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Abstract

Models that examine genetic differences between populations alongside a genotype–phenotype

map can provide insight about phenotypic variation among groups. We generalize a simple model

of a completely heritable, additive, selectively neutral quantitative trait to examine the relationship

between single-locus genetic differentiation and phenotypic differentiation on quantitative traits. In

agreement with similar efforts using different models, we show that the expected degree to which

two groups differ on a neutral quantitative trait is not strongly affected by the number of genetic

loci that influence the trait: neutral trait differences are expected to have a magnitude comparable

to the genetic differences at a single neutral locus. We discuss this result with respect to population

differences in disease phenotypes, arguing that although neutral genetic differences between

populations can contribute to specific differences between populations in health outcomes,

systematic patterns of difference that run in the same direction for many genetically independent

health conditions are unlikely to be explained by neutral genetic differentiation.
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1. Introduction

Since Lewontin’s (1972) landmark partitioning of human genetic diversity, many studies

have supported his claim that allele-frequency differences between geographically defined

groups of people are relatively modest (Barbujani et al. 1997; Brown and Armelagos 2001;

Rosenberg et al. 2002; Li et al. 2008). The findings of these previous studies have often been

reported as estimates of FST, which can be interpreted as the proportion of variance in an

allelic indicator variable attributable to allele-frequency differences between populations

(Holsinger and Weir 2009). Estimates of worldwide human FST and FST-like quantities have

ranged from ~0.05 (e.g., Rosenberg et al. 2002) to ~0.15 (e.g., Barbujani et al. 1997).
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Human FST estimates suggest that for phenotypes governed by a single typical genetic locus,

population membership is likely to account for a relatively small proportion of the total

variance of the trait. However, phenotypes are generally influenced by many loci, not just

one. Large sets of loci can contain a great deal of information about population membership

and can permit highly accurate ancestry inference, even if each locus has a small FST

(Smouse et al. 1982; Bowcock et al. 1994; Mountain and Cavalli-Sforza 1997; Rosenberg et

al. 2002; Bamshad et al. 2003; Edwards 2003; Li et al. 2008). Should we expect traits that

are influenced by many loci to aggregate information about population membership across

loci, leading to differences between populations that are more pronounced than those

observed for traits influenced by fewer loci?

This question has been examined in many population-genetic and quantitative-genetic

studies, both in theoretical models (Felsenstein 1973, 1986; Chakraborty and Nei 1982;

Rogers and Harpending 1983; Lande 1992; Spitze 1993; Lynch and Spitze 1994; Whitlock

1999; Berg and Coop 2014; Edge and Rosenberg 2015) and in empirical applications in

humans (Roseman 2004; Roseman and Weaver 2004; Weaver et al. 2007; Relethford 2010)

and other organisms (for reviews, see Whitlock 2008; Leinonen et al. 2013), finding that, in

the absence of selection, the expected degree to which groups differ on an additive,

genetically determined trait does not depend on the number of loci that influence the trait.

Put differently, a typical neutral trait conveys roughly the same degree of information about

population membership as a single neutral locus, even if the trait is influenced by a large set

of loci that would, if considered directly, permit accurate classification by population of

origin.

Recently, to facilitate direct comparisons of multilocus genetic classification, single-locus

genetic differentiation, and phenotypic differentiation, we developed a model that combines

a simple model of multilocus genetic classification with a simple genotype–phenotype map.

Our model enables genotype–phenotype comparisons to be performed in a statistical

framework that permits exact computation and does not require detailed evolutionary

assumptions (Edge and Rosenberg 2015). Our results agreed with those found with other

models, highlighting the differences between polygenic phenotypic differentiation and

information about population membership at multiple genetic loci.

In our past work (Edge and Rosenberg 2015), we applied strong assumptions about the

allele-frequency distribution, and we examined only haploids. Here, we extend our earlier

model to allow arbitrary allele-frequency distributions and arbitrary ploidy. Our results

provide another way of establishing the result that between-group differentiation on a neutral

trait mirrors between-group genetic differentiation at a neutral locus, one that makes

minimal evolutionary assumptions. In Section 2, we describe our extended model. In Section

3, we define several measurements of between-group genetic differentiation. In Sections 4

and 5, we describe properties of two statistics that summarize the degree of difference

between two populations on a quantitative trait. In Section 6, we introduce two simplifying

assumptions that allow us to analyze the problem of inferring an individual’s population of

origin using either genetic or phenotypic information. Finally, we discuss the results with

respect to the interpretation of population differences in disease phenotypes. Figure 1

provides a conceptual map of the structure of the article.

Edge and Rosenberg Page 2

Hum Biol. Author manuscript; available in PMC 2021 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Preliminaries

2.1 Model

Our extended model is parallel to our previously reported model (Edge and Rosenberg 2015)

and is similar to models used by Risch et al. (2002), Edwards (2003), and especially Tal

(2012) to investigate the problem of classifying individuals into populations using

multilocus genetic data. For a summary of our notation, see Table 1.

We consider two populations of equal size, labeled A and B. In each individual, we consider

k biallelic genetic loci. Each individual is ℓ-ploid (ℓ ≥ 1), carrying ℓ copies of each locus. At

each locus, the allelic type more common in population B than in population A is labeled

“1,” and the other allelic type is labeled “0.” Conditional on population membership, all of

an individual’s alleles are independent—both alleles at the same locus, as under Hardy-

Weinberg equilibrium, and alleles at distinct loci, as under linkage equilibrium.

Let Lij be an indicator random variable denoting whether the jth allele (1 ≤ j ≤ ℓ) at locus i is
the “1” allele, and let M be a random variable that represents an individual’s population

membership and that takes values A and B. The conditional probabilities that Lij = 1 are

P Li j = 1 ∣ M = A = pi,
P Li j = 1 ∣ M = B = qi . (1)

The pi and qi obey 0 ≤ pi ≤ qi ≤ 1. The constraint qi ≥ pi holds because, by definition, the 1

allele is more common in population B than in population A. We also assume that, for at

least one value of i, pi or qi does not equal 0 or 1; and for the limiting results in Section 6,

we assume that, as the number of loci k approaches infinity, the number of loci at which pi ∈
(0, 1) and the number of loci at which qi ∈ (0, 1) both approach infinity.

Define p and q as the means across loci of the allele frequencies pi and qi:

p = 1
k ∑

i = 1

k
pi,

q = 1
k ∑

i = 1

k
qi .

(2)

Define sp
2 and sq

2 as the variances across loci of the pi and qi, though they are not probabilistic

variances because the pi and qi are nonrandom:

sp
2 = 1

k ∑
i = 1

k
pi − p 2,

sq
2 = 1

k ∑
i = 1

k
qi − q 2 .

(3)
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We model a completely heritable, selectively neutral, additively determined trait as a

function of the k loci described above. Specifically, an individual’s value on the trait—

represented by a random variable T—is a weighted sum of the individual’s Lij values. As in

our previous work (Edge and Rosenberg 2015, Eq. 9), the weights are determined by labels

at each locus, where for each trait we label one allele at each locus—either the 0 allele or the

1 allele—as the “+” allele and the other allele as the “−” allele. T is then equal to the number

of + alleles carried by the individual. That is,

T = ∑
i = 1

k
∑
j = 1

ℓ
V i j, (4)

where Vij = 1 if the jth allele at the ith locus is a + allele and Vij = 0 otherwise.

Again following our previous work (Edge and Rosenberg 2015, Eq. 7), we assume that

whether an allele is more common in population B than in population A (i.e., labeled “1”) is

independent of whether it is associated with larger trait values than the other allele (i.e.,

labeled “+”). This claim amounts to assuming that the alleles at k loci have not been under

selection and have reached their current frequencies independently of their effect on the trait.

We express this assumption with the random variable Xi, with Xi = 0 if the 0 allele and the +

allele are identical at the ith locus and Xi = 1 if the 1 allele and the + allele are identical at

the ith locus. Each trait is associated with a set of k values for the Xi, and for each of the k
loci,

P Xi = 0 = P Xi = 1 = 1 2 (5)

independently of the Xi for the other loci.

We introduce a statistic for comparison with the trait value T. We summarize the information

about population membership available at an individual’s k loci with the genotypic statistic

S, the total number of 1 alleles—that is, alleles that are more common in population B than

in population A—at k loci:

S = ∑
i = 1

k
∑
j = 1

ℓ
Li j . (6)

S is not generally an optimal basis for distinguishing members of population A and B (e.g.,

Tal 2012)—in principle, we could improve classification by more heavily weighting loci that

have a greater allele frequency difference between populations—but we will show that

classifications based on S approach perfect accuracy as k increases, as long as p ≠ q.

Figure 2 shows a schematic of our model. The model reduces to the one described in Edge

and Rosenberg (2015) if one assumes (a) that pi = p and qi = q for all i, (b) that q = 1 − p,

and (c) that the organisms being examined are haploid (ℓ = 1).
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2.2 The Poisson Binomial Distribution

Under our model, many relevant quantities have a Poisson binomial distribution, which

arises when independent Bernoulli trials with possibly varying success probabilities are

summed. By the central limit theorem, the Poisson binomial distribution converges to a

normal distribution as the number of terms summed increases without bound, provided that

the sum of the variances of the Bernoulli random variables approaches infinity (Deheuvels et

al. 1989, Theorem 1.1). If Z is a Poisson binomial random variable with probabilities p1, …,

pk, then

E(Z) = ∑
i = 1

k
pi = kp,

Var(Z) = ∑
i = 1

k
pi 1 − pi = kp(1 − p) − ksp

2,
(7)

where p is as in Eq. 2 and sp
2 is as in Eq. 3 (e.g., Edwards 1960).

3. Genetic Differentiation between Populations at a Single Locus

On the basis of our model, we define several statistics measuring the degree of genetic

differentiation between populations at a single typical locus. In Section 5, we use these

statistics to compare the degree of genetic differentiation at a typical locus to the expected

degree of difference between populations in a neutral trait.

3.1 Single-Locus Differentiation Measures

One summary of the degree of single-locus genetic differentiation between populations is

the difference between populations in the frequency of the 1 allele at the locus:

δi = qi − pi . (8)

We also define

δ = 1
k ∑

i = 1

k
δi = q − p, (9)

δ2 = 1
k ∑

i = 1

k
δi

2 = δ2 + sδ
2, (10)

where sδ
2 = ∑i = 1

k δi − δ 2/k, and

δ4 = 1
k ∑

i = 1

k
δi

4 = δ22
+ s

δ2
2 , (11)

where s
δ2
2 = ∑i = 1

k δi
2 − δ2 2

/k.
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The quantity δ (Eq. 8), the difference in population frequencies of one specific allele at a

biallelic locus, is closely related to FST for a single locus. Specifically, with two populations

and dropping the subscript i, single-locus FST, which we write as FST
1 , is

FST
1 = δ2

4 p + q
2 1 − p + q

2

= δ2

2[p(1 − p) + q(1 − q)] + δ2

(12)

(e.g., Weir 1996; Rosenberg et al. 2003, Eq. 8; Holsinger and Weir 2009, Eq. 4).

FST
1 ∈ δ2, δ/(2 − δ) , and δ2 never deviates from FST

1  by more than (5√5 − 11)/2 ≈ 0.0902

(Rosenberg et al. 2003). FST
1  can be interpreted in terms of a ratio involving heterozygosity

in the subpopulations and in the total population (Nei 1973), or as a ratio of variance

components (Holsinger and Weir 2009); we emphasize the latter interpretation. Specifically,

if L is an allelic indicator variable representing a single copy of a locus and M denotes

population membership, then for a single locus,

FST
1 =

VarM[E(L ∣ M)]
Var(L) . (13)

The subscript M indicates that the variance in the numerator is taken with respect to group

membership. Equation 13 can be verified using the law of total variance, noting that

VarM[E(L|M)] = δ2/4 and that EM[Var(L|M)] = [p(1 − p) + q(1 − q)]/2, and comparing with

Eq. 12.

To summarize the overall degree of genetic differentiation at a group of k loci, we define an

FST measure that summarizes the typical degree of differentiation at a locus chosen from a

set of k loci, which we write as FST
k . For locus i, Li1 is an allelic indicator variable

representing one copy of the locus. To compute FST
k , we sum the variance components that

appear in Eq. 13 across all k loci and take their ratio:

FST
k =

∑i = 1
k VarM E Li1 ∣ M

∑i = 1
k Var Li1

= δ2

2 p(1 − p) − sp
2 + q(1 − q) − sq

2 + δ2 .
(14)

This ratio is analogous to estimators of FST that involve a ratio of two variance estimates

(e.g., Weir and Cockerham 1984, Eq. 10). In our model, however, FST
k  is known and not

estimated because the allele frequencies are known. Though FST
k  is intended as an index of

the degree of genetic differentiation at a single typical locus, FST
k  is not equal to the mean of

the FST
1  values computed for each locus separately. Rather, it is the ratio of the mean across
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loci of the between-group variance in allelic type to the mean across loci of the total

variance in allelic type.

One interpretation of FST is as the proportion of the variance removed from an indicator

variable for one copy of an allele by conditioning on population membership. FST is thus

analogous to r2, a measurement of effect size commonly used in meta-analysis, which can be

interpreted as the proportion of variance in a dependent variable that is removed by

conditioning on an independent variable (Fox 1997: 94). Another commonly used effect-size

measurement applicable to differences between two groups is Cohen’s d (Cohen 1988), the

difference in group means on a dependent variable divided by the square root of the mean

across groups of within-group variances of the independent variable. For equally sized

groups, Cohen’s d is related to r2 by d2 = 4r2/(1 − r2) (by inverting Rosenthal 1994, Eqs. 16–

24). By analogy, we define another measurement of between-group genetic differentiation

across a set of loci:

DL
2 =

4FST
k

1 − FST
k

= δ2

p(1 − p) − sp
2 + q(1 − q) − sq

2 /2
.

(15)

DL
2 for a set of loci is not generally equal to the mean across loci of the value that would

result by applying Eq. 15 to each locus separately. Rather, like FST
k , DL

2 is a ratio of two

means across loci—the mean of the δi
2 and the mean within-group variance in allelic type.

FST
k  is a variance partition for allelic indicator variables representing one copy of a locus. At

a diploid or polyploid biallelic locus, each copy of the locus provides information about

population membership, so more information is available at the locus than is reflected in one

copy. We thus define an analogue of FST
k  for a set of ℓ-ploid loci by partitioning the variance

of the sum of the number of 1 alleles at each locus into between-group and within-group

components. For a single locus, the between-group variance of the sum is

VarM E ∑
j = 1

ℓ
Li j ∣ M

= ∑
m ∈ A, B

P(M = m) E ∑
j = 1

ℓ
Li j ∣ M = m − E ∑

j = 1

ℓ
Li j

2

= 1
4 E ∑

j = 1

ℓ
Li j ∣ M = A − E ∑

j = 1

ℓ
Li j ∣ M = B

2

= ℓ2
4 δi

2,

and by the independence of the allelic copies at a single locus, the within-group variance is
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EM Var ∑
j = 1

ℓ
Li j ∣ M

= ∑
m ∈ A, B

P(M = m) .

∑
j = 1

ℓ
P Li j = 1 ∣ M = m 1 − P Li j = 1 ∣ M = m

= ℓ
2 pi 1 − pi + qi 1 − qi .

To define FST(ℓ)
k , we sum these terms across loci to construct a ratio of the between-group

variance to the total variance:

FST(ℓ)
k =

∑i = 1
k VarM E ∑ j = 1

ℓ Li j ∣ M

∑i = 1
k Var ∑ j = 1

ℓ Li j

= ℓ δ2

2 p(1 − p) − sp
2 + q(1 − q) − sq

2 + ℓ δ2 .
(16)

We show in Appendix 1 that FST(ℓ)
k ∈ FST

k , ℓ FST
k  with FST(ℓ)

k = FST
k  if and only if FST

k = 0

or FST
k = 1. Figure 3 shows the relationship between FST

k  and FST(ℓ)
k  for several values of ℓ,

illustrating the relative increase in FST(ℓ)
k  compared with FST

k  as ℓ increases. Figure 3 also

illustrates, as shown in Appendix 1, that FST(ℓ)
k  is comparable to ℓ FST

k  for FST
k  close to 0 and

comparable to FST
k  for FST

k  close to 1.

Similarly, we can define an analogue of DL
2 for an ℓ-ploid locus:

DL(ℓ)
2 =

4FST(ℓ)
k

1 − FST(ℓ)
k

= ℓ δ2

p(1 − p) − sp
2 + q(1 − q) − sq

2 /2

= ℓ DL
2 .

(17)

Whereas FST
k  and DL

2 can be viewed as indices of the amount of information about

population membership available in a single copy of a typical locus, FST(ℓ)
k  and DL(ℓ)

2  assess

the total amount of population membership information at a typical locus, considering all ℓ
copies.
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3.2 Simulation-Based Allele Frequency Differences

Because some of our results depend on specific characteristics of the pi and qi, we simulated

allele frequencies under a model similar to that of Nicholson et al. (2002) to obtain suitable

example distributions for the pi and qi (see Figure 4 for a schematic). Specifically, we

generated allele frequencies for derived alleles in an ancestral population according to the

neutral site frequency spectrum with 2N = 20,000, choosing each allele frequency πi

according to P(πi = j/(2N)) ∝ 1/j (Charlesworth and Charlesworth 2010, Eq. B6.6.1). To

simulate drift after divergence, we produced postdivergence allele frequencies by adding to

each “ancestral” allele frequency πi an independently drawn Normal(0, 0.3πi(1 − πi))

random number, where 0.3 is chosen so that FST
k  approximates worldwide human FST

estimates. Any postdivergence allele frequencies less than 0 or greater than 1 were set to 0 or

1, respectively. After simulating postdivergence frequencies of the derived allele

independently in two populations, we assigned the frequencies of either the ancestral or the

derived allele in each population to be pi and qi, requiring qi ≥ pi. We generated 106 pairs of

allele frequencies (pi, qi) after removing loci at which the same allele fixed in both

populations. (Such loci do not contribute to FST
k  or DL

2.) For our simulated allele frequencies,

p ≈ 0.457, q ≈ 0.542, sp
2 ≈ sq

2 ≈ 0.191, δ ≈ 0.086, δ2 ≈ 0.025, δ4 ≈ 0.006, FST
k ≈ 0.099, and

DL
2 ≈ 0.440.The FST

k  value of 0.099 is similar to estimates of FST for human populations.

4. Properties of the Trait Value T Conditional on the Labeling Xi

We next consider the distribution and properties of the trait value T in each population. In

this section, we condition on the labeling of the alleles at each locus X1, X2, …, Xk. These

labels determine, for each locus, whether the 1 or the 0 allele increases an individual’s trait

value. In Section 5, we remove this condition and consider the expected behavior of the trait

value under random assignment of the labels.

It is convenient to define a transformation of the labels:

Ui = 2Xi − 1. (18)

If Xi = 1 and the 1 allele is the + allele, then Ui = 1, and if Xi = 0 and the 1 allele is the −

allele, then Ui = −1.

4.1 Distribution of T within Each Population Given the Labeling of the Alleles

In either population, conditional on the labeling of the alleles,

T ∣ X1, …, Xk = x1, …, xk

= ∑
i: xi = 1

∑
j = 1

ℓ
Li j + ∑

i: xi = 0
∑

j = 1

ℓ
1 − Li j .
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Because the Lij are independent Bernoulli random variables with different success

probabilities, T has a Poisson binomial distribution in each population. Specifically, within

population A, each of the ℓ allelic copies at each locus at which xi = 1 increases T by 1 with

probability pi, and each of the ℓ allelic copies at each locus at which xi = 0 increases T by 1

with probability 1 − pi. Within population B, the same statement holds if pi is replaced by qi.

By the properties of the Poisson binomial distribution (Eq. 7), the expectations of T in

populations A and B conditional on the labeling are then

E T ∣ X1, …, Xk = x1, …, xk , M = A

= ℓ ∑
i: xi = 1

pi + ∑
i: xi = 0

1 − pi ,

E T ∣ X1, …, Xk = x1, …, xk , M = B

= ℓ ∑
i: xi = 1

qi + ∑
i: xt = 0

1 − qi .

(19)

The difference in the conditional expectations is then

E T ∣ X1, …, Xk = x1, …, xk , M = B

− E T ∣ X1, …, Xk = x1, …, xk , M = A

= ℓ ∑
i: xi = 1

qi + ∑
i: xi = 0

1 − qi − ℓ ∑
i: xi = 1

pi + ∑
i: xi = 0

1 − pi

= ℓ ∑
i: xi = 1

qi − pi − ∑
i: xi = 0

pi − qi = ℓ ∑
i = 1

k
δiui,

(20)

where, analogously to Eq. 18, ui = 2xi − 1.

By Eq. 20 and the fact that the populations have equal size so that P(M = A) = P(M = B) =

½, the variance across populations of the conditional expectation of T is

VarM E T ∣ X1, …, Xk = x1, …, xk , M

= ℓ2

4 ∑
i = 1

k
δiui

2
.

(21)

By the properties of the Poisson binomial distribution (Eq. 7), the conditional variance of the

trait in population A is
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Var T ∣ X1, …, Xk = x1, …, xk , M = A

= ∑
i: xi = 1

∑
j = 1

ℓ
pi 1 − pi + ∑

i: xi = 0
∑

j = 1

ℓ
pi 1 − pi

= ℓ ∑
i − 1

k
pi 1 − pi = ℓ k p(1 − p) − sp

2 ;

the last step follows from the simplification of the variance in Eq. 7. Because this quantity

does not depend on {X1, …, Xk}, we can remove the condition on {x1, …, xk}, giving

Var(T ∣ M = A) = ℓ k p(1 − p) − sp
2 . (22)

Similarly, the variance of T in population B is

Var(T ∣ M = B) = ℓ k q(1 − q) − sq
2 . (23)

We use the conditional expectations and variances of T in the two populations to define

several measurements of the degree of difference between populations on the trait.

4.2 The Standardized Difference in Trait Means, DT, Given the Labeling of the Alleles

We consider three indices of the degree of difference between populations on the trait—two

here, and a third we defer to Section 6. The first is the standardized difference in population

means for the trait, DT, which is the difference between population trait means divided by

the square root of the mean across populations of within-population trait variances. DT is an

instance of the Cohen’s d measure of effect size (Cohen 1988). In this case, conditional on

the labeling, DT is

DT ∣ X1, …, Xk = x1, …, xk

= E T ∣ X1, …, Xk = x1, …, xk , M = B

−E T ∣ X1, …, Xk = x1, …, xk , M = A /
Var(T ∣ M = A) + Var(T ∣ M = B)

2 .

The numerator is given in Eq. 20. By Eqs. 22 and 23 and the fact that the two populations

are assumed to be the same size, the square of the denominator is

EM[Var(T ∣ M)]

= Var(T ∣ M = A) + Var(T ∣ M = B)
2

= ℓ k
2 p(1 − p) − sp

2 + q(1 − q) − sq
2 .

(24)

Therefore, combining Eqs. 20 and 24,
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DT ∣ X1, …, Xk = x1, …, xk

=
ℓ∑i = 1

k δiui

k p(1 − p) − sp
2 + q(1 − q) − sq

2 /2
,

(25)

where again, as in Eq. 18, ui = 2xi − 1. In Section 5, we study the distribution of DT across

different labelings of the alleles.

4.3 Partitioning the Variance of the Trait Given the Labeling of the Alleles: ρT
2  and QST

A second measure of between-population difference on the trait is the proportion of the

trait’s variance attributable to difference between populations. We label this proportion ρT
2 ,

with

ρT
2 =

VarM[E(T ∣ M)]
Var(T)

=
VarM[E(T ∣ M)]

EM[Var(T ∣ M)] + VarM[E(T ∣ M)] .
(26)

The last step follows from the law of total variance. Conditional on the labeling {X1, …,

Xk}, the numerator appears in Eq. 21, and the denominator is the sum of the expressions in

Eqs. 21 and 24. Thus, by Eq. 26, conditional on the labeling of the alleles for a given trait,

ρT
2 ∣ X1, …, Xk = x1, …, xk

=
ℓ ∑i = 1

k δiui
2

2k p(1 − p) − sp
2 + q(1 − q) − sq

2 + ℓ ∑i = 1
k δiui

2 .
(27)

The proportion ρT
2  is related to QST, which is an analogue of FST developed for quantitative

traits. For haploids, QST is the proportion of the heritable variance in a quantitative trait

attributable to genetic differences between populations (Whitlock 2008). Because we have

assumed that the trait we examine is completely heritable, ρT
2 = QST for haploids. QST is

defined so that, like FST, it does not depend on ploidy, which means that ρT
2 ≠ QST for ploidy

ℓ > 1 (unless ρT
2 = 0 or ρT

2 = 1). For diploids, again invoking the assumption of perfect

heritability of the trait, QST is

QST =
VarM[E(T ∣ M)]

2EM[Var(T ∣ M)] + VarM[E(T ∣ M)]

(Whitlock 2008), and by analogy, for ℓ-ploid organisms,
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QST =
VarM[E(T ∣ M)]

ℓ EM[Var(T ∣ M)] + VarM[E(T ∣ M)]

=
∑i = 1

k δiui
2

2k p(1 − p) − sp
2 + q(1 − q) − sq

2 + ∑i = 1
k δiui

2 .
(28)

Thus, regardless of ploidy ℓ, QST is obtained from the expression in Eq. 27 by setting ℓ to 1.

The relationship between QST and ρT
2  is exactly the same as the relationship between FST

k

and FST(ℓ)
k  (Figure 3 and Appendix 1); that is, if QST = FST

k , then   ρT
2 = FST(ℓ)

k .

5. Properties of DT and ρT
2  across Different Labelings of the Alleles

In this section, we consider properties of the trait value T across different traits, which may

have different allelic labels (Xi), so that each trait has its own locus-specific effects for the

alleles. Specifically, we consider two indices of the degree of difference between populations

on the trait defined in Section 4, the standardized group difference, DT (Section 4.2), and the

proportion of trait variance that is attributable to between-group differences, ρT
2  (Section

4.3).

5.1 Properties of ∑i = 1
k δiUi

One random variable that appears in expressions for both DT (Eq. 25) and ρT
2  (Eq. 27) is

∑i = 1
k δiUi, where Ui is a function of the labels Xi that determine which allele at locus i is the

+ allele (Eq. 18), taking a value of either −1 or 1 with probability ½ each, and δi is the

difference between populations in the frequency of the 1 allele (Eq. 8). We give the relevant

moments of ∑i = 1
k δiUi here for later reference.

We note first that, for all i and for integers n ≥ 0, the odd and even moments of the Ui obey

E Ui
2n + 1 = 0, (29)

E Ui
2n = 1. (30)

Thus, by Eq. 29, for n ∈ {0, 1, 2, …},

E ∑i = 1
k δiUi

2n + 1
= 0. (31)

The second moment is
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E ∑
i = 1

k
δiUi

2

= ∑
i = 1

k
δi

2E Ui
2 + ∑

i = 1

k
∑
j ≠ i

δiδ jE UiU j

= ∑
i = 1

k
δi

2 = kδ2,

(32)

by Eq. 30 and because, by the independence of the Ui, E(UiUj) = E(Ui)E(Uj) = 0 for all i ≠ j.

We show in Appendix 2 that the fourth moment is

E ∑
i = 1

k
δiUi

4
= 3k2δ22

− 2k δ22
+ s

δ2
2 . (33)

5.2 The Standardized Group Difference in Trait Means, DT

Removing the condition on the labels in Eq. 25, ui becomes the random variable Ui (Eq. 18),

and DT becomes the random variable

DT =
ℓ∑i = 1

k δiUi

k p(1 − p) − sp
2 + q(1 − q) − sq

2 /2
. (34)

By Eq. 29,

E DT =
ℓ∑i = 1

k δiE Ui

k p(1 − p) − sp
2 + q(1 − q) − sq

2 /2
= 0. (35)

Equation 35 reflects the symmetry of the distribution of DT around 0. By Eqs. 32, 34, and

35,

Var DT = E DT
2 − E DT

2 = E DT
2

= E
ℓ∑i = 1

k δiUi

k p(1 − p) − sp
2 + q(1 − q) − sq

2 /2

2

= ℓ δ2

p(1 − p) − sp
2 + q(1 − q) − sq

2 /2
,

(36)

where δ2 is as defined in Eq. 10.
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E DT
2  (Eq. 36) is one measurement of the typical size of the between-group difference in

trait means, irrespective of its direction. For fixed p and q, E DT
2  is usually larger if k > 1

than if k = 1 because of variation in the allele frequencies: sp
2 = sq

2 = sδ
2 = 0 if k = 1, but each

may be positive if k > 1, and positive values of each of these terms increase E DT
2 .

Nonetheless, E DT
2  does not grow without bound as k increases, and it is equal to one of our

indices of between-group genetic differentiation at a single locus, DL(ℓ)
2  (Eq. 17),

E DT
2 = DL(ℓ)

2 = ℓ DL
2 . (37)

Thus, though E DT
2  increases with higher ploidy, it does not necessarily increase as the

number of loci k influencing the trait increases (Figure 5A). Equation 36 reduces to the

results we showed for DT
2  in our previous work (Edge and Rosenberg 2015, Eqs. 37, 38)

under the more restrictive assumptions we used there. The correspondences between the

main results in this article and the main results in Edge and Rosenberg (2015) are

summarized in Table 2.

In addition to the expectation of DT
2 , we may wish to know its variance—do traits influenced

by many loci vary widely in their level of between-population difference? By Eq. 33,

E DT
4 =

ℓ2 3k2δ22
− 2k δ22

+ s
δ2
2

k2 p(1 − p) − sp
2 + q(1 − q) − sq

2 2/4

= ℓ2

p(1 − p) − sp
2 + q(1 − q) − sq

2 2/4
× 3δ22

− 2 δ22
+ s

δ2
2 /k .

(38)

The required variance, calculated as E DT
4 − E DT

2 2
, is, by Eqs. 36 and 38,

Var DT
2 = 2 ℓ2

p(1 − p) − sp
2 + q(1 − q) − sq

2 2/4
× δ22

− δ22
+ s

δ2
2 /k . (39)

If k = 1, then s
δ2
2 = 0, and Var DT

2 = 0. As k increases, Var DT
2  approaches
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lim
k ∞

Var DT
2 =

= 2 ℓ2 δ22

p(1 − p) − sp
2 + q(1 − q) − sq

2 2/4

= 2Var DT
2 .

(40)

Equations 39 and 40 indicate that as the number of loci k increases, the variance of DT
2  does

increase, but it asymptotes to a limit that does not depend on k (Figure 5B).

5.3 Properties of ρT
2  and QST

Removing the condition on the labels in Eq. 27, ui becomes the random variable Ui (Eq. 18),

and ρT
2  becomes a random variable

ρT
2 = ℓ ∑i = 1

k δiUi
2
/

2k p(1 − p) − sp
2 + q(1 − q) − sq

2

+ ℓ ∑i = 1
k δiUi

2
.

(41)

To describe the behavior of ρT
2  across different traits, we approximate E ρT

2  by replacing

∑i = 1
k δiUi

2
 in Eq. 41 with its expectation, motivated by a Taylor approximation argument.

Making the substitution Y = ( ℓ /2) ∑i = 1
k δiUi

2
, we have

ρT
2 = Y

k p(1 − p) − sp
2 + q(1 − q) − sq

2 + Y

= g(Y) .
(42)

Defining μY = E(Y), a first-order Taylor series expansion for g(Y) around Y = μY gives

ρT
2 = g(Y) ≈ g μY + g′ μY Y − μY ,

and taking the expectation gives

E ρT
2 = E[g(Y)] ≈ g μY + g′ μY E Y − μY = g μY .

By Eq. 32, E ∑i = 1
k δiUi

2 = kδ2. Substituting E(Y) = ( ℓ /2)kδ2 for Y in Eq. 42 gives
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E ρT
2 ≈ ℓ δ2

2 p(1 − p) − sp
2 + q(1 − q) − sq

2 + ℓ δ2 . (43)

The expression on the right side of Eq. 43 is an approximation of E ρT
2 , but it is also a strict

upper bound on E ρT
2 . To see that it is an upper bound, note that ρT

2  is concave in

Y = ( ℓ /2) ∑i = 1
k δiUi

2
 (Eq. 42). Thus, by Jensen’s inequality, which states that if g is a

concave function of a random variable X, then E[g(X)] ≤ g[E(X)], we have

E ρT
2 ≤ ℓ δ2

2 p(1 − p) − sp
2 + q(1 − q) − sq

2 + ℓ δ2 . (44)

As we observed for E DT
2 , if p and q are fixed, then E ρT

2  can take larger values if k > 1 than

if k = 1 because increasing sp
2 or sq

2 increases the upper bound on E ρT
2 . Nonetheless, E ρT

2

does not grow without bound as k increases (Figure 5C). Comparing Eqs. 43 and 44 with

Eq. 16,

E ρT
2 ≈ FST(ℓ)

k ,
E ρT

2 ≤ FST(ℓ)
k .

(45)

The expected value of ρT
2  is thus approximately equal to, and no greater than, the ratio of the

mean across loci of the between-group variance of ∑ j = 1
ℓ Li j to the mean across loci of the

total variance of ∑ j = 1
ℓ Li j , where ∑ j = 1

ℓ Li j is a random variable representing the number of

1 alleles carried by an ℓ-ploid individual at locus i.

Because QST is equal to the expression for ρT
2  in Eq. 41 with ℓ set to 1 (Eq. 28), Eqs. 43 and

44 imply that

QST ≈ δ2

2 p(1 − p) − sp
2 + q(1 − q) − sq

2 + δ2 ,

QST ≤ δ2

2 p(1 − p) − sp
2 + q(1 − q) − sq

2 + δ2 .
(46)

By Eq. 14, the expression on the right side of Eq. 46 is equal to FST
k , so

QST ≈ FST
k , (47)

QST ≤ FST
k . (48)

Edge and Rosenberg Page 17

Hum Biol. Author manuscript; available in PMC 2021 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Equation 47 is consistent with previous work on the relationship between FST
k  and QST under

different models (e.g., Lande 1992; Whitlock 1999), and it provides one justification for the

claim that the degree of between-group difference on a neutral trait is approximately equal to

the degree of between-group genetic differentiation at a typical locus.

6. Adding Assumptions Inspired by Equal Drift since a Recent Divergence

Having addressed the relationship between neutral genetic and neutral phenotypic

differentiation between populations in the context of standardized differences and variance

partitioning (Sections 4 and 5), we now consider the accuracy with which individuals can be

classified into populations using neutral genetic and phenotypic information. We require two

assumptions that will allow us to consider approximate misclassification rates that would

arise if we attempted to identify an individual’s population of origin by examining k loci

directly or by examining a trait determined additively by those k loci. The case in which

these assumptions are met is a restriction of the general case we have been examining. The

special case in this section can be viewed as the expectation under a model in which the

allele frequencies in populations A and B have experienced equal amounts of drift since a

recent divergence (see Appendix 3).

The first assumption is symmetry of average frequency of the 1 allele across loci in

populations A and B,

q = 1 − p, (49)

where both p and q are assumed to be nonzero. By Eq. 9, Eq. 49 implies that

δ2 = 1 − 4pq . (50)

The quantity in Eq. 50 is the FST
1  value of a locus that has the average frequency of the 1

allele in each population, lending δ2 a new interpretation (Eq. 12). The second assumption is

that the variance of the allele frequencies has the same value in each population:

sp
2 = sq

2 . (51)

6.1 Multilocus Classification

We now consider the problem of identifying the population of an individual of unknown

origin. In this subsection, we examine the misclassification rates that arise from an

examination of the number of 1 alleles carried by an individual across k loci, S.

Recall that the genotypic statistic S (Eq. 6) is the number of alleles carried by an individual

that are more common in population B than in population A. If Xi = 1 for all i, then T = S.

Within each population, the Ls are independent Bernoulli random variables with possibly

different probabilities. Thus, within each population, S has a Poisson binomial distribution.

By the properties of the Poisson binomial distribution (Eq. 7),
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E(S ∣ M = A) = ∑
i = 1

k
∑
j = 1

ℓ
pi = ℓ kp,

Var(S ∣ M = A) = ∑
i = 1

k
∑
j = 1

ℓ
pi 1 − pi

= ℓ k p(1 − p) − sp
2 ;

E(S ∣ M = B) = ∑
i = 1

k
∑
j = 1

ℓ
qi = ℓ kq,

Var(S ∣ M = B) = ∑
i = 1

k
∑
j = 1

ℓ
qi 1 − qi

= ℓ k q(1 − q) − sq
2 ,

(52)

where p, q, sp
2, and sq

2 are as defined in Eqs. 2 and 3. The variances of S within each

population are the same as the variances of T within each population (Eqs. 22, 23).

We consider the normal approximation of the misclassification rate obtained if the genotypic

statistic S is used for classification. If the assumptions in Eqs. 49 and 51 hold, then the

within-population variances of S in the two populations are equal:

ℓ k p(1 − p) − sp
2 = ℓ k q(1 − q) − sq

2

= ℓ k pq − sp
2 .

(53)

Further, when k is large, as a sum of independent Bernoulli variables the sum of whose

variances increases without bound, the distribution of S is approximately normal:

(S ∣ M = A) Normal ℓ kp, ℓ k pq − sp
2 ,

(S ∣ M = B) Normal ℓ kq, ℓ k pq − sp
2 .

(54)

(Deheuvels et al. 1989, Theorem 1.1).

Denoting the normal density that approximates the distribution of S in population A by fA(s)

and the corresponding normal density for population B by fB(s), then when we observe that

S = s, we classify the individual into population A if fA(s) > fB(s) and into population B if

fA(s) < fB(s). In this case, fA(s) > fB(s) if s < ℓ k(p + q)/2 and fA(s) < fB(s) if

s > ℓ k(p + q)/2. We ignore the case of s = ℓ k(p + q)/2, which is negligible for large k. By

the assumption in Eq. 49, p + q = 1, and we therefore classify an individual into population

A if S < ℓk/2 and into population B if S > ℓk/2.

We represent the event that an individual is misclassified on the basis of S with the random

indicator variable WS, which equals 1 if and only if an individual is misclassified on the

basis of S and equals 0 otherwise. In population A, the approximate probability of

misclassification is
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P Ws = 1 ∣ M = A ≈ P(S > ℓ k /2 ∣ M = A)

≈ 1 − Φ ℓ k δ

2 pq − sp
2 ,

where Φ is the cumulative distribution function of the standard normal distribution. A

similar calculation for population B gives the same misclassification rate. Thus, in both

populations, the approximate misclassification probability obtained using S is

P Ws = 1 ≈ 1 − Φ ℓ k δ
2 pq − sp

2

= 1 − Φ ℓ k q − p
2 pq − sp

2 .
(55)

As k increases, with p, q, and sp
2 held constant, the argument to the cumulative distribution

function in Eq. 55 approaches infinity, and the value of the cumulative distribution function

approaches 1. Thus, as the number of loci increases, the misclassification probability

obtained when using the genotypic statistic S, P(WS = 1), approaches 0.

6.2 Trait-Based Classification

Next we consider the approximate misclassification rate obtained on the basis of an

individual’s trait value. We represent the event that an individual is misclassified on the basis

of T with the random indicator variable WT, which equals 1 if an individual is misclassified

on the basis of its trait value and equals 0 otherwise. Using an argument similar to the one

used to justify Eq. 55 (detailed in Appendix 4), the approximate trait-based misclassification

rate, conditional on X1, …, Xk, is

P WT = 1 ∣ X1, …, Xk = x1, …, xk

≈ 1 − Φ
ℓ ∑i = 1

k δiui

2 k pq − sp
2 ,

(56)

where Φ is the cumulative distribution function of the standard normal distribution.

To understand how the misclassification rate is expected to behave across different labelings

of the loci, we consider the expectation of the normal approximation of the misclassification

rate obtained using the trait value T, P(WT = 1). Removing the condition on the allelic

labeling in Eq. 56 and rearranging gives
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1 − P WT = 1 ≈ Φ
ℓ ∑i = 1

k δiUi

2 k pq − sp
2 ,

where Ui is as defined in Eq. 18. Taking the expectation of both sides gives

1 − E P WT = 1 ≈ E Φ
ℓ ∑i = 1

k δiUi

2 k pq − sp
2 .

Noticing that Φ is concave for positive values of its argument gives, by Jensen’s inequality,

E Φ
ℓ ∑i = 1

k δiUi

2 k pq − sp
2 ≤ Φ

ℓE ∑i = 1
k δiUi

2 k pq − sp
2 .

Because ∑i = 1
k δiUi = ∑i = 1

k δiUi
2 1 2

, and because the square root is a concave function,

Jensen’s inequality gives

E ∑
i = 1

k
δiUi = E ∑

i = 1

k
δiUi

2
≤ E ∑

i = 1

k
δiUi

2
.

Then

Φ
ℓE ∑i = 1

k δiUi

2 k pq − sp
2 ≤ Φ

ℓ E ∑i = 1
k δiUi

2

2 k pq − sp
2 .

Because E ∑i = 1
k δiUi

2 = kδ2 (Eq. 32),

Φ
ℓE ∑i = 1

k δiUi
2

2 k pq − sp
2 = Φ ℓδ2

2 pq − sp
2 = Φ

ℓ δ2 + sδ
2

2 pq − sp
2 .

We then have an approximate lower bound on the expected probability of misclassification

on the basis of T:

E P WT = 1 ≈ 1 − E Φ
ℓ ∑i = 1

k δiUi

2 k pq − sp
2 ≥ 1 − Φ

ℓ δ2 + sδ
2

2 pq − sp
2 . (57)
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If sδ
2 = 0, then Eq. 57 produces the same result as Eq. 55 with k = 1. The expectation of the

approximate misclassification probability on the basis of the trait is therefore, if sδ
2 = 0,

greater than or equal to the approximate misclassification probability obtained using a single

locus.

For fixed p, q, and sp
2, as k increases, the argument to the cumulative distribution function in

Eq. 57 does not approach infinity. The value of the cumulative distribution function

approaches an asymptotic value obtained as the increasingly many loci converge on large-k

values of sδ
2 and sp

2. Thus, as the number of loci considered increases, the misclassification

probability obtained when using the trait value T, P(WT = 1) does not approach 0.

7. Discussion

We have extended a model of multilocus allele frequency differences and polygenic trait

differences between groups to accommodate more general allele-frequency distributions and

arbitrary ploidy. Our results recapitulate our original conclusion (Edge and Rosenberg

2015): a single neutral trait provides approximately the same amount of information about

population membership as does a single neutral genetic locus. This general claim is reflected

in three specific ways of asking about the relative magnitude of population-membership

information in genotypes and in phenotypes: using the standardized trait difference between

groups (DT, Eq. 37), using the between-group variance in the trait (ρT
2  and DST, Eqs. 45, 47),

and using the misclassification rate obtained when attempting to classify individuals into

groups by their trait values (P(WT = 1), Eq. 57). We also provide two main updates to our

previous work. First, under our model, within-population variation in allele frequency across

loci tends to increase the degree of expected difference between groups on a polygenic trait

(Eq. 36). Second, the degree of information about population membership is greater for a

diploid (or polyploid) than for a haploid locus (Figure 3), and it is also correspondingly

greater for a trait in a diploid (or polyploid) organism than in a haploid (Eq. 37).

What accounts for the difference between the ancestry information of multiple genetic loci

and that of a trait governed by those same loci? When examining multiple genetic loci,

information about population membership can be cumulated from multiple sites—for

example, by counting in an individual the alleles that are more common in population A than

in population B. In contrast, although an individual’s trait value implicitly encodes

information about its genotype at many loci, random genetic drift prevents the trait from

accumulating information about population membership. In our model, for every locus at

which the allele at higher frequency in population A is associated with larger trait values,

there is likely to be another locus at which the “A-like” allele is associated with smaller trait

values. The cumulative effect of this locus-by-locus shuffling of the choice of population

associated with the higher trait value is that a single neutral trait is, in expectation,

approximately as informative about population membership as a single neutral locus.
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7.1 Models of Genotypic and Phenotypic Differentiation

Our results accord with those of previous efforts to address similar questions with different

models (Felsenstein 1973, 1986; Rogers and Harpending 1983; Lande 1992; Spitze 1993;

Lynch and Spitze 1994; Whitlock 1999; Berg and Coop 2014), which have repeatedly found

that group or population differences in neutral, completely heritable traits mirror neutral

genetic differentiation. Previous examinations of trait differentiation have often proceeded

by relating assumptions about quantitative traits to models of evolutionary change in allele

frequencies, such as a Wright–Fisher model (Felsenstein 1973), an island migration model

(Lande 1992), or a coalescent framework (Whitlock 1999). The use of such evolutionary

models can suggest connections with other areas of evolutionary genetics and can also

provide insights with considerable generality; for example, Whitlock’s (1999) results hold

for coalescent models with arbitrary population structure.

In contrast with some previous models of phenotypic diversity, our models here and in our

previous work (Edge and Rosenberg 2015) are more similar to the genetic classification

models of Risch et al. (2002), Edwards (2003), and Tal (2012) in that we directly consider

allele frequencies, using simple probabilistic arguments and minimal evolutionary

assumptions. This approach complements earlier evolutionary work on the relationship of

genetic and phenotypic differentiation in at least two ways. First, our model allows for

computations with quantities that are of interest in epidemiological and biomedical studies

but that do not necessarily arise naturally under evolutionary models, such as Cohen’s d

(equal to our DT for a completely heritable trait) and the effect size r2 (equal to our ρT
2  for a

completely heritable trait). Second, the fact that our model makes only minimal evolutionary

assumptions shows that similar results obtained under evolutionary models are robust in that

they are also produced via a substantially different modeling approach.

7.2 Interpreting Group Differences in Phenotype

How can this work aid in the interpretation of phenotypic differences between human

groups? Consider health outcomes, an important set of phenotypes for which genetic and

phenotypic differentiation across populations have been of interest.

Among people in the United States, for example, well-established differences exist between

socially defined racial groups in the incidence of many health conditions, including heart

disease (e.g., Lloyd-Jones et al. 2010), various cancers (e.g., Ward et al. 2004; Siegel et al.

2013), and diabetes (e.g., LaVeist et al. 2009), with African Americans having worse health

outcomes than European Americans across many domains (reviewed in Dressler et al. 2005;

Adler and Rehkopf 2008). Such phenotypic differences between pairs of groups arise from a

combination of interacting factors, which can be viewed as modifications of a baseline

prediction made on the basis of neutral genetic differences. Evolutionary genetics can then

contribute to understanding group differences in health outcomes by providing models that

predict the degree to which phenotypic differences between human groups are likely to be

based in neutral genetic differences. Such models do not necessarily explain the source of

any particular phenotypic difference, but they do provide an idea of what patterns of

difference are expected.
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Using population-genetic models to build intuition about phenotypic differences between

human groups does not require that group classifications are reducible to, caused by, or

primarily based in genetic differences between populations. Rather, population-genetic

models of neutral genetic variation are applicable to sets of groups that are correlated with

some degree of genetic population structure and that thus distinguish groups that differ in

allele frequency at sites across the genome. Although the relationship between population-

genetic groupings and socially defined groupings is complex (e.g., Kittles and Weiss 2003;

Bamshad et al. 2004; Kitcher 2007; Hunley et al. 2016), we can gain some intuition about

the possible sources of a group difference in phenotype for socially defined groups by

comparing its size to the associated degree of between-group differentiation at a typical

genetic locus.

Two possible causes of group phenotypic differences that are larger or smaller than the

degree of between-group differentiation at a typical selectively neutral locus are natural

selection and environmental difference. If a trait has been under selection in two populations

in a manner that leads to divergence—for example, if the trait is advantageous in one

population and disadvantageous or neutral in the other—then the between-group difference

on the trait will typically exceed the average between-group genetic difference. An example

relevant to health differences between socially defined racial groups is skin pigmentation:

lighter skin has been positively selected among populations at higher latitudes (Jablonski

and Chaplin 2000; Relethford 2002; Berg and Coop 2014), but it is also a risk factor for skin

cancer (Lin and Fisher 2007). In turn, European Americans, most of whose recent ancestors

generally lived at high latitude, have substantially higher rates of skin cancer than do African

Americans (Halder and Bridgeman-Shah 1995), a larger fraction of whose recent ancestors

generally lived at lower latitudes. In contrast, many other health-related traits are likely

associated with similar reproductive fitness wherever they occur. Such conditions would be

expected to experience convergent selection, which would lead to smaller between-group

trait differences than might be predicted from neutral genetic diversity. Thus, one

explanation for larger-than-expected phenotypic differences among groups is divergent

selection, and one explanation for smaller-than-expected phenotypic differences among

groups is convergent selection. This reasoning is the basis for the use of comparisons

between QST and FST to test hypotheses about phenotypic evolution, a productive approach

for model organisms that can be raised in a “common garden” situation (Whitlock 2008;

Leinonen et al. 2013).

In humans, assessing whether selection has magnified health differences beyond the neutral

prediction is difficult. In some specific cases, divergent selection is regarded as an important

driver of group difference in disease burden—including, for example, sickle-cell disease,

which occurs at higher rates in malarial regions of Africa and the Mediterranean (e.g., Piel et

al. 2010). In many other cases of phenotypic difference, hypotheses of divergent selection—

sometimes paired with gene–environment interaction—have also been proposed (Knowler et

al. 1983; Meindl 1987; Zlotogora et al. 1988; Wilson and Grim 1991; Bindon and Baker

1997). Many such hypotheses have been criticized individually (Curtin 1992; Risch et al.

2003), and concern has been raised that selective explanations for differences in health

outcomes often assume a degree of endurance and importance unwarranted by the evidence

(Kaufman and Hall 2003). As new cases connecting selection pressures to molecular
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evidence of adaptation emerge (e.g., Fumagalli et al. 2015), the empirical basis for assessing

the role of divergent selection in explaining differences in health outcomes will expand.

Much recent discussion has focused on an alternative approach to examining worldwide

consequences of selection, considering demographic factors that influence the strength of

selection against deleterious mutations in different populations (Lohmueller 2014; Henn et

al. 2015). Recent studies have not found pronounced difference between groups of primarily

European and African descent in the overall frequency of putatively deleterious alleles (Fu et

al. 2014; Simons et al. 2014; Do et al. 2015), but populations differ in how these alleles are

distributed among individuals, with Europeans carrying more genotypes homozygous for

putatively deleterious alleles compared with Africans (Lohmueller et al. 2008; Fu et al.

2014; Do et al. 2015). Though these studies do not identify differences between populations

in the influence of experienced selective pressures, their results suggest that a systematic

difference across populations in the outcomes of selection on disease phenotypes, if it exists

at all, would likely tilt toward a greater disease burden in non-Africans.

Finally, environmental differences between groups are important sources of between-group

trait differences. Environmental differences and associated differences in the effect of gene–

environment interactions can act in concert with or in opposition to any genetic differences

that influence a trait, leading to between-group trait differences that are larger or smaller

than would be expected on the basis of neutral genetic differences alone (Pujol et al. 2008).

In the United States, the environments of people of different socially defined races differ in

myriad factors that could contribute to differences in health outcomes (Williams and Jackson

2005), including socioeconomic status (Adler and Newman 2002), education (Non et al.

2012), residential segregation (Williams and Collins 2001), discrimination (Williams and

Mohammed 2009), targeting by the criminal justice system (Iguchi et al. 2005), access to

medical care (Mayberry et al. 2000), and doctor–patient communication (Ashton et al.

2003).

We can examine an environmental hypothesis about group differences in health outcomes in

relation to the predicted pattern of differences across outcomes for our neutral model of two

groups. Under the neutral model, each group has an equal chance of having a larger trait

value for each trait. Thus, each population would have a larger mean value for roughly half

the traits on which the groups differed, with each trait independent if there are no genetic

correlations. An environmental explanation of differences in health outcomes might hold

that social differences, such as differences in access to health care, are likely to cause a

pattern in which differences between groups run in the same direction across many diseases

and causes of mortality. Under this reasoning, the fact that African Americans suffer more

than do European Americans from a wide variety of diseases is more consistent with

environmental sources of phenotypic difference than with a neutral-genetic explanation. As

an example, Wong et al. (2002) tabulated racial differences in causes of death in 36

categories over a 9-year period. After adjusting for age, sex, and years of education, they

estimated that black Americans lost more life years than white Americans on average in 28

of those categories. Informally, assuming under our neutral model that no genetic correlation

exists between phenotypic outcomes and that for each outcome the larger value has equal

probability of occurring in either group, the binomial probability that one population would
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have a larger trait value than the other on at least 28 of 36 independent phenotypes is only

0.001. A single systematic environmental effect that simultaneously inflates many

nongenetic risk factors in African Americans, on the other hand, can provide a simple

explanation for such skewed outcomes.

7.3 Conclusions

Our model provides a general framework for describing the relevance of single-locus genetic

diversity partitioning for predictions about the sources of phenotypic differences between

groups. For neutral, heritable traits, group differences in phenotype will be random in

direction and will reflect the degree of genetic difference at a single locus—modest in size

for humans, but likely not zero—regardless of how many loci influence the trait. Such

neutral differences are a baseline on top of which selection and environmental influences act

(Figure 6). In the case of health-related differences between socially defined races in the

United States, the occurrence of genetic differentiation as measured by FST suggests that

neutral genetic differences are likely to exist for many heritable health outcomes that are not

under selection. Such genetically based differences may run in the opposite direction of the

apparent phenotypic difference between groups, and typical values of human FST suggest

that they will likely be modest in size on average. Nonetheless, their existence supports the

view that genetic research designs that capitalize on group differences (e.g., Winkler et al.

2010; Zaitlen et al. 2014) can be informative about genetic architecture or the genetic

variants that influence phenotypes (Rosenberg et al. 2010; Teo et al. 2010). At the same

time, any patterns of difference in which one group suffers more than others from the

majority of many genetically independent diseases are unlikely to be explained by neutral

genetic variation. For humans, our model supports the view that coordinated group

differences across a preponderance of independent health-related traits suggest an important

role for systematic differences in environmental risk factors.
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Appendix 1:: FSTk and FST(ℓ)k

In this appendix, we derive some results about the relationship between FST
k  (Eq. 14), which

summarizes the information about population membership available in one copy of a typical

locus chosen from within a set of k loci, and FST(ℓ)
k  (Eq. 16), which summarizes the

corresponding population membership information available in ℓ independent copies of a

typical locus chosen from within the set of k loci.

For convenience, define v as

v = 2 p(1 − p) − sp
2 + q(1 − q) − sq

2 , (A1.1)

where p, q, sp
2, and sq

2 are as defined in Eqs. 2 and 3. Then by Eq. 14,
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FST
k = δ2

v + δ2 , (A1.2)

and by Eq. 16,

FST(ℓ)
k = ℓ δ2

v + ℓ δ2 , (A1.3)

where ℓ is the number of copies of the locus being considered and δ2 is defined in Eq. 10.

Because v, δ2, and ℓ are all nonnegative, FST
k ∈ [0, 1] and FST(ℓ)

k ∈ [0, 1]. Equations A1.2 and

A1.3 also imply that FST
k = 0 if and only if FST(ℓ)

k = 0.

By Eqs. 14 and 16, for FST(ℓ)
k > 0,

FsT
k

FST(ℓ)
k =

δ2

v + δ2

ℓ δ2

v + ℓ δ2

= ℓ δ2 + v

ℓ v + δ2 .

Noting that

1 − FST
k = v

v + δ2,

we then have, for FST(ℓ)
k > 0,

FST
k

FST(ℓ)
k = δ2

ν + δ2 + v

ℓ v + δ2

= FST
k +

1 − FST
k

ℓ =
1 + ( ℓ − 1)FST

k

ℓ .

Consequently, for FST(ℓ)
k > 0,

FsT(ℓ)
k

FST
k = ℓ

1 + ( ℓ − 1)FST
k . (A1.4)

Because FST
k ∈ [0, 1] and FST

k = 0 if FST(ℓ)
k = 0, Eq. A1.4 implies that

FST(ℓ)
k ∈ FST

k , ℓ FST
k ,
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with FST
k = FST(ℓ)

k  if ℓ =1 or if either FST
k = 1 or FST

k = 0, but with lim
FST

k 0
FST(ℓ)

k = ℓ FST
k .

In other words, if ℓ > 1, for very small but nonzero FST
k , FST(ℓ)

k ≈ ℓ FST
k , but for FST

k  near 1,

FST(ℓ)
k ≈ FST ·

k  The relationship between FST
k  and FST(ℓ)

k  is plotted in Figure 3.

Appendix 2:: The Fourth Moment of ∑i=1kδiUi

In this appendix, we show that the fourth moment of ∑i = 1
k δiUi is equal to the expression in

Eq. 33.

By the independence of the Ui and Eqs. 29 and 30,

E ∑
i = 1

k
δiUi

4

= E ∑
i = 1

k
δi

4Ui
4 + 3 ∑

i = 1

k
∑
j ≠ i

δi
2δ j

2Ui
2U j

2

= ∑
i = 1

k
δi

4 + 3 ∑
i = 1

k
∑
j ≠ i

δi
2δ j

2 .

(A2.1)

To simplify the sum in Eq. A2.1, notice that ∑ j ≠ iδ j
2 = kδ2 − δi

2, so

∑
i = 1

k
∑
j ≠ i

δi
2δ j

2

= δ1
2 kδ2 − δ1

2 + δ2
2 kδ2 − δ2

2 + … + δk
2 kδ2 − δk

2

= kδ2 ∑
i = 1

k
δi

2 − ∑
i = 1

k
δi

4 = k2δ22
− kδ4,

(A2.2)

where δ4 is as defined in Eq. 11. Plugging the expression for ∑i = 1
k Σ j ≠ iδi

2δ j
2 from Eq. A2.2

into Eq. A2.1 gives

E ∑
i = 1

k
δiUi

4
= 3k2δ22

− 2kδ4

= 3k2δ22
− 2k δ22

+ s
δ2
2 ,

(A2.3)

which proves the statement in Eq. 33.

Appendix 3:: Allele Frequencies in a Drift Model

In this appendix, we show that the assumptions in Eqs. 49 and 51 are the expectations of

allele frequencies under a population-genetic model in which the two populations experience
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equal degrees of drift since a recent divergence. The model we use for drift is similar to

some models used in previous work (Nicholson et al. 2002; Falush et al. 2003). Note that,

although the allele frequencies and pi and qi are treated as fixed quantities in the main text,

they are treated as random variables in this appendix.

A.3.1 Drift Model

Let π1, π2, …, πk, represent the frequencies of one of two alleles at each of k loci in a

predivergence population. The πi may be outcomes of a random process with arbitrary

distribution. After a divergence event, the predivergence population splits into two

populations—populations A and B—that undergo drift. The amount of drift at each locus is

represented by a set of continuous random variables, αA1, αA2, …, αAk for population A

and αB1, αB2, …, αBk for population B. For all i, conditional on πi, the αAi and αBi are

independent, and E(αAi) = E(αBi) = 0. Further, if the two subpopulations have experienced

equal amounts of drift, then conditional on πi, the αAi and αBi are identically distributed.

The postdrift allele frequencies in population A are π1 + αA1, π2 + αA2, …, πk + αAk, and

in population B they are π1 + αB1, π2 + αB2, …, πk + αBk.

At each locus, define the 1 allele as the allele that is more frequent in population B than in

population A. If the allele frequencies are the same in both populations at a locus, then the 1

allele at that locus is chosen randomly, with probability ½ for each allele. The frequency of

the 1 allele at locus i is pi in population A and qi in population B.

A.3.2 Proposition 1

Proposition 1:

If populations A and B have experienced equal amounts of drift since divergence, then E(pi)

+ E(qi) = 1.

Proof:

Under the drift model outlined above,

i. if αAi < αBi, then pi = πi + αAi and qi = πi + αBi;

ii. if αAi = αBi, then pi = qi = τi, where τi is either πi + αAi or 1 − πi − αAi with

probability ½ of each possibility; and

iii. if αAi > αBi, then pi = 1 − πi − αAi and qi = 1 − πi − αBi.

If the two subpopulations have experienced equal amounts of drift since divergence, then

conditional on πi, the drift variables αAi and αBi are independent and identically distributed.

Thus, P(αAi < αBi) = P(αAi > αBi), and therefore

P pi = πi + αAi = P pi = 1 − πi − αAi = 1 2 .

Conditional on πi = w, we have
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E pi ∣ πi = w = 1 2 w + E min αAi, αBi ∣ πi = w + 1 2 1 − w − E max αAi, αBi ∣ πi = w .

Similarly,

E qi ∣ πi = w = 1 2 w + E max αAi, αBi ∣ πi = w + 1 2 1 − w − E min αAi, αBi ∣ πi = w .

And so, conditional on πi = w,

E pi + qi ∣ πi = w = 1 2 w + E min αAi, αBi ∣ πi = w

+ 1 2 1 − w − E max αAi, αBi ∣ πi = w

+ 1 2 w + E max αAi, αBi ∣ πi = w

+ 1 2 1 − w − E min αAi, αBi ∣ πi = w

= 1 .

Because E(pi + qi|πi = w) = 1 for all w, the unconditional expectation is

E pi + qi = Eπi
E pi + qi ∣ πi = w = 1.

This completes the proof of Proposition 1.

Thus, taking the mean across loci, E(q) = 1 − E(p), and the assumption in Eq. 49

characterizes the expectations of allele frequencies under the model of equal drift since a

recent divergence.

A.3.3 Proposition 2

Proposition 2:

If populations A and B have experienced equal amounts of drift since divergence, then

E sp
2 = E sq

2 .

Proof:

Define a random indicator variable Gi with the property

Gi = 0 pi = πi + αAi,
Gi = 1 pi = 1 − πi − αAi .

This property implies that

Gi = 0 pi = πi + min αAi, αBi ,
Gi = 1 pi = 1 − πi − max αAi, αBi ,
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because pi ≤ qi. By the law of total variance,

Var pi ∣ πi = w = VarGi
E pi ∣ πi = w, Gi = g + EGi

Var pi ∣ πi = w, Gi = g .

Under the assumption of equal drift since divergence, P(Gi = 0) = P(Gi = 1) = ½. Thus,

Var(pi|πi = w) is equal to the sum of

VarGi
E pi ∣ πi = w, Gi = g

= 1 2 E pi ∣ πi = w, Gi = 0 − 1 2 E pi ∣ πi = w, Gi = 0 +E pi ∣ πi = w, Gi = 1 2

+ 1 2 E pi ∣ πi = w, Gi = 1 − 1 2 E pi ∣ πi = w, Gi = 0 +E pi ∣ πi = w, Gi = 1 2

= 1 4 E pi ∣ πi = w, Gi = 0 − E pi ∣ πi = w, Gi = 1 2

= 1 4 2w − 1 + E min αAi, αBi ∣ πi = w +E max αAi, αBi ∣ πi = w 2

and

EGi
Var pi ∣ πi = w, Gi = g

= 1 2 Var pi ∣ πi = w, Gi = 0 + Var pi ∣ πi = w, Gi = 1

= 1 2 Var min αAi, αBi ∣ πi = w

+Var max αAi, αBi ∣ πi = w .

A parallel calculation for qi reveals that Var(qi| πi = w) is equal to the sum of two equivalent

terms, meaning that for all i, Var(pi| πi = w) = Var(qi| πi = w). Because this claim holds for

all i and because πi is by definition the same for populations A and B,

Var pi = Var qi .

Finally, by Eq. 3, sp
2 is the biased sample variance of the pi and sp

2 is the biased sample

variance of the qi. Applying Bessel’s correction to the biased sample variance, the

expectations of sp
2 and sq

2 under the drift model are, for k loci,

E sp
2 = k − 1

k Var pi ,

E sq
2 = k − 1

k Var qi ,

and because Var(pi) = Var(qi),
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E sp
2 = E sq

2 .

Thus, the assumption in Eq. 51 represents the expectation for properties of the variance of

allele frequencies across loci under a model of equal drift since a recent divergence. This

completes the proof of Proposition 2.

Appendix 4:: The Approximate Trait-Based Misclassification Rate,

Conditional on the Labeling of the Alleles

In this appendix, we justify Eq. 56 using an argument similar to the one used to justify Eq.

55. We assume the conditions that apply in Section 6, stated in Eqs. 49 and 51.

WT is an indicator variable that equals 1 if an individual is misclassified on the basis of its

value for T. Conditional on the allelic labels X1, …, Xk, T has a Poisson binomial

distribution (see Section 4.1), which, for large k, is well approximated by a normal

distribution (Deheuvels et al. 1989, Theorem 1.1). By the conditional expectations and

variances in Eqs. 19, 22, and 23 and the assumptions in Eqs. 49 and 51, the large-k
distributions of T in the two populations are approximately

T ∣ X1, …, Xk = x1, …, xk , M = A

Normal ℓ ∑
i: xi = 1

pi + ∑
i: xi = 0

1 − pi) , ℓ k pq − sp
2 ,

T ∣ X1, …, Xk = x1, …, xk , M = B

Normal ℓ ∑
i: xi = 1

qi + ∑
i: xi = 0

1 − qi , ℓ k pq − sp
2 , 

conditional on the labeling of the alleles, X1, …, Xk.

Denoting the normal density that approximates the distribution of T in population A by

fA.T(t) and the corresponding normal density for population B by fB.T(t), then after

observing that T = t, we classify the individual into population A if fA.T(t) > fB.T(t) and into

population B if fA.T(t) < fB.T(t). Because the variances of the two limiting normal

distributions are equal, the relationship of the densities depends only on whether the

observed trait value t is closer to its expectation in population A or population B. That is,

defining

μA . T = E T ∣ X1, …, Xk = x1, …, xk , M = A ,
μB . T = E T ∣ X1, …, Xk = x1, …, xk , M = B ,
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we have

f A . T(t) > f B . T(t) t − μA . T < t − μB . T ,
f A . T(t) < f B . T(t) t − μA . T > t − μB . T .

Consider an individual drawn from population A, who will be misclassified if fA.T(t) <
fB.T(t). If μA.T < μB.T, then

f A . T(t) < f B . T(t) t > μA . T + μB . T /2,

whereas if μA.T > μB.T, then

f A . T(t) < f B . T(t) t < μA . T + μB . T /2.

(We defer for a moment the case μA.T = μB.T.) Thus, the approximate probability of

misclassifying an individual from population A on the basis of its trait value is, if μA.T <

μB.T,

P WT = 1 ∣ X1, …, Xk = x1, …, xk , μA . T < μB . T, M = A

≈ P T >
μA . T + μB . T

2

≈ 1 − Φ

μA . T + μB . T
2 − μA . T

ℓ k pq − sp
2

= 1 − Φ
μB . T − μA . T

2 ℓ k pq − sp
2

= 1 − Φ
ℓ ∑i = 1

k δiui

2 k pq − sp
2 ,

(A4.1)

where the last step follows from Eq. 20. Similarly, if μA.T > μB.T, then

Edge and Rosenberg Page 33

Hum Biol. Author manuscript; available in PMC 2021 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



P WT = 1 ∣ X1, …, Xk = x1, …, xk , μA . T > μB . T, M = A

≈ P T <
μA . T + μB . T

2

≈ Φ
μA . T −

μA . T + μB . T
2

ℓ k pq − sp
2

= 1 − Φ
μB . T − μA . T

2 ℓ k pq − sp
2

= 1 − Φ
ℓ ∑i = 1

k δiui

2 k pq − sp
2 .

(A4.2)

The expressions in Eqs. A4.1 and A4.2 are equal. Further, the expression they provide also

applies to the case of μA.T = μB.T. If μA.T = μB.T, then P(WT = 1) = ½ because the trait has

the same distribution in each population. The expression in Eqs. A4.1 and A4.2 applies

because if μA.T = μB.T, then by Eq. 20, ∑i = 1
k δiui = 0, and Φ(0) = ½ as required. A similar

set of calculations for population B gives the same expression, so we remove the condition

on population membership, arriving at the statement in Eq. 56:

P WT = 1 ∣ X1, …, Xk = x1, …, xk

≈ 1 − Φ
ℓ ∑i = 1

k δiui

2 k pq − sp
2 .
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FIGURE 1.
A conceptual map of this article. For boxes that correspond to specific subsections of the

article, the subsection number is displayed in bold. Arrows indicate conceptual dependence,

with blue arrows indicating that a subsection cites mathematical results obtained in another

subsection. Motivating questions are in orange, mathematical machinery is in blue,

simulations are in red, mathematical answers are in green, and interpretation of results is in

purple.
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FIGURE 2.
A schematic of our model for generating a quantitative trait. Five loci are shown for a

diploid individual. The Lij are the individual’s alleles, which, conditional on population

membership, are independent Bernoulli trials with probability at locus i equal either to pi (if

the individual is drawn from population A) or to qi (if the individual is drawn from

population B). At each locus, the frequency of the 1 allele is at least as large in population B

as it is in population A. The Xi are labels indicating which allele at locus i leads to larger

values of T; they are independent Bernoulli trials, each with probability ½. If an individual’s

jth allele at locus i (Lij) matches the allele that leads to larger values of the trait for that locus

(Xi), then Vij takes the value “+”; otherwise, Vij takes the value “−”. T is equal to the sum of

+ alleles carried by the individual. In the case pictured, T = 6.
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FIGURE 3.

The relationship between FST
k  (Eq. 14), which partitions the variance of allelic indicator

variables representing a single copy of each locus, and FST(ℓ)
k  (Eq. 16), which partitions the

variance of sums of ℓ allelic indicator variables at each locus. Thus, for haploids (ℓ = 1),

FST(ℓ)
k = FST

k . For higher ploidy, FST(ℓ)
k ∈ FST

k , ℓ FST
k , with FST(ℓ)

k = FST
k  if and only if

FST
k = 0 or   FST

k = 1 (see Appendix 1). The plot is obtained from Eq. A1.4.
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FIGURE 4.
A schematic of the drift model used to simulate allele frequencies (see Section 3.2). Derived

allele frequencies in an “ancestral” population are drawn according to the neutral site

frequency spectrum. Following a split, the two subpopulations drift independently, with the

drift represented by a truncated normal variate with expectation 0. After drift, for each locus

i, the allele with greater frequency in population B than in population A is identified, its

frequency in population A is labeled pi, and its frequency in population B is labeled qi.
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FIGURE 5.
The behavior of expected measures of trait differentiation as the number of randomly

selected loci influencing the trait increases. We simulated allele frequencies at 106 neutral

loci for a pair of populations that have undergone independent drift since divergence from an

ancestral population, with FST ≈ 0.1 (see Section 3.2). For each k ∈ {1, …, 100}, we

selected 1,000 size-k random subsets of the 106 pairs of simulated allele frequencies and

computed three quantities for each subset, assuming diploidy (ℓ = 2). (A) The expected

squared standardized trait difference between groups, E DT
2  (Eq. 36). (B) The variance of

the squared standardized trait difference between groups, Var DT
2  (Eq. 39). (C) The upper

bound on (and approximate value of) the expected proportion of variance in a neutral trait

attributable to allele-frequency differences between groups, E ρT
2  (Eqs. 43, 44). For each

quantity, box plots of the 1,000 values for each k are shown. Boxes represent the middle
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50% of data at each k, and whiskers extend 1.5 times the interquartile range beyond the edge

of the box or to the most extreme observation, whichever is shorter. Outliers beyond 1.5

times the interquartile range from the edge of the box are not shown. For all three quantities,

as k increases, the mean value at k loci (solid line) converges to the value obtained using all

loci (dashed line) because larger random sets of loci more precisely reflect the overall degree

of between-group differentiation than do smaller sets of loci.
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FIGURE 6.
A schematic for thinking about health differences between socially defined racial groups in

the United States. Groups such as African Americans face environmental differences likely

to lead to worse health outcomes across a range of different diseases (red arrows). For health

phenotypes that have been selectively neutral, genetic differences between groups will be

random in direction and comparable in size to genetic differences at a single locus—modest

for humans, but usually not zero, depending on the groups being considered (purple arrows

in traits 1–4). For health phenotypes under convergent selection, such as those that lead to

reduced reproductive success in most or all human environments, genetic differences will be

random in direction and smaller than for neutral phenotypes (purple arrows in traits 5–8).

Some health outcomes, such as skin cancer and sickle-cell disease, differ between groups in

part because of divergent selection. (These differences do not necessarily coincide neatly

with socially relevant racial divisions.) For such phenotypes, the genetic component of a
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group difference in phenotype can be large (purple arrows in traits 9 and 10). Not considered

in this simple diagram are gene–environment interactions, which often are especially

important in cases of divergent selection. For example, in the case of skin cancer, the degree

to which genetic variants that lead to darker skin are protective depends on sun exposure.
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Table 2.

Correspondence between the Main Results in This Article and in Edge and Rosenberg (2015)

Result Equation Number

This Article Edge and Rosenberg
(2015)

E(DT) = 0 due to symmetry around 0 of the distribution of DT. 35 36

Var DT = E DT
2

 does not increase without bound with the number of loci and is equal to DL
2

,

where DL is an analogue of DT for the allelic count at a single locus.

36, 37 37, 38

FST ≈ QST. 45, 47, 48 42, 43

As the number of loci k increases without bound, the genetic misclassification rate approaches 0. 55 5

The expectation of the approximate trait-based misclassification rate is closely related to the genetic
misclassification rate obtained using one locus.

57 47

The main results in this article reduce to the main results in Edge and Rosenberg (2015) under the following assumptions: (a) The allele frequencies

are the same at each locus, meaning that pi = p = p for all i, qi = q = q for all i, δi = δ = q − p for all i, and sp
2 = sq

2 = sδ
2 = 0. (b) The

allele frequencies are symmetric, meaning that q = 1 − p. In conjunction with assumption (a), (b) implies that FST = δ2 = 1 − 4pq. (c) The

organisms are haploid, or in the present article’s notation, ℓ = 1. Assumption (c) implies that QST = ρT
2

 (Eqs. 26–28).
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