortex. We demonstrated that a digital twin of an 

experimental VAN can be constructed by using its topological profile described by a small 

number of input statistics (cortical tissue volume, segment density at each hierarchical level, 

tortuosity, and diameter spectra). We also showed here, for the first time, how the cumulative 
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density functions of key hemodynamic parameters, such as length, diameter, tortuosity, 

vessel count can be matched to a desired degree of accuracy.

The versatility and robustness of the iCNS algorithm was exemplified by synthesizing a 

large number (N=110) of sVANs that matched relevant morphometrics of their experimental 

counterparts in three different cohorts of multiphoton image data. The deviation between the 

sVANs and their respective original VAN template was, in fact, found to be smaller than 

the deviation between any two experimental samples from the same cohort. With respect 

to the targeted hemodynamically-relevant properties (diameter, length, surface area, volume, 

and tortuosity), sVANs and experimental VANs were found to be structurally similar. Since 

simplified continuity and momentum equations typically used for large scale hemodynamics 

simulations10–12,17,18,21,41 are only sensitive to network connectivity, segment diameter, and 

length, blood flow predictions based on these simplified models will give similar results, 

at least in a statistical sense as we showed previously17. We also conducted hemodynamic 

simulation studies (see Appendix G) that demonstrated similar values of blood perfusion 

in synthetic and empirical networks over the entire range of physiological pressure drops 

across the microcirculation. A more detailed discussion and results of hemodynamic 

equivalence studies can be found in Appendix G. This suggests that digital twins (sVANs) 

can serve as surrogates for experimentally acquired VANs in blood flow simulations for the 

cortical microcirculation.

Moreover, these anatomically sound circulatory networks can serve as a ground thruth 
or a phantom model for validating homogenization techniques7,20 or reconstruction 

techniques3,24,25,42. Homogenization can be a useful tool for simplifying massive 

microvascular computations, but its validation can benefit from comparison with a more 

complete model presented here to ensure that critical trends are not lost by diverse 

homogenization assumptions. Synthetic networks may also serve as imaging phantoms for 

developing reconstruction techniques and can be an excellent method for creating a large 

database of phantoms for training neural network algorithms for centerline and diameter 

reconstruction.

Inter-cohort variability.

Detailed statistical analysis of the data indicated that the intra-cohort variability between 

VAN samples within the same cohort was relatively small, attesting to the high quality and 

reproducibility of state-of-the-art neuroimaging and vascular reconstruction technologies 

used by each lab. The significant differences in size and cortical depth penetration observed 

between different cohorts affected global network properties (such as number of segments, 

total surface area of the endothelial cell layer forming the blood brain barrier, and others). 

Moreover, we also observed significant variability in sample size-independent properties 

such as segments density, blood volume fraction, and the diameter spectra. These variances 

between morphometric data from different cohorts in different labs can be explained by 

fundamental differences in the experimental protocol. For example, ex-vivo imaging is 

known to have smaller vessels than in-vivo counterparts because the pressure maintained 

by the living brain is disrupted and vessels begin to collapse. In addition to the differences 

in imaging protocols, more variability is introduced by the unique choices made by each 
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team during image reconstruction steps for generating segment connectivity, centerline 

and diameter information. For example, the diameter information is interpreted by the 

reconstruction algorithms due to thresholding settings that delineate the vascular and 

extravascular spaces in the images. In effect, vessel diameters were found to be the most 

uncertain of the morphometric parameters.

Penetrators.

Detailed visual and statistical inspection of the cortical angioarchitecture revealed the 

scarcely characterized presence of two types of penetrating vessels emanating from the 

cortical surface and diving perpendicularly down into deeper tissues. We have termed these 

two groups: long penetrators with a branching pattern resembling inverted trees reaching 

into the deepest cortical layers (Layers V and VI) and short penetrators with a bush-like 

structure feeding capillaries in the top layers (Layers I-III). These patterns of long and short 

penetrators were visible in the penetrating arteries/arterioles and were also seen in ascending 

veins/venules.

Depth Dependence.

We also discovered an increase in vessel diameter homogeneity in lower layers. This trend 

was evident through an observed smaller standard deviation of diameters in the lower layers 

than in layers closer to the cortical surface as seen in Figure 5. Figure 5 also shows a 

smaller mean diameter and tighter variance in lower layers compared to the vessels closer to 

the cortical surface. We have previously reported the simulation-based observation of more 

homogeneous microflow (=less variability of hematocrit) in deeper layers compared to flow 

patterns closer to the surface17. We also inferred that hematocrit increases in blood vessels 

reaching deeper cortical tissues. The implication of a higher state of order in deeper cortical 

layers was later experimentally verified43. The trend of more uniform diameter distributions 

in the deeper cortical Layers reported here supports the theory of layer dependence for 

hemodynamic states in the cortical circulation.

Expansion to larger structures.

The ability to emulate macro-, meso- and microvascular networks (guided directly by image 

data or indirectly by morphometic statistics) enabled us to generate massive circulatory 

networks that substantially extended the limited field-of-view observed in neuroimaging 

windows. For example, Figure 1 shows a massive artificial cortical slab with complete 

pial and subcortical circulation spanning 3×3×1.2 mm3. Blood and oxygen exchange 

simulations44 conducted on such large structures can be helpful in quanitying hemodynamic 

and metabolic functions without the need to impose uncertain boundary assumptions. Ample 

distance to domain limits is essential for exploring inherent flow patterns as a function of 

vascular topography without the risk of secondary effects attributable to choices of boundary 

conditions or simplifying assumptions.

We successfully integrated data from multiple sources (multiphoton, μCT, and mouse 

atlases) to inform the iCNS algorithm for generating twelve cerebrovascular networks 

spanning the entire murine cortical hemisphere. With these massive organ-wide networks, 

we can begin to investigate the vascular reserve, collateral reperfusion after a stroke, and 
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drug residence time. These investigations are difficult in the smaller VANs or sVANs 

because the majority of the vascular structure (the VANs span ~1–2% of the cortical 

circulation in mouse) is missing; leading to skewedness of simulation results or invisible 

trends due to nearby artificial boundaries.

4.1 Outlook on the human circulation.

A main thrust of neurovascular research aims at elucidating fundamental perfusion and 

control principles in normal and pathological states of the human brain. Unfortunately, 

it is not feasible to perform invasive imaging or to conduct exhaustive experimentation 

on humans as can be performed in mice. It is also known that the human brain has 

substantial structurally differences from the mouse brain, making the intuitive extrapolation 

of findings in mouse to humans unreliable. To overcome this impasse, data acquired from 

animal models in combination with synthetic networks trained and validated with mouse 

neuroimaging data could serve as a digital bridge for addressing questions about human 

brain function. In fact, one of the major differences between the mouse and human brains 

is a substantial size difference which is compounded by additional geometric complexity 

(deep and numerous gyrations). In comparison, the cortical volume (grey matter) in mouse 

is estimated at ~150 mm3 from our reconstructions 27,28 compared to ~458,000 mm3, 45 in 

the healthy adult human brain roughly a 3,000-fold increase in size by volume. Additionally, 

the vascular density of the murine cerebrovasculature17,22 is ~11,474 nsgm/mm3 compared 

to 8,800 nsgm/mm3 in humans46. Assuming these volumes and vascular densities as a rough 

basis would give 1.72M segments in the whole mouse brain and an approximate target 

number of 4.03B segments for the human brain. The size differences between mouse and 

human brain can be appreciated in

Figure 9, which shows a synthetic mouse calculation in comparison to a prototype of the 

cortical blood supply in a human brain synthesized with the iCNS algorithm and methods 

described here for mouse.

We have input morphometric data from humans10,46,47 into the network synthesis of the 

iCNS framework. As a first step, we used anatomical reconstructions for cortical surface and 

main arterial trees in human subjects5,48,49 to generate a prototype of the cerebral circulation 

of the complete arterial tree in humans. The resulting synthetic human arterial network 

depicted in

Figure 9 shows the CoW, the ACA, MCA, and PCA of the left hemisphere in a normal 

human subject giving rise to pial surface arteries and penetrating arteries/arterioles. Surface 

growth21 was successfully applied to generate pial vessels along the highly tortuous 

gyrations of the human cortex. Penetrating arteries/arterioles on the cortex were created 

with SampleGenerators reproducing patterns seen in human46,47. Such an artificial human 

circulation network could then be useful for comparing hemodynamic states and oxygen 

delivery in healthy and diseased human brains.

While several other groups have made valuable contributions to the synthesis of vascular 

structures for the human20,39,40, an anatomically consistent, realistic capillary bed has never 

been built at the human brain scale. The results reported in the current manuscript mark 
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the largest circulatory networks ever created that delineate every blood vessel at the macro, 

meso and microscale including the full capillary bed with closure, thus suggesting the 

readiness of the proposed synthesis methods for the building of a full human brain.

4.2 Limitations

Space filling.—While we believe that our artificial VANs approach hemodynamically 

equivalence of their empirical counterparts, we realize that some differences in space 

filling properties of the capillary bed still exist. For example, traditional CCO optimization 

generates planar bifurcations with straight segments. In experimental VANs, many 

bifurcations are not planar and vascular segments especially small microvessels twist and 

turn. We have overcome this shortcoming in part by imposing statistically equivalent 

tortuosity, yet identical tortuosity does not guarantee equivalence in the curvature and 

orientation of segment paths relative to each other.

Alignment bias.—We also observed that the angles between the main segment axes 

and the cortical surface (data shown in Appendix F), although seeming random to the 

naked eye, have an orientational bias. While our synthesis partially captures some of 

this preferred alignment (vertical predominance in the orientation of penetrating arteries 

by staged growth of vertical penetrating arteries/veins), synthetic branches have a higher 

degree of randomness than the empirical structures at the microlevel. The preferred vertical

horizontal alignment in empirical VANs compared to the more random orientation of the 

synthetic segment would affect solute exchange simulations such as oxygen extraction. 

Since our aims here were hemodynamic simulations, not mass exchange, we did not tackle 

this issue in this paper yet. Limitations concerning space filing and alignment biases require 

further research.

Adaptations to other brain regions and other organs.—The synthesis of 

circulatory networks for an entire mouse hemispheres requires statistical information about 

the spatial variabilty of morphometric quantities across different functional cortical regions. 

Since our reconstructed imaging data concerned the vibrissa primary sensory cortex, we 

used its metrics and parameters for the synthesis of the hemisphere network. This is 

admittedly a simplification which leads to a uniform topological profile across the entire 

cortical surface, lacking spatial heterogeneities that is known to occur in different brain 

regions. This spatial variablity can, however, be easily incorported into the iCNS algorithm 

as stage input for a speciifc region. Thus, it is not a limitation of the methodology; rather a 

limitation of the availability of reconstructed neuroimaging data across the entire cortex. As 

more extensive reconstructions from brain-wide neuroimaging become available 28,50,51, the 

metrics accounting for topological differences between diverse functional brain regions can 

be used as input to the iCNS algorithm and enforced during synthesis.

We believe that in principle volume minimization is sufficient to build physiological 

vascular structures also for different organs such as the retina, the heart, and the blood 

supply of lung or muscle tissue. Our algorithm has methods for considering additional 

physiological constraints in order to satisfy the functional need for the blood supply needed 

in the specific organ. Our experience teaches that functional similarities give rise to similar 
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network morphometry, which does not necessarily encompass an entire organs. For example, 

there is similarity in the coronal arteries and the pial arterial surface, both delivering blood 

along a surface. However, the microanatomical differences between the heart (muscle) and 

the neuronal architecture (layered neurons and glia in the cortical columns) leads us to 

speculate that the microcapillary properties are not identical.

5 Conclusions.

The demonstrated ability to synthesize artificial circulation models of the whole mouse 

brain enabled hemodynamic simulations of cerebral blood perfusion and metabolism 

as a function of network topology over all relevant length scales (arteries, capillaries, 

and veins). Our anatomically accurate microvascular closure matches hemodynamically 

relevant morphometric spectra and parameters which, as far as we know, has never been 

accomplished before with classical constrained constructive optimization or other synthesis 

methods. This algorithm enabled the synthesis of large portions of the cortical circulation 

matching desired morphometric input data from different imaging sources thus creating a 

more comprehensive, connected and quantitative picture of brain function.

Pathological alterations may impose additional constraints on network construction. 

Synthetic structures that mimic normal hemodynamic states is an important intermediate 

goal we believe has been achieved to a large extent in this set of two papers. For the study 

of neurological and cerebrovascular disease (CVD), two question arise. How do pathologies 

alter structural network properties? Second, which functional biological deviations does 

a specific CVD induce? We envision that structural and functional deviations from the 

normative case can be systematically and conveniently studied with synthetic networks. 

For example, reduction in vascularization can be controlled by lowering the segment count 

in the respective growth stage. Alternatively, network models for normal specimen can be 

thinned to match CVD characteristics. The highly structured anatomical segment addition 

logic and ability to track hierarchical segment labels during the growth stage offer a 

systematic handle on segment hierarchy in synthetic networks that empirical data sets do not 

possess. Moreover, other subtle parameters changes, such as angular orientation or tortuosity 

can be manipulated (e.g. tortuosity parameter, α, increases segment arc length without 

altering nodal positions). Functionally, hemodynamics simulations that mimic microinfarcts 

or temporal occlusions cause by leukocytes can easily be specified by manipulating 

segment resistance directly or via the changing diameter relations. The critical benefit 

in the deployment of synthetic networks stems from the ability to artificially create and 

simulate network effects due to subtle highly controllable changes. This constitutes a viable 

compliment to deriving insights by statistical analysis of large number of empirical VAN 

from different animal or human specimen. Comparative studies in synthetic networks with 

controllable changes provides a new instrument to the scientific and systematic investigation 

of cerebrovascular disease.

Mechanistic brain-wide computations are becoming an exploratory tool for testing 

and validating hypotheses for underlying functional mechanisms behind cerebral 

autoregulation, collateral reperfusion after stroke, or pathologies such as hypoxia-induced 

neurodegeneration associated with old age. Our approach overcomes the need to make 
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uncertain assumptions about hemodynamic states at the microscale. Hemodynamic and 

metabolic simulations for the brain are expected to better elucidate control mechanisms 

and metabolic regulation for the entire organ across all length scales. Our whole-brain 

scale vascular model presented here is a significant step towards whole-brain hemodynamic 

simulations.
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Appendix A:: Imaging data acquisition

Kleinfeld cohort (KF).

Four murine subjects had undergone post-mortem perfusion by a peristaltic pump at a rate 

of 1 ml/min to fix the vascular structure post-mortem. Once curation was completed, the 

brain was removed and imaged in a significant section (~1×1×1 mm) of the vibrissa primary 

sensory cortex by two-photon laser scanning microscopy (2PLSM) [22,52,53]. The vessels 

were subsequently reconstructed into a vascular network graph with corresponding diameter 

information. Each vessel fell under one of the following labels: pial arteries, penetrating 

arterioles, capillaries, ascending venules, or pial veins. The automated labeling was informed 

by vessel size, depth, and Strahler order [24]. In the case of capillaries, a diameter threshold 

of 6 μm was employed. All protocols were approved by the Institutional Animal Care and 

Use Committee at University of California, San Diego. More details on segmentation can be 

found elsewhere [22,24].

Boas cohort (Boas).

Five C57BL/6 mice (male, 25–30 g, n=5) were anesthetized by isoflurane (1–2% in a 

mixture of O2 and air) under constant temperature (37 °C). A cranial window in the dura 

was removed and sealed with a 150-μm-thick microscope coverslip. During the experiments, 

a catheter was used in the femoral artery to monitor systemic blood pressure and blood 

gases. The catheter also administered the two-photon dyes. During the measurement 

period, mice breathed a mixture of O2, and air under the 0.7–1.2% isoflurane anesthesia. 

The cortical vasculature was imaged using 600 × 600 × 662 μm stacks with 1.2 × 

1.2 × 2.0 μm voxel sizes under a 20X Olympus objective (NA=0.95). The vasculature 

was highlighted by labeling the plasma with 500nM of dextran-conjugated fluorescein 

(FITC). All experimental procedures were approved by the Massachusetts General Hospital 

Subcommittee on Research Animal Care. More details on segmentation can be found in [4].

Dunn cohort (Dunn).

In the two-photon laser system, a titanium:sapphire (Ti:S) oscillator (Mira 900, Coherent) 

beam is steered to a pair of galvanometer scanners (6125HB, Cambridge Technology) driven 

by servo driver amplifier boards (671215H-1HP, Cambridge Technology). A Keplerian 
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telescope beam expander consisting of a B-coated scan lens (f = 80.0 mm, AC254–080-B, 

Thorlabs) and tube lens (f = 200.0 mm, LA1979-B-N-BK7, Thorlabs) is used to fill the back 

aperture of the microscope objective (XLUMPLFLN20XW 0.95 NA or XLPLN25XSVMP2 

25X 1.0 NA, Olympus). Excitation and emission paths are separated with a 775 nm cutoff 

dichroic mirror (FF775-Di01–52×58, Semrock). Fluorescence is epi-collected, transmitted 

through either a 510/84 bandpass filter (FF01–510/84–25, Semrock) or a 609/181 bandpass 

filter (FF01–609/181–25, Semrock), and detected by a photomultiplier tube (H10770PB-40, 

Hamamatsu Photonics). Image acquisition was controlled using custom software (LabVIEW, 

National Instruments) and image frames were collected at a 512 × 512 pixel size. Image 

stacks were collected at a z-resolution of 5 μm and three frames were averaged from 0–200 

μm cortical depths, five frames from 200–500μm, eight frames from 500–700 μm, and 

twelve frames beyond 700 μm. All mice specimens imaged by Ti:S were excited at λex=800 

nm. More details on segmentation can be found elsewhere [25].

Table A1.

Naming convention of synthetic murine circulations matching empirical VANs.

Empirical data set name Synthetic data set name Volume (mm3) Cohort

E1.1, E2.1, E3.1, E4.1 S1.201-S1.225, S2.201-S2.225, 
53.201-S3.225, S4.201-S4.225 2.156 ± 0.789 Kleinfeld

EB1.1, EB2.1, EB3.1, EB4.1, EB5.1 SB1.201-SB1.205 0.081 ± 0.003 Boas

ED1.1, ED2.1, ED3.1, ED3.2, ED4.1, 
ED4.2 SD1.201-SD1.206 0.136 ± 0.024 Dunn

-- S3×3.201 9.0 ± 0.0 3×3×1.2 mm3

EH1.1, EH2.1, EH3.1, EH4.1, EH5.1* SH1.201-SH1.207, SH2.201
SH2.205 83.5 ± 9.1 Hemisphere

*
the empirical hemisphere networks are reconstructed from images as described in part 1 [1]

Appendix B:: Statistical analysis of cerebrovascular angioarchitecture

Image invariant segmentation by splines.

Image segmentation of multiphoton image data produces cylindrical segments of 

arbitrary length depending on image thresholds and algorithms used, see [4,24,25,48,49]. 

Unfortunately, this means that segment count and spatial partitioning in reconstructed 

networks are not standardized, meaning the raw segment count is not a suitable basis for 

morphometric analysis. Furthermore, the incidents of properties as a function of segment 

count will be sensitive to the number of segments; making this an unsuitable method 

for comparison. Instead, we encoded a unique and modality invariant segmentation by 

grouping all raw segments between any two bifurcation points into a single spline segment 

(termed a spline). We propose using splined segments, each of which encompasses the string 

of cylinders that connects two adjacent bifurcations. Thus, splines reflect all cylindrical 

segments that are in-series (they act as in-series resistors in the blood flow equations). 

Since the number of bifurcation points and their connectivity are unique regardless of 

reconstruction method, after conversion to splines, two networks are reconstruction method

independent and can be compared to one another.
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Representation of spline data information.

Once the vascular network has been converted to splines, topological characteristics 

(diameter, position, length, etc.) for each spline were calculated and recorded. We calculated 

the normalized PDF and CDF of each property including length, diameter, surface area, 

volume, and tortuosity. We average the small variations between cylinders of the same spline 

to get a single diameter value for the spline. We also calculated cumulative network statistics 

of segment density, total intravascular volume, volume fraction.

Appendix C:: Recursion relation for the segment addition

The iCNS growth principles (segment addition through CCO) generates realistic tree-like 

structures but with the drawback that all synthetic segments are represented as straight 

cylinders. In contrast, in-vivo microvascular VANs have mostly curved segments with 

tortuosity larger than unity, τ > 1. Furthermore, the smooth diameter spectra generated 

by balancing the tree during iCNS may not reflect the high occurrence of capillaries with 

diameters near the imaging threshold. When making our synthetic clones, characteristics 

of the VANs should be preserved. To match the naturally tortuous segments, we chose to 

modify the aVAN splines by adding tortuosity (for details see [11]) until the desired length 

and tortuosity spectra matched. In the aVANs, we also chose matched the uneven diameter 

spectra by directly adjusting some segment diameters. To identify how much to change each 

spline, we used an unsupervised spectrum matching method as detailed in Appendix D with 

accompanying details regarding when to use this matching technique.

We derive the mathematical framework of iCNS for generating vascular trees by segment 

addition that minimized the tree volume, while satisfying hemodynamic blood flow 

constraints as summarized by System (1):

For N segments close to new terminal T do (for eacℎ possible connection y do)
min

x
V (x)

s . t .
A(ξ, η) −C1

(I − D)C1
T D

q
p = 0

Dp + 0
(I − D)q x(α(ξ, η), p(ξ, η), q(ξ, η))

(1)

where, V is the vascular tree volume, X is the vector of unknown bifurcation coordinates, 

A(ξ, η) is the diagonal resistance matrix, C1 is the connectivity matrix, C2 is the network 

incidence matrix, q is bulk blood flow, and p is blood pressure. In the blood flow problem, 

p, are desire perfusion pressures, and q, are known inlet or outlet flows. The decision matrix 

D can be used to create a single compact formulation for Dirichlet (pressure,p) or Neumann 

(flux,q) boundary conditions. For more details on the matrix formulations [37,38]. The 

solution of the optimization problem gives the optimal position ξ and η for the bifurcation 

point within the bifurcation plane.

Under the assumption that all terminal nodes discharge equal amounts of flow at identical 

terminal pressure potentials, a tree with given segment geometry (=positions are set for 

all bifurcation, inlet, and outlet nodes), will have all diameters recursively computed as 
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described here. The root segment caliper, d0, can be uniquely determined by the desired 

perfusion flow rate, q, and perfusion pressure drop between inlet arterial pressure and distal 

terminal pressure, described by the Δp term as in eq. (2). All other segment calibers in 

the entire network can then be expressed as a function of the root diameter as in eq. (3). 

At each bifurcation, segment diameters follow from Murray’s law, eq. (4), and diameter 

ratios βi and βj, eq. (5). The diameter ratios depend only on reduced resistances, ρk, which 

are functions of segment lengths and the discharge capacity, Nk, the subtree supplied by a 

given segment as in eq. (6). By using these equations, matrix inversion for the computation 

of hemodynamic constraints implying blood flow and pressure fields is avoided. Solving 

the flow problem constraints using matrix inversion repeatedly for every segment addition 

during the synthesis would certainly render this approach computationally intractable.

d0 = r0
Q0
Δp

1/4

r0 = 128μl
π

(2)

di = d0 ∏
j = 0

i
βj j ∈ patℎ(i) (3)

di
κ = dk

κ + dj
κ (4)

where

βj = 1 + mκ −1/κ

βk = 1 + m−κ −1/κ (5)

m = ρkNk
ρjNj

1
4 , βj = dj

di
, βk = dk

di
(6)

1 = βk
κ + βj

κ (7)

Appendix D.: Matching Characterizing the topology of a network

In the main manuscript, we describe synthetic networks that match the hemodynamic profile 

of image-derived counterparts. We used a post-processing step executed after synthesis 

completion to fine tune segment tortuosity and diameter spectra to match the VANs. The 

process to characterize a vascular network follows:

1. Create splines by agglomerating straight segments between bifurcations.
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2. Calculate and record the diameter, length, and tortuosity CDFs from the 

empirical aVAN and corresponding VAN (note, a direct CDF can be inserted 

in lieu of a VAN CDF if one is available)

3. Cycle through the segments in the aVAN, modifying each segment in the 

synthetic network to match the corresponding segment in the empirical network. 

If desired, the CDFs can be binned to match the synthetic network to any 

spectrum regardless of divisions.

D1. Unsupervised matching of topological spectra

To begin, we assume the two normalized CDFs of the VAN and aVAN do not match, such as 

the tortuosity differences between the aVAN (full of straight segments) and the experimental 

VAN (with naturally curved segments). Here, we use the example of length but the theory 

works for any segment property. An example of two spectra that do not match can be seen in 

Figure D1.

Figure D1. 
Illustration of unsupervised spectrum matching method for CDFs of two datasets. The 

original synthetic length spectra (black solid line) shows a known degree of mismatch when 

compared to the target (dotted black line). When the length is matched at points designated 

by the black circles (N=101 points), the adjusted aVAN (gray solid line) has a much closer 

match to the experimental VAN CDF. The magnified first few matching points have been 

visualized for the example used below.

The goal of this algorithm is to modify the aVAN segments so that the new aVAN CDF 

matches the corresponding VAN CDF. A natural first approach of how to modify the 

segments in the aVAN is to adjust all vessels by the same amount; for example, making all 

segments 20% longer. While this is a reasonable approach, the difference between the two 

CDFs is not a fixed rate, but rather it varies throughout the range of length. For example, the 

value (x-position) of the first representative point (black circle) in the CDF is 1.3 μm for the 

aVAN and 3.1 μm in the VAN, which requires the aVAN value of 1.3 to be multiplied by a 
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factor of α=2.385. The second point needs to modify the aVAN value of 1.8 μm by α=3.20 

to achieve the VAN value of 4.5 μm. Because the two values of α don’t match (α=2.385 

vs α=3.2), a constant value of α is insufficient. For the best match between the aVAN 

and the VAN counterpart, we propose selecting a series of representative points along the 

CDF, calculating the value of α to match all representative points, and linearly interpolating 

the value of α for all other points in the CDF (=points that lie between the representative 

points).

We also observe that the experimental VANs reveal highly tortuous (curved) segments, 

whereas the iCNS algorithm generates only straight segments (no tortuosity). Thus, we 

opted to add tortuosity to existing vessels in the network as previously described [11] until 

the aVANs resembled experimental VANs. This was programmatically accomplished by first 

calculating the necessary adjustments to match the length CDFs between the aVAN and the 

VAN counterpart. Then, the tortuosity CDF was matched between the aVAN and the VAN. 

By sorting the length adjustments, the tortuosity can be applied to the appropriate segments 

with the smallest tortuosity applied to segments that are already the correct length and the 

highest tortuosity is added to vessels having the largest length disparity.

Appendix E.: Implementation iCNS for synthesis of the cerebral circulation

In this section we will describe implementation details for the synthesis of the entire cerebral 

circulation. The iCNS algorithm can either grow two simultaneous trees (arteries and veins) 

into each other or it can grow all trees independently and only join the arteries with the veins 

prior to the closure stage. We will describe the synthesis for the hemisphere, as the cortical 

subsections (aVANs) are merely simplified cases of the hemisphere.

The synthesis of the murine hemisphere involves independently synthesizing three arterial 

trees and one venous tree prior to the closure stage. Each tree is synthesized following:

i. Load the Circle of Willis

ii. Create/load a backbone of main blood vessels

iii. Set the depth of cortex

iv. Calculate the surface area and volume of the territory

v. Calculate the number of segments to grow at each stage

vi. Synthesize pial segments

vii. Synthesize long penetrators

viii. Synthesize pre-capillary arterioles (or post-capillary venules when growing 

veins)

ix. Synthesize a portion of the capillary bed

x. Synthesize short penetrators

xi. Synthesize the remaining capillaries
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After steps (i)-(xi) have been completed for all trees, step (xii) commences which 

synthesizes the closure while adhering to the condition that arterial terminals can only attach 

to venous segments (and likewise venous terminals can only attach to arterial segments).

Each synthesis stage is controlled by choosing proper constraints, sample generators, and the 

number of vessels. In Table E1, we show how the same procedure (growNSegments) can be 

called to synthesize the vessels in each stage. Each stage is defined by a sample generator, 

constraints, and the number of segments to grow and the backbone for the tree can be grown 

using the list of point coordinates (ptCoordMx) and the connectivity which can be defined 

from a reconstruction or a simple hard-coded segment. With this design, the same procedure 

can be called with different inputs at each stage during growth. The choice of sample 

generators dictates where the new terminal points will be generated, thus controlling the 

new segments in the domain. We note that the prismSampleGenerator may be replaced with 

analytic samplers such as a hexahedronSampleGenerator or a sphericalSampleGenerator 
when appropriate.

The synthesis of pial vessels was covered extensively in part I of this series but in 

short, it uses classic CCO principles and a planarTriangleSampleGenerator to generate 

samples adhering to the STL mesh of the cortical surface. This can be replaced with 

the analytic hexahedralSampleGenerator with a very shallow depth when growing in a 

hexahedral domain (such as replicating a cortical VANs). We enforce the desired number 

of penetrating vessels by expanding the pial network until the number of terminals matches 

the specified number of penetrators (long + short penetrators). We calculated a density of 

6.7±1.6 nsgm/mm2 long and 9.4±5.3 nsgm/mm2 short arterial penetrators from the Kleinfeld 

datasets (see Section 3.1 for more information on this choice).

After the pial vessel density is reached, the perpendicularPrismSampleGenerator is set and 

the penetrating vessels are formed by connecting a perpendicular sample point directly to 

a pial terminal. The capillaries are then formed using a volumeSampleGenerator which 

samples evenly throughout the space. Once the trees are completed, the closure stage creates 

two instances of a sampleGeneratorFromPointCoordinateList that are populated from the 

open terminals of the arterial and venous networks. Typical constraints used in each stage of 

synthesis to recreate Kleinfeld-like networks are listed in Table E2.

Table E1.

Code progression of the iCNS algorithm during staged growth.

growNSegments(SG, 
nSgm, constraints)

SG = sampleGeneratorFromPtCoordList(PtCoordMx, connectivity) Backbone

nSgm = length(connectivity)

Constraints = newList()

growNSegments(SG, 
nSgm, constraints)

SG = surfaceSampleGenerator(surfaceMesh, meshGroupID) Pials

nSgm = (surfaceArea*penetratorDensity)*2

constraints = newList([maxL, minL, minAngle, maxAngle])
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growNSegments(SG, 
nSgm, constraints)

pialTerminals = terminals Long Penetrators

SG = perpendicularPrismSampleGenerator(surfaceMesh, meshGroupID, corticalDepth, 
terminals)

nSgm = longPenetratorDensity*corticalSurfaceArea

constraints = newList([maxL, minL, minAngle, maxAngle])

growNSegments(SG, 
nSgm, constraints)

SG = prismSampleGenerator(surfaceMesh, meshGroupID, 
corticalDepth)

Capillaries

nShortPenetrators = shortPenetratorDensity*corticalSurfaceArea

nRemainingVessels = vesselDensity*corticalVolume − currentVesselCount − 
nShortPenetrators

nSgm = (nRemainingVessels/3) //2 new vessels for each terminal + 1 new vessel for closure

constraints = newList([maxLength, minLength, minNSL])

growNSegments(SG, 
nSgm, constraints)

nSgm = shortPenetratorDensity*corticalSurfaceArea Short Penetrators

SG = perpendicularPrismSampleGenerator (surfaceMesh, meshGroupID, corticalDepth, 
terminals

constraints = newList([maxL, minL, minAngle, maxAngle])

growNSegments(SG, 
nSgm, constraints)

SG = prismSampleGenerator(surfaceMesh, meshGroupID, 
corticalDepth)

Capillaries

nRemainingVessels = vesselDensity*corticalVolume − 
currentVesselCount

nSgm = (nRemainingVessels/3) //2 new vessels for each terminal + 1 new vessel for closure

constraints = newList([maxL, minL, minNSL])

growNSegments(SG, 
nSgm, constraints)

terminalPtCoords = getPtCoords(nwk.Terminals) Closure

SG = sampleGeneratorFromPtCoordList(terminalPtCoords, null)

nClosures = nTerminals

constraints = newList([maxAngle, maxL, minL, minNSL])

Table E2.

Typical constraints used in synthesizing cortical microvascular structures

Stage maxL (μm) minL (μm) minAngle (°) maxAngle (°) minNSL (μm) maxNSL (μm)

Backbone NA NA NA NA NA NA

Pials NA 10 NA 90 30 NA

Long penetrators NA NA 80 100 0.45 · CD 0.9 · CD

Capillaries 100–200 50–100 NA NA 245–520 NA

Short penetrators NA NA 85 95 0.1 · CD 0.35 · CD

Capillaries 7–100 5–50 NA NA 123–245 NA

Closure 80 5 15 180 5 NA

- CD: cortical depth, NSL: new segment length, L: length (new segment or existing segment), NA: not used

During capillary synthesis, the most restrictive constraints are set while growing the first 

capillaries. In the capillary growth stage, it is possible to relax the volume optimization 

principle to place the optimal bifurcation point without the need for rigorous optimization 

which can become time consuming. On the other hand, we believe that the requirement to 
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balance the tree to maintain equal blood flow in terminals is important to achieve realistic 

perfusion patterns. Accordingly, we employ CCO logic in the capillary growth stage, but 

optionally relax the volume optimization objective by placing the bifurcation point at preset 

coordinates using heuristic rules (for example, at the midpoint of the shortest segment). The 

diameter computation for the entire tree is still calculated recursively with Murray’s law (or 

if desired by constant shear stress assumptions) as described in Appendix C.

As the trees expand, the constraints are relaxed because the space becomes more densely 

populated with vessels and appropriate connections become harder to find. We also note 

that the closure stage must be allowed to relax the constraints. This is because the 

sampleGeneratorFromPointCoordinateList must use all the predefined points and cannot 

disregard any sample due to constraints. The workflow diagram for simultaneous and 

independent tree growth is given in Figure E1. The inventory of synthetic structures is 

listed in Table A1.
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Figure E1. 
Workflow diagram of staged growth. Left) The growth algorithm reflects two stages for 

penetrator growth to ensure a structural match to the empirical networks. Right) The 

simultaneous growth (arteries and veins simultaneously) can be used to enforce a non

intersection constraint if desired.
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Appendix F:: Characterization of the capillary bed

Figure F1. 
Preliminary investigation of vertical aligment bias in empirical and synthetic networks. The 

empirical network E1.1 shows a significant peak around 33° while EB1.1 shows a valley (no 

occurrence) at <5°. The current space-filling algorithm for assigning the capillaries follows a 

slight tendancy towards horizontal with very little bias towards vertical connectivity. This is 

a point to investigate in depth in future work.

Appendix G:: Synthetic network hemodynamic performance

We conducted hemodynamics simulations to assess the total blood flow resistance in the 

empirical and synthetic data sets. For this purpose, the pressure drop between pial arterial 

input and pial venous outflow was varied over a wide range from 55–155 mmHg. The total 

flow was computed using techniques discussed elsewhere [18]. The resulting perfusion was 

plotted as a function of pressure drop across the network. Figure G1 shows that the flow

pressure relationship is almost linear despite the complex cortical network configuration 

in the empirical networks. The slope in the flow/pressure trends is indicative of the total 

resistance of the entire VAN. It can be seen that the total resistances in the three VANs 

reported are similar. The fourth empirical sample also reflects this similarity but was not 

reported here, because it exhibited a 30% lower resistance than the other samples of 

its cohort, with several other properties lying outside the rest of the cohort as reported 

previously [13].

Moreover, the variability between the synthetic and its empirical twin, with an average of 

9.93% deviation at 0.5 frequency of the CDF (as described in Section 3.2), is less than 

the variance between the empirical data sets to the same cohort, with an average of 19.9% 

deviation.

Finally, the plots the normalize flow pressure relationships demonstrating that the flow 

and pressure relationship between different sets empirical and synthetic are in excellent 

agreement. These preliminary simulations confirm the hemodynamics equivalence of the 

empirical data sets and their synthetic clones.
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Figure G1. 
Perfusion flow rates of synthetic networks and their empirical counterparts across 

parametrically varied perfusion pressures. (Left) By varying the pressure, we are able to 

see similar performance between the empirical and synthetic VANs, where the synthetic 

networks receive reasonable flows when compared to their empirical counterparts. (Right) 

The normalized perfusion flow reflects excellent similarity between the VAN performance 

during pressure variability. (Normalized flow is computed as the total predicted perfusion 

divided by the hypothetical perfusion at 155 mmHg pressure drop as reference).

Appendix H:: Implementation of double bifurcation closure.

The steps of the double bifurcation closure include: (I) selecting an open terminal, (II) 

identifying a list of near-neighborhood segments from the opposing tree, (III) choosing the 

two (2) closest segments from the list that fit all constraints (minimum length, maximum 

length, bifurcation angle, etc.), (IV) adding a segment between the terminal and the first of 

the two chosen segments on the other tree, (V) calculating the new bifurcation position using 

optimization or a geometric heuristic as described in Section 2.2, and finally (VI) repeating 

steps (IV) and (V) to attach the terminal to the second of the two chosen segments on the 

opposing tree. Steps (I) - (VI) are executed for each terminal on both trees (arteries and 

veins).

A pseudocode for these steps is given in Table 1. Specifically, in line 2, we use the sample 

generator described in part I of this manuscript that generates a sample point from the list 

of terminals from the opposing tree. In line 3 the two segments of the opposing tree are 

chosen as described in steps (II)-(III). Then, in lines 4 and 5, each of these two segments 

are attached using the add_fork routine which executes steps (IV)-(V). This routine entails 

adding a new segment between the current segment and a point (in this case the terminal 

point of the arterial tree). This process can attach to the segment either with or without 

optimization but must always adhere to the list of constraints. Once the terminal has been 

attached to both close segments of the opposing tree, the terminal is removed from the 

sample generator list and the vessel calipers are recalculated. This process is repeated for 

all terminals in both trees. After all terminals of both trees are closed, the resulting vascular 
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network reflects a fully connected aVAN complete with arteries, veins, and a physiologically 

consistent capillary bed.

Table H 1.

Pseudocode for microvascular closure algorithm

1. FOR i = 1 TO nTerminals DO

2.  terminal aT = venTerminalSampleGeneratorList.getSample //arterial terminal

3.  segments vS = choose closest two ∈ close_segment_list(venous_tree, constraintList)

4.  add_fork (venous_tree, aT, vS[0]) // with or without optimizing

5.  add_fork (venous_tree, aT, vS[1]) // with or without optimizing

6.  remove(venTerminalSampleGeneratorList, aT)

7.  balanceTree(venous_tree, d0) // update venous_tree diameter ratios

8.  terminal vT = artTerminalSampleGeneratorList.getSample //venous terminal

9.  segment aS = choose closest two ∈ close_segment_list(arterial_tree, constraintList)

10.  add_fork (arterial_tree, vT, aS[0]) // with or without optimizing

11.  add_fork (arterial_tree, vT, aS[1]) // with or without optimizing

12.  remove(artTerminalSampleGeneratorList, vT)

13.  balanceTree(artery_tree, d0) // update arterial_tree diameter ratios

14. ENDFOR
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Figure 1. 
Comparison of length scales of image-derived and synthetic network models of the cerebral 

circulation in mouse. Empirical data -inlayed box in orange) Three cohorts of empirical 

networks (Dunn, ED1.1, Boas, EB1.1, Kleinfeld, E1.1) provide excellent topological 

information about the microcirculation in small sections of the cortex, but are limited by 

a narrow imaging window. Synthetic data – all VANs outside the orange box) The iCNS 

algorithm is used to synthesize digital clones of the empirical data (sVAN). In addition, it 

enables drastic size expansions to construct anatomically sound cerebral networks for a large 

3×3×1.2mm3 portion of the cortex (Synthetic 3×3×1.2mm3) or even an entire hemisphere of 

the mouse (Synthetic Hemisphere). The Synthetic Hemisphere spanning the circulation of 

one half of the murine brain encompasses pial arteries, penetrating arterioles, precapillaries, 

capillaries, post-capillaries, ascending venules before finally draining through the venous 

sinuses. Color represents blood pressure from high (red=120mmHg) to low (blue=5mmHg).
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Figure 2. 
Illustration of the different closure methods between arterial and venous trees. Left Column) 

In Step 1, a single arterial terminal is joined to the venous tree while in the Right Colum 

corresponding to Step-2, a venous terminal is closed. The Top Row shows the terminal 

matching (Method 1) where each terminal from the arterial tree must be paired to a terminal 

in the venous tree. The Second Row (Method 2) attaches each terminal to a nearby segment 

of the opposite tree through a new bifurcation in the opposing tree. In the Third Row 

(Method 3), each terminal attaches to two nearby segments of the opposite tree through two 

new bifurcations. The closure algorithm repeatedly adds connections in reciprocal manner 

(arterial closure-step-1, venous closure-step-2) until all terminals are closed on both trees.
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Figure 3. 
Morphological properties of networks derived from three cohorts of experimental 

neuroimaging data from the microvasculature in the murine somatosensory cortex. Shown 

here are representatives from the Dunn (n=6), Boas (n=5), and Kleinfeld (KF, n=4) cohorts. 

A) Large variability is observed in topology profiles between the different groups, as can be 

seen for diameter, length, volume and surface area spectra. B) The accumulated statistics of 

intravascular volume, intravascular length, intravascular surface area, blood volume fraction, 

segment density and total number of segments (nsgm) also display substantial variability 

between cohorts.

Hartung et al. Page 36

Microcirculation. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Visualization of the microcirculatory hierarchy of blood vessels in the murine cortex for 

the four empirical networks from the Kleinfeld group (E1.1, E2.1, E3.1, and E4.1) and a 

synthetic network (S1.226)22. Top row) The full network shows all blood vessels in the 

full network. Second row) The extracted pial surface network (pial arteries, PA, and pial 

veins, PV) with penetrating arterioles (6.7 ± 1.6 long and 9.4 ± 5.3 short nsgm/mm2) and 

ascending venules (7.6 ± 3.1 long and 16.2 ± 5.2 short nsgm/mm2) labeled with black 

(long penetrators) and grey dots (short penetrators). Third row) Long penetrating arterioles 

(LPA) dive down to cortical layers V-VI depth (>825mm). Fourth row) More dense network 

of short penetrating arteries, SPA and short ascending veins, SAV, which only extend to 

layer IV. Fifth row) Long ascending venules (LAV) also collect blood from deeper layers 
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than their short counterparts (layer VI). The color reflects blood pressure from high (red = 

120mmHg) to low (blue = 5mmHg).
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Figure 5. 
The diameter spectra in the empirical microcirculatory networks as a function of cortical 

depth of the Kleinfeld cohort (E1.1-E4.1). Variability in diameters decreases in deeper 

tissues as indicated by the boxplots showing the layer-dependent diameter distributions in 

four empirical networks (E1.1, E2.1, E3.1, E4.1). The spectra (shown for E2.1, in middle 

column) exhibit much higher diameter variability in upper cortical layers (standard deviation 

of 6.24 and 1.18 μm in layers I-II) than deeper regions (standard deviation of ~0.9 μm in 

layers IV-VI). The more uniform diameter spectra in lower layers may be a factor leading 

to increased homogeneity in hemodynamic properties in the same layers, such as RBC flux 

and hematocrit. This phenomenon is illustrated conceptually in the right panel showing RBC 

flux variability as a function of cortical depth and is discussed in detail elsewhere17. In 

general, there seems to be more order in deeper layers of the cortex compared to the surface.

Hartung et al. Page 39

Microcirculation. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Comparison of morphometric properties of empirical and synthetic networks in mouse. 

Top) The Kleinfeld (KF), Middle) Boas, and Bottom) Dunn cohorts show excellent match 

between the empirical (stars) and synthetic counterparts (black lines) as reflected by the 

tortuosity, diameter, length, volume and surface area distributions. (In all pdf spectra, dots

empirical and lines-synthetic are almost indistinguisable). For a more detailed comparison, 

two representative networks from each cohort are compared with boxplots, which indicate 

closer similarity between the networks and their digital clones than between networks 

of different cohorts. The 3D visualization of the networks also reveal a high degree 

of structural similarity between the empirical and synthetic networks. We note that the 

intraspecimen variability among sample networks belonging to the same cohort is larger 

than the variability between an empirical network and its synthetic counterpart. Of further 

note, many boundary segments in the empirical imaging datasets are severed, creating 

unrealistic dead end connections in hemodynmic simulations. In contrast, all segments in 

digital sVAN are connected in the entire domain with no dangling segments at the boundary 

or the interior.
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Figure 7. 
Visualization of five stages of synthesizing a complete cortical microcirculatory network in 

mouse. Top row) shows the gradual evolution of small cortical subsection of similar size to 

E1.1. Second row) shows color coding of anatomical group labels used during the generation 

of the sVAN. Bottom row) illustrates stages of growing the LACA territory during the 

construction of the mouse hemisphere. During each stage of growth, new segments are only 

allowed to connected to specified anatomical groups as outlined in Table 2. The stages show 

(from left to right): the backbone forms the initial structure onto which the pial network is 

grown. The penetrating vessel terminals are then generated perpendicular to the pial surface 

and attached to the exposed pial terminals. Next, the capillaries (precapillary arterioles, 

pre-capillaries, capillaries, post-capillaries, and post-capillary venules) fill the space until the 

desired number of vessels is reached. In the capillary stage, it is possible to relax the volume 

optimization principle to place the optimal bifurcation point without rigorous optimization. 

In the final stage, closure between the arteries and veins connects all open terminals from the 

arterial tree to the venous tree and all the venous terminals to the arterial tree as described in 

Section 2.3.
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Figure 8. 
Visualization of the twelve (n=12) synthetic mouse brains (right hemisphere) generated with 

the iCNS algorithm. Seven networks were synthesized using the cortical reconstruction 

for mouse-1 (SH1.201-SH1.207). Five networks were generated for a different second 

specimen, mouse-2 (SH2.201-SH2.205). The color reflects pressure from high at the inlets 

(red = 120mmHg) through a full capillary bed to a venous drainage (blue = 5mmHg). 

Blood flow simulations were performed for all twelve samples with pressure reported in 

all networks (axial view) and SH1.201-SH1.206 in sagittal view. Hematocrit distribution is 
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depicted in SH1.207 and SH2.201 - SH2.202 (sagittal view). Bulk blood flow is also shown 

for samples SH2.203-SH2.205 in the sagittal view.
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Figure 9. 
Extension of vascular synthesis methodology from the mouse to the human brain. The iCNS 

algorithm was applied to a human cortical surface reconstruction for growing a network of 

the main cerebral arteries including the Circle of Willis, the MCA, PCA, and ACA reaching 

down to the level of the distal pial vessels. This result shows that the same principles of 

synthesis and staged growth used in the mouse hemisphere was successful in producing 

fully-closed vascular structures for the human brain.
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Table 1.

Listing of network topological properties for different neuroimaging data cohorts of the mouse somatosensory 

cortex.

Property Value

Label used for dataset in this paper Dunn ED1.1 Boas EB1.1 - EB5.1 Kleinfeld E1.1 - E4.1

Approximate main dimensions of network (mm) 0.5×0.5×0.6 0.63×0.7×0.61 1.2×1.3×1.5

Segment diameter (μm) 9.15 ± 4.83 7.35 ± 4.16 3.87 ± 2.2

Segment tortuosity 1.15 ± 0.29 1.24 ± 0.54 1.11 ± 0.32

Segment length (μm) 67.1 ± 53.5 76.0 ± 66.6 57.0 ± 46.0

Tissue volume (μL) 0.14 ± 0.02 0.26 ± 0.06 2.16 ± 0.79

Number of segments/splines (nsgm)* 1,211 ± 364 1,756 ± 759 24,669 ± 9,594

Segment density (nsgm/mm3)* 8,573 ± 1,440 6,665 ± 2,371 11,473 ± 1,215

Vascular volume fraction (%) 5.11 ± 1.0 2.65 ± 0.3 1.13 ± 0.3

Vascular length density (m/mm3) 0.57 ± 0.05 0.49 ± 0.10 0.65 ± 0.08

Endothelial surface area density (mm2/mm3) 16.22 ± 0.5 10.86 ± 1.4 7.2 ± 1.56

Bifurcation density (nbif/mm3) 4,403 ± 640 4,415 ± 1,554 7,453 ± 779

Incidence of multifurcations (% of all nodes)** 8.3 ± 1.1 1.1 ± 1.4 6.9 ± 0.9

Long penetrating artery density (nsgm/mm2) NA NA 6.7 ± 1.6

Short penetrating artery density (nsgm/mm2) NA NA 9.4 ± 5.3

Long ascending venule density (nsgm/mm2) NA NA 7.6 ± 3.1

Short ascending venules density (nsgm/mm2) NA NA 16.2 ± 5.2

Long ascending venule/penetrating arteriole ratio NA NA 1.29:1

Short ascending venule/penetrating arteriole ratio NA NA 2.12:1

Overall ascending venule/penetrating arteriole ratio NA NA 1.85:1

*
nsgm – number of segments, NA properties were not assessed

**
multifurcations are network nodes branching into more than three segments
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Table 2.

Anatomical grouping used in each synthesis stage

Stage Groups available for attachment

Pial Arteries Pial Arteries

Long Penetrating Arteries/Arterioles Pial Arteries

Short Penetrating Arteries/Arterioles Pial Arteries

Pre-Capillary Arterioles Long and Short Penetrating Arteries/Arterioles

Pre-Capillaries Pre-Capillary Arterioles, Pre-Capillaries

Capillaries Pre-Capillaries, Post-Capillaries

Post-Capillaries Post-Capillary Venules, Post-Capillaries

Post-Capillary Venules Long and Short Penetrating Veins/Venules

Long Ascending Veins/Venules Pial Veins

Short Ascending Veins/Venules Pial Veins

Pial Veins Pial Veins

Microcirculation. Author manuscript; available in PMC 2022 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hartung et al. Page 47

Table 3:

Comparative variability between sVANs and VANS of the Kleinfeld cohort.

Specific Deviation at CDF Frequency 0.5

Diameter (%) Length (%) Volume (%) Surface Area (%)

Synthetic-Empirical 1.25 ± 0.57 8.91 ± 4.1 16.2 ± 4.0 13.36 ± 3.6

Empirical-Empirical 11.08 ± 11.5 10.74 ± 8.9 34.87 ± 29.9 21.86 ± 16.0
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