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Abstract
Pharmacogenetic (PGx) testing may be particularly beneficial in medically under-
served populations by reducing the number of appointments required to optimize drug 
therapy and increasing the effectiveness of less expensive off-patent drugs. The objec-
tive of this study was to identify patient populations with poor health care access and 
assess prescribing trends for drugs with published PGx testing guidelines. We used 
electronic health record data from 67,753 University of Florida Health patients, geo-
graphic access scores calculated via the 2-step floating catchment area method, and a 
composite measure of socioeconomic status. Comparing the poorest (Q4) and great-
est (Q1) access score quartiles, poor geographic access was significantly associated 
with fewer prescriber encounters (incidence rate ratio [IRR] 0.88, 95% confidence 
interval [CI] 0.86–0.91), fewer total unique drugs (IRR 0.92, 95% CI 0.9–0.95), and 
fewer PGx guideline drugs (IRR 0.94, 95% CI 0.9–0.99). After correcting for number 
of unique drugs, patients in low-access areas were prescribed a greater proportion of 
PGx guideline drugs (IRR 1.08, 95% CI 1.04–1.13). We detected significant interac-
tions between Black race and access score. Compared to Q1, Black patients with 
Q4 access scores were disproportionately affected and had fewer encounters (IRR 
0.76, 95% CI 0.7–0.82) and a higher proportion of PGx drugs (IRR 1.26, 95% CI 
1.13–1.41), creating further disparity. Overall, these results suggest that improved 
geographic access to PGx testing may allow prescribers to make more efficient use 
of limited opportunities to optimize therapy for drugs with PGx testing guidelines.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Drugs with pharmacogenetic (PGx) testing guidelines are often off patent and cheaper 
than newer alternatives. Medically underserved patients may benefit from PGx test-
ing, but little is known about how PGx drugs are currently used in these populations.
WHAT QUESTION DID THIS STUDY ADDRESS?
Are patients with barriers to health care access prescribed more drugs with published 
PGx guidelines?
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INTRODUCTION

Medically underserved patients experience geographic 
and socioeconomic barriers to health care access and are 
among the last to benefit from innovative health technolo-
gies.1 Because of this, innovative technologies have the 
potential to increase disparities in health care quality and 
outcomes, especially if there is greater pre-existing need in 
the populations unable to access them.2 This phenomenon, 
known as the inverse equity hypothesis, will continue to 
occur unless specific barriers to access are overcome and/
or specific populations are targeted when a new technology 
is implemented.3,4

As more prescribers adopt pharmacogenetic (PGx) test-
ing, there is a chance to reorient research and clinical ob-
jectives to be better aligned with public health priorities.5 
Thus far, use of PGx testing is largely limited to academic 
medical centers, excluding populations that do not live near 
one. In addition, many health insurers are reluctant to pay for 
the tests, excluding patients who are unwilling or unable to 
incur out-of-pocket costs.6–8 However, PGx testing may be 
particularly beneficial in medically underserved populations 
by reducing the number of appointments required to optimize 
drug therapy and increasing the effectiveness of less expen-
sive off-patent drugs—the type most often with PGx guide-
lines available.9

To implement PGx testing in underserved populations, 
it is necessary to identify them. The Health Resources 
and Services Administration designates healthcare short-
age areas within the United States. Medically underserved 
areas (MUAs) and medically underserved populations 
(MUPs) designate geographic areas or specific popu-
lations within an area, respectively, as lacking access to 
primary care services. Health professional shortage areas 
(HPSAs) designate areas with health workforce shortages. 
Designation criteria account for both spatial (i.e., provider 
to population ratio in a defined geographic area) and non-
spatial variables (i.e., poverty levels) that affect health care 
access. MUA/MUP and HPSA designations are given to 
areas ranging in size from groups of counties to groups of 

urban census tracts and are used to determine eligibility 
for federal programs that fund health centers and support 
health workforce expansion.10–12 A major limitation of 
MUA/MUP and HPSA designations is that they are applied 
to bounded geographic areas. Within large areas, such as 
counties or groups of counties, there can be considerable 
variation in socioeconomic status, population density, the 
location of health care providers relative to the population, 
and transportation infrastructure. Furthermore, only the 
healthcare providers within the bounded area are counted 
as accessible to the resident population with providers in 
neighboring communities counted as inaccessible. This 
may not reflect actual utilization patterns, especially in 
smaller geographic areas, such as census tracts.13

The two-step floating catchment area (2SFCA) method 
was developed to address the limitations imposed by bounded 
areas. This approach uses geographic information system 
software to calculate drive times between patient popula-
tion centers and primary care provider locations and identify 
pairs that are within a threshold drive time (typically 30 min) 
from one another. From there, one can calculate a measure 
of potential spatial accessibility by determining the ratio of 
the providers accessible to the population to the number of 
patients potentially served by the accessible providers. An 
advantage to this approach is that data can be aggregated into 
more granular geographic units, such as census tracts or ZIP 
code tabulation areas (ZCTAs), and thus can better account 
for variation in factors affecting health care accessibility. A 
second advantage is that although geographic areas can be 
small, it does not limit accessible providers to those within a 
bordered area.14

The purpose of this study was to evaluate whether pre-
scribing patterns for drugs with available PGx testing guide-
lines differed between medically underserved and served 
patients within the University of Florida Health (UF Health) 
system. To identify underserved patients and assess the rela-
tive contribution of demographic, geographic, and socioeco-
nomic factors, we incorporated a spatial accessibility measure 
calculated via the 2SFCA method in combination with pa-
tient electronic health record (EHR) data and a measure of 

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Patients with poor geographic access, as determined using the two-step floating catch-
ment area method, use a higher proportion of PGx drugs. Additionally, this study may 
serve as a model for the use of geospatial analysis in PGx implementation.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
Improved geographic access to PGx testing may allow prescribers to make more ef-
ficient use of limited opportunities to optimize therapy for drugs with PGx testing 
guidelines.
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area-level socioeconomic status into a generalized linear 
model to predict prescriber encounter count, unique drug 
count, PGx guideline drug count, and the proportion of PGx 
drugs to total unique drugs.

METHODS

Data collection and variable creation

Data were collected from the EHR of UF Health patients 
who were 18 years of age or older, had a home address in 
Florida, and at least one outpatient prescription recorded be-
tween September 1, 2016, and September 1, 2018. These data 
consisted of patient demographics (age, sex, race, abd ethnic-
ity), patient home ZIP codes, drug information (drug name 
and associated RxNorm Concept Unique Identifier [RXCUI] 
codes, route of administration, dose, frequency, and flags for 
ambulatory prescribed and historical drugs), prescriber ser-
vice locations, and International Classification of Disease 
(ICD)-10 codes. De-identified patient and encounter IDs 
were generated by the UF Health Integrated Data Repository 
to facilitate linkage between patient demographics, prescrip-
tion records, diagnosis codes, and encounter histories. This 
work was approved by the University of Florida IRB-01 as 
an exempt retrospective chart review study.

Weighted Charlson Comorbidity Index scores were cal-
culated from patient ICD-10 codes using the comorbidity 
package for R software.15 When a more severe form of a co-
morbidity was present, milder forms were assigned a score 
of 0 to avoid counting the same comorbidity multiple times. 
Raw scores were converted to index scores of 0, 1–2, 3–4, 
and greater than or equal to 5 as described by Charlson.16

In order to standardize drug names, the RxNorm RESTful 
Web API was used to map RXCUI codes to nonproprietary 
names (IN or MIN term types).17 Patients were included in 
analysis only if at least one of the drugs on their medication 
lists mapped to an RxNorm term. Drugs were included if 
flagged as ambulatory prescriptions and excluded if flagged 
as historical medications in the EHR. Vaccines were also 
excluded. For each patient, the number of encounters rep-
resents the unique encounter ID count and includes encoun-
ters where no drugs were prescribed. The number of unique 
drugs is the unique standardized drug name count. Drugs 
were coded as Clinical Pharmacogenetics Implementation 
Consortium (CPIC) guideline drugs, based on CPIC’s genes-
drugs table as of March 2020 (list provided in Table S1).18 
CPIC reviews evidence on drugs affected by genetic vari-
ation and publishes clinical guidelines for the use of PGx 
test results.19,20 Because our goal was to assess current feasi-
bility of implementation in underserved patients, this study 
focused on drugs for which there are published guidelines 
available.

Origin-destination matrix

An origin-destination driving time matrix was generated 
using the Network Analyst extension in ArcGIS Pro and road 
network data from ArcGIS StreetMap Premium 2019. Origin 
locations were derived from patient ZIP codes converted to 
ZCTAs using the Uniform Data System Mapper ZIP code 
to ZCTA crosswalk.21 ZCTA geographic centroids were de-
rived from United States Census Bureau 2010 TIGER/Line 
shapefiles using the Calculate Geometry tool in ArcGIS Pro. 
Population-weighted centroids were calculated using 2010 
Census block group TIGER/Line shapefiles and American 
Community Survey population estimates that were rasterized 
to create a gridded population dataset.22 Using the ArcGIS 
Mean Center tool, the geographic population center was then 
calculated for each ZCTA.23

Providers with practice locations in Florida were iden-
tified using the National Plan and Provider Enumeration 
System (NPPES) database. The provider list was filtered to 
include only physicians with Healthcare Provider Taxonomy 
Codes related to family medicine, internal medicine, or gen-
eral medicine, as well as physician assistants and advanced 
practice nursing providers.24 Practice addresses were geo-
coded using ESRI’s Business Analyst Address Coder soft-
ware. Because inactive providers may be listed in the NPPES 
registry, we filtered our list of National Provider Identifiers 
to include only the providers listed as active in the Florida 
Agency for Health Care Administration’s Provider Master 
List.25 Registration is required for all providers who practice 
in Florida and bill Medicaid and must be revalidated every 
5 years to remain active.26

We completed a secondary analysis to confirm that state-
wide results were consistent with those of the UF Health 
catchment area. We used similar methods as described above, 
but restricted origin and destination locations to those located 
within counties in UF Health’s approximate catchment area: 
Alachua, Baker, Bradford, Citrus, Clay, Columbia, Dixie, 
Duval, Flagler, Gadsden, Gilchrist, Hamilton, Jefferson, 
Lafayette, Leon, Levy, Madison, Marion, Nassau, Putnam, 
St. Johns, Sumter, Suwannee, Taylor, Union, Volusia, and 
Wakulla.

Access score calculation

Geographic access scores were calculated using the 2SFCA 
method.14 We used 30- and 60-min cutoffs for drive times 
from primary care provider locations to define provider 
catchment and ZCTA geographic and population-weighted 
centroids to define patient travel areas. We selected a 30-min 
driving time cutoff because it is commonly used to define pri-
mary care service areas by and because there is precedence 
for it in spatial health care access studies.14,27–29 The 60-min 
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cutoff was included to confirm consistency with 30-min re-
sults and to also account for potentially longer driving times 
for rural patients.30

ZCTA-level population estimates obtained from Census 
Bureau’s American Community Survey 5-year Estimates 
(2013–2017). The basic 2SFCA method uses a binary dis-
crete decay function, where providers within a catchment are 
considered equally accessible.31 First, for each service pro-
vider (j), the populations (k) of the ZCTAs that have centroids 
within the 30-min drive time threshold (do) are aggregated to 
define a provider-to-population ratio (Rj), where Sj represents 
the total number of service providers at a location, and Pk is 
the total population within catchment j.

Next, an access score (Aj) is calculated as the sum of all 
provider to patient ratios (Rj) for providers located within a 
30-min drive time (do) from the population location (i), in 
this case, a ZCTA centroid, are aggregated.

ZCTA-level socioeconomic measure

We used The Robert Graham Center’s Social Deprivation 
Index (SDI) to estimate ZCTA-level socioeconomic status. 
It is a composite score of 7 variables from the 2011–2015 
American Community Survey: percent population less than 
100% of the federal poverty level, percent high school drop-
outs, percent unemployed, percent nonemployed, percent 
living in crowded housing, percent single-parent households, 
percent with no car, percent Black, and percent under age 5 
or age 65 and over.32,33

Statistical methods

Data were fitted to negative binomial models using the 
MASS package for R software.34 In all models, independent 
variables included were age, sex, race, ethnicity, Charlson 
Comorbidity Index, ZCTA SDI score, and ZCTA access 
score. Age was stratified into groups used in the US Census 
Bureau table plus an additional category for patients with ages 
above 89 years in accordance with the Safe Harbor method.35 
The youngest age group was used as the reference level. The 
reference level for Charlson Comorbidity Index was no co-
morbidity with additional groups representing mild, mod-
erate, and severe comorbidity. SDI score and access score 
were both divided into quartiles. For SDI score, quartile 1 
(Q1) included the lowest scores, representing the least social 

deprivation, and for access score, the reference level of Q1 
included the highest scores, representing the greatest geo-
graphic access. We chose this approach so that the reference 
level of Q1 represented the most favorable conditions of low 
social deprivation and high geographic access and Q4 would 
represent the least favorable conditions of high social depri-
vation and low geographic access. Quartile breakpoints are 
provided in Table S2.

PGx guideline drug count was modeled with and without 
adjusting for total unique prescription count. In the adjusted 
model, the log number of total unique drugs was used as an off-
set term. For all models, incidence rate ratios (IRRs) were cal-
culated by exponentiating model coefficients. Exponentiating 
the offset term results in PGx guideline drug count to be mod-
eled as a proportion of PGx drugs to total unique drugs.

All models include interaction terms for Hispanic eth-
nicity with access score and SDI as well as Black race with 
access score and SDI. These variables were tested to assess 
interactions among demographic, geographic, and socioeco-
nomic variables associated with poor health care access.

Models presented in the main text use access scores cal-
culated with geographic centroids and a 30-min drive time 
cutoff as covariates. The primary analysis included ZCTA 
and provider location data from the entire state of Florida. 
Additional analyses were calculated using population-
weighted centroids, a 60-min drive time cutoff, or by limiting 
the analysis to the UF Health catchment area.

RESULTS

Study cohort

The study cohort included total of 67,753 patients (Table 1). 
Most commonly, patients were White (73%), not Hispanic or 
Latino (93%), female (58%), and had a Charlson Comorbidity 
Index score of 0 (53%). Patients living in areas with poor 
geographic access tended to be older, were more likely to be 
White, less likely to be Black, and had more comorbidities. In 
areas with the highest levels of social deprivation, an oppo-
site trend was observed; patients were younger, less likely to 
be White, and more likely to be Black. Charlson Comorbidity 
Index score was similar to that of the full cohort.

Geographic access scores

Access scores were generated using geographic and 
population-weighted centroids and 30- and 60-min drive 
times. The distance between geographic and population-
weighted centroids ranged from 0 to 15.4 km with a median of 
0.62 ± 1.11 km. The largest discrepancies were observed for 
high landmass ZCTAs, such as those abutting the Everglades 

Rj =
Sj
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in South Florida. As expected, geocoded prescriber loca-
tions appeared to cluster around the major population cent-
ers within Florida (Figure  S1). When access scores were 
calculated using a 30-min cutoff for both geographic and 
population-weighted centroids, ZCTAs with higher access 
scores tended to be clustered around larger cities (Figure 1) 
with more diffuse clustering for the 60-min drive time cutoff 
(Figure S2).

Demographic, socioeconomic, and clinical 
associations

Relative to a reference age range of 18–23 years, increased 
age was significantly associated with a greater number of 
prescriber encounters and total unique drug counts in all age 
groups other than 90+ years (Figure 2). After adjusting for 

total unique drugs, all age groups had fewer adjusted PGx 
guideline drugs relative to the reference group (Figure  3). 
Relative to women, men had fewer encounters, fewer unique 
drugs (Figure  2), and fewer adjusted PGx guideline drugs 
(Figure 3).

Medical comorbidity, as described by the Charlson 
Comorbidity Index, was strongly associated with increased 
prescriber encounters and total drug counts (Figure  2). 
However, there was comparatively little association between 
comorbidity and adjusted PGx guideline drugs (Figure 3).

Relative to the first quartile of SDI scores, representing 
the least deprivation, higher SDI scores were associated with 
decreased prescriber encounters (Figure  2a) and fewer ad-
justed PGx guideline drugs (Figure 3).

Lower access scores, representing poorer geographic 
health care access, were associated with fewer prescriber 
encounters and fewer overall unique drug prescriptions 

F I G U R E  1   Florida ZCTA access scores. Florida ZCTA boundaries were mapped using United States Census Bureau 2010 TIGER/Line 
shapefiles and access scores were calculated using ZCTA geographic centroids as origins, geocoded primary care provider locations as destinations, 
and a 30-min drive time cutoff. Yellow shading indicates ZCTAs in greatest access quartile and dark blue indicates ZCTAs in the poorest access 
quartile. ZCTA, ZIP code tabulation area
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F I G U R E  2   Incidence rate ratios (IRRs) for prescriber encounters and total drugs. IRRs and 95% confidence intervals (CIs) were derived from 
regression model covariate coefficients and standard errors for the (a) prescriber encounter and (b) total drug models. Main effects are depicted in 
blue and interaction effects are depicted in green for interaction with Black race or red for interaction with Hispanic or Latino ethnicity. Shaded 
circles indicate p values <0.05 and open circles indicate p values ≥0.05. SDI, social deprivation index



1848  |      DALTON et al.

(Figure 2), and greater adjusted PGx guideline drug counts, 
indicating higher rates of PGx guideline drug prescrib-
ing in low-access populations (Figure 3; Q3 IRR 1.1, 95% 
confidence interval [CI] 1.05–1.15; Q4 IRR 1.08, 95% CI 
1.04–1.13). Asian race was associated with fewer prescriber 
encounters, fewer unique drug prescriptions, and fewer ad-
justed PGx guideline drugs (Figure 2). In preliminary analy-
ses, we did not detect significant interactions between Asian 

race and SDI score or access score and thus did not include 
interaction terms in the final models.

Black race, as a main effect, was not significantly associ-
ated with prescriber encounter counts, but was significantly 
associated with a greater number of unique drugs and fewer 
adjusted PGx guideline drugs. The interaction between Black 
race and SDI was significant in the prescriber encounter and 
total drug models where greater social deprivation was as-
sociated with increased prescriber encounters and a greater 
number of total drugs (Figure  2). The interaction between 
Black race and access score was significant in all models, 
where poorer access score was associated with fewer pre-
scriber encounters, fewer total drugs (Figure 2), and more ad-
justed PGx guideline drugs. Of note, Black patients with the 
lowest access scores were prescribed PGx guideline drugs at 
a 26% higher rate than reference group patients with the best 
access scores (Q4 IRR 1.26, 95% CI 1.13–1.41; Figure  3, 
Table S3).

Hispanic ethnicity, as a main effect, was not significantly 
associated with prescriber encounters, total drugs, or ad-
justed PGx guideline drugs. However, the interaction be-
tween Hispanic ethnicity and access score was significant in 
the prescriber encounters model, where poorer access score 
was associated with fewer prescriber encounters (Figure 2a).

Results were similar for analyses using population-
weighted centroids, a 60-min drive time, and regional anal-
ysis that included only patients and providers within UF 
Health’s approximate catchment area (Figures S3 and S4).

DISCUSSION

This work demonstrates the feasibility of using a combina-
tion of EHR data, geospatial analysis methods, and socio-
economic status indicators to assess the relationship between 
barriers to health care access and prescribing patterns, with 
a specific focus on drugs with published PGx testing guide-
lines. Within a cohort of adult UF Health patients with 
Florida home addresses, we found that residence in a ZCTA 
with access scores indicating poorer geographic health care 
access was significantly associated with fewer prescriber 
encounters and fewer drug prescriptions. Adjusting for the 
decreased overall prescription numbers demonstrated that 
underserved patients are prescribed PGx guideline drugs at a 
significantly higher rate.

Race, but not ethnicity, appeared to compound the dispar-
ities we observed. The interaction between Black race and 
low access score was associated with greater decreases in 
prescriber encounters and total drugs, but much higher pro-
portion of PGx guideline drug prescriptions.

These results suggest that poor geographic access may 
contribute to racial health care disparities and that there is 
some spatial feature that may influence Black patients being 

F I G U R E  3   Incidence rate ratios for PGx drug count adjusted for 
total drug count. Incidence rate ratios and 95% confidence intervals 
(CIs) were derived from regression model covariate coefficients and 
standard errors for the adjusted PGx guideline drug count model. Main 
effects are depicted in blue and interaction effects are depicted in green 
for interaction with Black race or red for interaction with Hispanic 
or Latino ethnicity. Shaded circles indicate p values <0.05 and open 
circles indicate p values ≥0.05. PGx, pharmacogenetic; SDI, social 
deprivation index
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prescribed a higher proportion of PGx guideline drugs rela-
tive to other races. A contributing factor may be structural 
inequality within healthcare systems. For example, a study 
that evaluated disparities in access to trauma care found 
that in Chicago and Los Angeles, Black majority census 
tracts were often in historically Black neighborhoods and 
were more likely to be located in low-access areas that cor-
responded to regions disproportionately affected by trauma 
center closures.36,37 In addition, a recent systematic re-
view showed that racial minorities have higher rates of ad-
verse drug events and medication dosing errors.38 Because 
these geographically underserved patients visit healthcare 
providers less frequently and are prescribed fewer medi-
cations overall, their higher rates of PGx guideline drug 
prescriptions suggest that improved access to PGx testing 
may allow prescribers to make more efficient use of lim-
ited opportunities to optimize therapy for these patients. 
An example where PGx would be particularly impactful is 
treatment for major depressive disorder, where a standard 
trial-and-error approach to prescribing can involve several 
follow-up appointments, which may not accommodate pa-
tients with health care access barriers. These patients also 
tend to have the greatest need; major depressive disorder 
is more prevalent in patients with low socioeconomic sta-
tus and factors such as low income, low education level, 
and unemployment are associated with poor treatment out-
comes.39,40 A recent meta-analysis of studies comparing 
PGx-guided and unguided treatment for major depressive 
disorder determined that guided treatment was associated 
with improved response and remission rates.41 To facili-
tate the use of PGx tests, published guidelines are avail-
able for selective serotonin reuptake inhibitors, which are 
commonly used first-line treatments for major depressive 
disorder, and tricyclic antidepressants, which may be used 
for patients with recurrent depression.42,43

Relative to ZCTAs with SDI scores reflecting the low-
est levels of social deprivation, residence in a ZCTA with 
an SDI score representing high levels of social deprivation 
was associated with fewer prescriber encounters. We ob-
served significant interactions for Black race and SDI score 
for prescriber encounters and total drugs. Of note, these are 
the only interactions for which the direction of the interaction 
effect changed relative to the main effect; Black race and res-
idence in the highest SDI score quartile was associated with 
more prescriber encounters and total drugs. However, SDI 
score differed in that less favorable scores were associated 
with fewer adjusted PGx drugs; furthermore, there was no 
significant interaction between SDI score and either Black 
race or Hispanic ethnicity. As reflected in Table 1, it appears 
that access score and the SDI may be describing different 
populations, which could contribute to differences in effect 
size and direction. Patients living in areas with the worst ac-
cess scores were older, more predominantly White, and had 

more comorbidities, whereas those in areas with the worst 
SDI scores were younger and more predominantly Black. It 
may also be possible that the SDI did not add much addi-
tional information beyond the demographic data available in 
the EHR, consistent with previous work on the use of neigh-
borhood socioeconomic status measures in risk prediction for 
health care utilization and hospitalizations.44

Increasing comorbidity, described using the Charlson 
Comorbidity Index, was associated with greater numbers of 
encounters and unique prescriptions, as would be expected 
for populations requiring care for multiple medical condi-
tions. When PGx guideline drug count was adjusted for total 
drugs, the effect of the Charlson Comorbidity Index score was 
essentially abolished, suggesting that it is closely correlated 
with total drug count. The relationship between comorbidity 
and drug count has been noted previously; for example, the 
comorbidity-polypharmacy score is calculated by finding the 
total count of all known comorbid conditions and associated 
drugs and is used to predict morbidity and mortality in older 
trauma patients.45

An advantage to using ZIP codes is that they can be in-
cluded in a Health Insurance Portability and Accountability 
Act (HIPAA)-compliant limited data set and are thus easier 
to obtain than more granular geographic data.46 However, it 
is important to understand their limitations. ZIP codes are 
defined by the United States Postal Service and boundaries 
may be altered over time to accommodate changes in mail 
delivery routes. This can lead to spatiotemporal mismatches 
where data collected at a variety of timepoints can refer to the 
same ZIP code in name but differ in the geographic area cov-
ered.47,48 ZCTAs were developed by the US Census Bureau 
to allow for more precise linkage with socioeconomic data-
sets using census geography, but because ZIP codes do not 
necessarily share boundaries with ZCTAs, mismatches are 
possible.47 Another challenge is that for origin-destination 
matrix generation, ZCTAs must be represented by a single 
point. This is generally a geographic centroid or population-
weighted centroid. The former is straightforward and objec-
tive to calculate but does not take population density into 
account, whereas the latter is more difficult to calculate 
and sensitive to variation in population data and processing 
methodology but is a better representation of where people 
live within the ZCTA. We did not observe any major differ-
ences between our results generated using geographic versus 
population-weighted centroids. Results presented in the main 
text thus used geographic centroid to improve reproducibility.

Because the NPPES database does not include data on 
whether a provider is actively practicing, there is a risk of 
overestimating provider supply if additional steps are not 
taken to exclude those who are inactive. We used Florida’s 
Provider Master List to limit providers to those who have reg-
istered to bill Medicaid within the past 5 years. If analyzing 
data from a state without a comparable database, a similar 
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approach is to include providers who have claims in the most 
recent Medicare Provider Utilization and Payment Data data-
set.49,50 Although this approach excludes many inactive pro-
viders, it will also exclude those who are active but do not 
bill Medicaid or Medicare. If only Medicare claims are used 
to filter for active providers, there is a risk of excluding those 
who see younger patients.

For access score calculation using the 2SFCA method, 
we chose to use a 30-min driving time threshold for primary 
analyses. We selected this value to be consistent with Federal 
primary medical care service area definitions; for instance, 
a 30-min driving time is used by the Health Resources and 
Services Administration for Health Professional Shortage 
Area designation and the Department of Veteran Affairs 
(VA)to define VA facility catchment areas.28,29 This driving 
time threshold is also consistent with previous health care 
access studies using the 2SFCA method.14,27,51

Limitations of the 30-min value are that it may not ac-
count for providers located further away but within what may 
be an acceptable driving time for some patients and that it 
may exclude those in rural areas.30 Longer driving times can 
address these issues but limit the ability to detect small but 
meaningful high- or low-access areas. In our analysis, re-
sults were roughly similar when a 60-min cutoff was used 
for access score calculation. As shown in Figure 1, we ob-
served a cluster of ZCTAs with favorable access scores in 
the North center of the state. This cluster overlays Alachua 
county and is consistent with the county’s status of having the 
highest concentration of primary care physicians in Florida.52 
Despite this, it is possible that our active provider counts for 
this region are overinflated due to the presence of UF Health 
Shands Hospital, a large teaching hospital. A limitation of 
using the Provider Master List to identify active providers is 
that the 5-year window may capture medical residents and 
fellows that have since moved on to other locations.

An additional limitation is that patient data are only from 
visits with UF Health providers. It is possible that patients 
had additional encounters with outside providers and received 
prescriptions not documented in their UF Health record, and 
even when a prescription is documented in the EHR, it is 
possible that it was taken sparsely or never filled at all. In 
general, the degree to which this is an issue depends on the 
context and goals of a study. In the present case, our goal was 
to describe how drugs are prescribed within a single health 
system. However, this approach is likely too limited if the 
goal is to assess actual drug usage or make broad conclusions 
about prescribing in underserved patients.

To address some of these limitations, a natural next step is 
to apply this method to larger datasets that include data from 
multiple healthcare systems. This will allow for assessment 
of whether the approach is generalizable to broader datasets 
and provide more complete patient data for analysis focused 
on individual PGx drugs and/or disease states.

As demonstrated in this study, geospatial and neighbor-
hood socioeconomic status data can be used in conjunction 
with patient EHR data to identify populations most likely to 
be prescribed drugs with published PGx testing guidelines. 
To the best of our knowledge, this is the first time these 
methods have been used in this context. A benefit of this ap-
proach is that home ZIP codes are the only EHR-derived data 
necessary to determine patients’ geographic access scores. 
The methodology is generalizable to other geographic areas 
and can be modified depending on research objectives using 
publicly available ZCTA boundary shapefiles, ZCTA-level 
Census data, and prescriber address data. Ideally, this work 
will inform future implementation efforts for PGx testing 
within the UF Health system and serve as a model for other 
health systems seeking to do similar analyses.
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