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Over recent years, feature selection (FS) has gained more attention in intelligent diagnosis. This study is aimed at evaluating FS
methods in a unified framework for mammographic breast cancer diagnosis. After FS methods generated rank lists according
to feature importance, the framework added features incrementally as the input of random forest which performed as the
classifier for breast lesion classification. In this study, 10 FS methods were evaluated and the digital database for screening
mammography (1104 benign and 980 malignant lesions) was analyzed. The classification performance was quantified with the
area under the curve (AUC), and accuracy, sensitivity, and specificity were also considered. Experimental results suggested that
both infinite latent FS method (AUC, 0.866 +0.028) and RELIEFF (AUC, 0.855+0.020) achieved good prediction
(AUC > 0.85) when 6 features were used, followed by correlation-based FS method (AUC, 0.867 + 0.023) using 7 features and
WILCOXON (AUC, 0.887 +0.019) using 8 features. The reliability of the diagnosis models was also verified, indicating that
correlation-based FS method was generally superior over other methods. Identification of discriminative features among high-
throughput ones remains an unavoidable challenge in intelligent diagnosis, and extra efforts should be made toward accurate

and efficient feature selection.

1. Background

Feature selection (FS) or variable selection plays an impor-
tant role in intelligent diagnosis. It is used to identify a
subset of features or to weight the relative importance of
features in target representation that makes a computer-
aided diagnosis model cost-effective, easy to interpret, and
generalizable. So far, FS methods have been explored in
target recognition [1], logistic regression [2], disease detec-
tion and diagnosis [3-6], bioinformatics [7-9], and many
industrial applications [10-12].

According to the interaction with machine learning clas-
sifiers (MLCs), FS methods can be broadly categorized into
three groups [13-16]: (1) filter method that selects features
regardless of MLCs. It estimates the correlation between
quantitative features and target labels, and the features with
strong correlations to data labels are further considered. This
kind of approach is efficient and robust to overfitting; how-

ever, redundant features might be selected. (2) Wrapper
method that uses learning algorithms to select one among
the generated subsets of features. It allows for possible interac-
tions between features, while it considerably increases compu-
tation time, in particular with a large number of features. (3)
Embedded method that is similar to the wrapper method,
while it performs FS and target classification simultaneously.

Few studies have addressed the efficiency comparison of
ES methods. Wang et al. [17] have compared six filter
methods, such as chi-square [18] and RELIEFF [19], and
ranked features were further analyzed by using different
MLCs and performance metrics. Experimental results indi-
cated that the selection of performance metrics is crucial for
model building. Furthermore, Ma et al. [20] have examined
eight FS methods and found that support vector machine-
(SVM-) based recursive feature elimination [6] is a suitable
approach for feature ranking. In addition, they strongly
suggested performing FS before object classification.
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Moreover, Cehovin and Bosnic [21] have evaluated five
methods and discovered that RELIEFF [19] in combination
to random forest (RF) [21] achieves highest accuracy and
reduces the number of unnecessary attributes. Vakharia
et al. [12] have compared five FS methods for fault diagnosis
of ball bearing in rotating machinery, reporting that both the
combination of Fisher score and SVM [22] and the combina-
tion of RELIEFF and artificial neural network (ANN) [23]
have good accuracy. Additionally, Upadhyay et al. [24] have
explored three methods to select informative features in
wavelet domains. Specifically, they used the least square
SVM and discovered that Fisher score has the highest
discrimination ability for epilepsy detection.

This study performed an evaluation of FS methods, and
a total of 8 filter methods, 1 wrapper method, and 1 embed-
ded method were involved. Specifically, the evaluation was
conducted in a proposed unified framework where features
were ranked and incrementally added; RF was the classifier,
and 4 metrics were used to assess the classification perfor-
mance. Notably, the digital database for screening
mammography (DDSM) [25] was investigated which con-
tains 1104 benign and 980 malignant lesions. In the end,
a test-retest study was concerned and the reliability of built
models was discussed.

2. Methods

2.1. Data Collection. The DDSM is one of the largest data-
bases for mammographic breast image analysis [25-27],
which is available online (http://www.eng.usf.edu/cvprg/
Mammography/Database.html). The database includes 12
volumes of normal cases, 16 volumes of benign cases, and
15 volumes of malignant mass lesion cases. Each case is
represented by 6 to 10 files, i.e., an “ics” file, an overview
16-bit portable gray map (PGM) file, four image files com-
pressed with lossless joint photographic experts group
(LJPEG) encoding, and a zero to four overlay files.

Using the toolbox DDSM Utility (https://github.com/
trane293/DDSMUtility) [28], a total of 2084 histologically
verified breast lesions (1104 benign and 980 malignant
lesions) and 4016 mammographic images were obtained.
Full details on how to convert the dataset from an outdated
image format (LJPEG) to a usable format (i.e., portable net-
work graphic) and on how to extract these outlined regions
of interest are described in the toolbox manual.

2.2. Lesion Representation. Previous studies have suggested
computational and informative features for mammographic
lesion representation [29, 30]. In this study, 18 features were
used to characterize breast mass lesions among which 7
features (mean, median, standard deviation, maximum, mini-
mum, kurtosis, and skewness) represent the statistical analysis
of mass intensity, 8 features (area, perimeter, circularity, elon-
gation, form, solidity, extent, and eccentricity) describe the
lesion shape, and 3 features (contrast, correlation, and
entropy) are derived from the texture analysis using the
grey-level cooccurrence matrix (GLCM) [31]. Full informa-
tion to these quantitative features can be referred to [32].
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2.3. Feature Selection Methods. In total, 10 feature selection
methods (8 filter methods, 1 wrapper method, and 1 embed-
ded method) were evaluated. Specifically, there were 6
methods based on unsupervised learning and 4 methods
based on supervised learning (Table 1).

Brief description of each method is as below

(a) Correlation-based feature selection (CFS) was used
to quantify the relationship between feature vectors
using Pearson’s linear correlation coefficient [33]. It
takes the minimal correlation coefficient of one fea-
ture vector to the other feature vectors as the score
which represents the information redundancy.
Finally, features were sorted according to the scores
in ascending order

(b) Feature selection via eigenvector centrality (ECFS)
[34] recasts the FS problem based on the affinity graph
and the nodes in the graph present features. It esti-
mates the importance of nodes through the indicator
of eigenvector centrality (EC). And the purpose of
EC is to quantify the importance of a feature with
regard to the importance of its neighbors and these
central nodes are ranked as candidate features

(c) Infinite latent feature selection (ILES) [35] is a prob-
abilistic latent FS approach that considers all the
possible feature subsets. It further models feature
“relevancy” through a generative process inspired
by the probabilistic latent semantic analysis [36].
The mixing weights are derived to measure a graph
of features, and a score of importance is provided
by the weighted graph for each feature, which indi-
cates the importance of the feature in relation to its
neighboring features

(d) Laplacian score (LAPLACIAN) [37] evaluates the
importance of a feature by its power of locality
preserving. It constructs a nearest neighbor graph
to model the local geometric structure, and it seeks
the features that respect this graph structure

(e) Least absolute shrinkage and selection operator
(LASSO) [38] performs feature selection and regu-
larization simultaneously and thus, it can balance
prediction accuracy and model interpretability.
LASSO 1is L;-constrained linear least squares fits,
and the importance of each feature is weighted

(f) Feature selection usinglocallearning-based clustering
(LLCES) [39] estimates the feature importance during
the process of local learning-based clustering (LLC)
[40] in an iterative manner. It associates a weight to
each feature, while the weight is incorporated into
the regularization of the LLC method by considering
the relevance of each feature for the clustering

(g) RELIEFF [19] estimates the weight of each feature
according to how well its value can differentiate
between itself and its neighboring features [41].
Thus, if the difference in feature values is observed
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TaBLE 1: Feature selection methods.

ID Acronym Class Learning strategy
A CES Filter Unsupervised
B ECFS Filter Supervised
C ILFS Filter Supervised
D LAPLACIAN Filter Unsupervised
E LASSO Embedded Supervised
F LLCES Filter Unsupervised
G RELIEFF Filter Supervised
H ROC Filter Unsupervised
I UFSOL Wrapper Unsupervised
] WILCOXON Filter Unsupervised

in a neighboring instance pair with the same class, its
weight decreases; while if there are different classes,
its weight increases

(h) ROC is an independent evaluation criterion [42]
which is used to assess the significance of every fea-
ture in the separation of two labeled groups. It stands
for the area between the empirical receiver operating
characteristic (ROC) curve and the random classifier
slope. Higher area value indicates better separation
capacity

(i) Unsupervised feature selection with ordinal locality
(UFSOL) [43] is a clustering-based approach. It pro-
poses a triplet-induced loss function that captures the
underlying ordinal locality of data instances. UFSOL
can preserve the relative neighborhood proximities
and contribute to the distance-based clustering

(j) Wilcoxon rank-sum test (WILCOXON) or Mann-
Whitney U test is a nonparametric test [44]. It
requires no assumption of normal distribution of
teature values. The test provides the most accurate
significance estimates, especially with small sample
sizes and/or when the data do not approximate a
normal distribution

Among these methods, 4 methods consider statistical anal-
ysis on differentiating each other features or on label classifica-
tion (CFS, RELIEFF, ROC, and WILCOXON); 3 methods
build a graph to map the relationship between features, and
weights of features are quantified by the specific measure spaces
(ECFS, ILFS, and LAPLACIAN); 2 methods concern data clus-
tering (LLCFS and UFSOL) for feature weighting; and 1
method merges feature selection into a regularization problem
to balance prediction accuracy and model interpretability
(LASSO). During the procedure, FS methods put a weight to
each feature and thus, these features can be ranked according
to their weights from the most to the least important.

2.4. Performance Metrics. In this study, four metrics, the area
under the curve (AUC), accuracy (ACC), sensitivity (SEN),
and specificity (SPE), were used to quantify the classification
performance [45]. In particular, AUC presents the overall

capacity of a model in lesion classification and it refers to
the area under the ROC curve.

Based on histological verification, true positive (TP) is
the number of positive cases that were correctly predicted
as “positive,” false negative (FN) represents the positive cases
that were misclassified as “negative,” true negative (TN)
represents the true negative cases that were predicted
correctly, while false positive (FP) is true negative cases that
were predicted as “positive.” ACC, SEN, and SPE can be
formulated using the formula (1), (2), and (3), respectively.

TP + TN
ACC= * , (1)
TP + FN + FP + TN

TP
SEN= ————, 2
TP + FN @)

TN
PE= ———. 3
S TN + FP 3)

2.5. Experiment Design. Given 2084 lesion cases (1104 benign
and 980 malignant lesions) of 4016 mammographic images,
we took one image per lesion in the test study (a total of
1104 benign images and 980 malignant images) and the
remaining images (1017 benign lesion images and 915 malig-
nant lesion images) were used to retest the trained diagnostic
models in the test study. Specifically, in the test study, 400
benign lesion images and 400 malignant lesion images were
randomly picked for training and the other images were used
for testing. The experiment was carried out 100 times, and
performance metrics were reported on average.

RF is used as the classifier in this study. It is an
ensemble learning method that has been widely applied
for prediction, classification, and regression [20, 21, 46],
and Strobl et al. utilized it to measure the variable impor-
tance [47]. The most important parameter in RF algorithm
is the number of trees, and Oshio et al. stated that increas-
ing the number of trees does not always mean the perfor-
mance improvement [48]. Therefore, the number of trees
is set as 10 and fewer trees indicates more generalizable
of a trained model with regard to thousands of lesion
cases in the DDSM database.

The unified framework is shown in Figure 1. It consists of
feature ranking, incremental feature selection, RF optimiza-
tion, and performance evaluation. Furthermore, feature rank-
ing is based on the whole images in the study. In addition,
after the RF-based model was built and evaluated on the test-
ing samples, the model was further used to predict the malig-
nance of the lesion images in the retest study. It is worth of
note that parameters of FS methods are set as default.

2.6. Software Platform. Involved feature selection methods
were implemented with MATLAB (MathWorks, Natick,
MA, USA) where seven methods were from the Feature
Selection Library [49], two methods (ROC and WIL-
COXON) were from the function rankfeatures, and one
method (RELIEFF) was from the function relieff. Further-
more, the classifier RF was based on the function
randomForest [50] in R (https://www.r-project.org/). The
experiments were run on a personal laptop, and the laptop
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FiGure 1: The proposed unified framework. It includes feature
ranking, incremental feature selection, RF-based lesion
classification, and performance evaluation, where features were
precollected.

was equipped with dual Intel (R) Cores (TM) of 2.50 GHz
and 8 GB DDR RAM. The implementation did not rely on
any optimization or strategies for algorithm acceleration.

2.7. Statistical Analysis. Quantitative metrics were summa-
rized as the mean + standard deviation (SD) (MATLAB,
MathWorks, Natick, MA, USA). Comparison between
performance metrics is made with Wilcoxon rank-sum test
or two sample ¢-tests when appropriate. All statistical tests
are two sided, and p values less than 0.05 are defined as
significant difference.

3. Results

3.1. Perceived Increase of AUC Values. Figure 2 shows that
the AUC values increased when features were added for
mass lesion representation (red lines). When using top 2
features, both ECFS and CFS achieved AUC values that were
averagely larger than 0.70 and AUC values from other FS
methods that were larger than 0.60. Yet, the AUC values
from UFSOL and LLCFS were <0.60, and the values did
not show any obvious improvement until top 6 and 5
features were integrated in breast lesion classification,
respectively. Compared to the baseline of AUC equal to
0.85 (green lines), both ILFS and RELIEFF obtained higher
values when at least 6 features were used, followed by CFS
(7 features) and WILCOXON (8 features), and other FS
methods that required 9 to 10 features. In addition, for each
diagnostic model, the error-bar plot of AUC in the retest
study overlapped quite well with the plot in the test study.

3.2. Result Summary. Table 2 summarizes the number of fea-
tures and corresponding performance metrics when a model
achieves its AUC surpassing the baseline with the least fea-
ture number. It was observed that half of the methods
required 10 or more features. In particular, when the first-
time model exceeded the baseline, its SEN was higher than
0.85, while its ACC and SPE were relatively lower, indicating
the potential false positive.

Table 3 summarizes the metric values when top two fea-
tures are used for lesion representation. It was found that
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ECFS and CFS achieve AUC larger than 0.70, while three
out of other eight methods reach AUC less than 0.60. We
also found that ECFS, CFS, and ILFS reach SPE values larger
than 0.50, while other methods tend to misclassify benign
lesions into malignant ones.

The feature selection results are shown in Table 4 where
the top-most important features of each model are
highlighted in red. Frequency analysis of these features indi-
cates that the 8" feature and the 16™ feature are selected
eight times, followed by the 4™ feature 7 times, while other
features are equally used or less than 6 times.

4. Discussion

This study evaluated 10 FS methods in a unified framework
for mammographic breast cancer diagnosis where RF is used
as the classifier. Besides, the reliability of each diagnosis
model was verified. Experimental results suggested that
CES has the ability to retrieve generally discriminative fea-
tures. Based on the features ranked by CFS, the classification
performance keeps improving. In addition, the CFS-based
model achieved the 2" best performance when using top 2
features and it surpassed the baseline (AUC = 0.85) by using
the top 7 features.

Some methods lead to unchanged or decreased perfor-
mance at certain points when the number of features
increases (Figure 2), which might be the selected features
are redundant. These methods are ECFS, ILFS, LASSO,
LLCFS, and ROC. In feature ranking, some methods omit
the relationship between features. For instance, features i_
mean and i_median (Appendix A) correlated well (Pearson’s
correlation coefficient, p=0.99) and the two features are
near each other in 8 out of 10 ranked feature lists
(Table 4). Thus, it is helpful to remove the redundant
features and continue to update diagnosis models in order
to reach the optimal solution.

The use of a reasonable number of features is desirable in
intelligent diagnosis since it implies a model lightweight
computing; it is easy to interpret and can be generalized to
other related applications. Investigation of top-ranked two
features revealed that 7 out of 10 methods failed in distin-
guishing benign lesions from malignant ones (SPE <0.5,
Table 3). ECFS and CFS can achieve relatively good perfor-
mance (AUC>0.71, ACC>0.63, SEN > 0.71, and SPE >
0.57). When the number of features increases, ILFS,
RELIEFF, and CFS begin to exceed the baseline (Figure 2).
On the other hand, except for AUC and SEN, other metrics
have important roles since they allow for model evaluation
from another perspectives. By comparing AUC, ACC, SEN,
and SPE metrics, we found that most ACC and SPE values
were lower than 0.80 when both AUC and SEN were larger
than 0.85, which indicated that considerably benign lesions
were misclassified and thereby, these patients would be
exposed to unnecessary biopsies and would suffer from
psychological anxiety.

Over recent years, FS has gained increasing attention.
Notably, a series of models have been developed in radio-
mics [51-53]. Radiomics explores to represent one target
from various perspectives where tens of thousands features
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FIGURE 2: AUC. A baseline (green) of AUC equal to 0.85 is added to the plots. In each plot, the red solid line indicates the test result, while
the blue dashed line shows the retest result. Besides, error bars are added. Please note that the figure can be enlarged to perceive details.

can be crafted. Consequently, the selection of these discrim-
inative features is a crucial, indispensable, but challenging
step. On the other hand, the efficiency of feature subsets is
hard to compare due to number of reasons such as FS being
data dependent, which means that different data splitting
may lead to change in the feature weights. Moreover, differ-
ent FS methods might lead to distinct results because of
theoretical frameworks, and this study obtained ten different
selection results (Table 4).

This study has several limitations. First, few features
were considered. It is known that massive features can be
handcrafted based on mass intensity, shape, and texture in

various transformed domains [30, 51-53], while it might
make FS become challenging if hundreds of thousands fea-
tures are involved, in particular for high dimension but small
sample data analysis [54]. Second, this study evaluated a
total of 10 FS methods among which 8 methods belong to
the filter method group. Since filter methods are indepen-
dent of classifiers, it avoids classifier selection and thus,
computes efficiently. On the other hand, if more wrapper
and embedded methods are compared, the conclusion that
CFS having better performance would be more strongly sup-
ported. However, it is worth noting that this imbalance of FS
methods does not affect the use of the proposed framework.
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TaBLE 2: Performance comparison. The metric values in bold come from the test study, while the values in the line below are from the retest
study with corresponding features and model.

No. AUC ACC SEN SPE
7 0.867 £ 0.023 0.733 £0.035 0.883 £0.018 0.793 £ 0.023
CFS 0.896 £ 0.020 0.724 £0.035 0.900 £0.018 0.806 +£0.022
9 0.887 £0.018 0.739 £ 0.028 0.894+0.011 0.806 +0.014
ECES 0.926 +£0.013 0.717 £0.034 0.915+0.012 0.816 £0.017
6 0.866 + 0.028 0.678 + 0.044 0.854 +£0.030 0.763 £ 0.031
ILES 0.907 £0.025 0.665 +£0.043 0.884 £0.027 0.779 £0.029
12 0.863 £0.018 0.730 £ 0.030 0.880+0.013 0.790 £ 0.016
LAPLACIAN 0.891 £0.013 0.716 £0.028 0.893 £0.011 0.799 £0.014
10 0.858 £0.020 0.685 +0.030 0.851+£0.013 0.763 £ 0.016
LASSO 0.862 +0.019 0.692 £0.025 0.856 £ 0.011 0.772£0.013
10 0.855 +£0.020 0.735 £ 0.027 0.876 £ 0.009 0.789 £ 0.013
LLCES 0.887 £0.014 0.714 £ 0.025 0.891 £0.009 0.796 £0.012
6 0.855 +£0.020 0.718 £ 0.026 0.868 +0.011 0.780 £ 0.013
RELIEFE 0.880+£0.015 0.695 +£0.037 0.876 £0.012 0.782+£0.019
10 0.878 £0.019 0.728 £ 0.029 0.885 +£0.013 0.796 + 0.016
ROC 0.919 £0.012 0.706 £ 0.035 0.908 £0.013 0.807 £0.018
10 0.858 £0.020 0.731 £0.028 0.877 £ 0.011 0.788 £0.013
UESOL 0.889+£0.016 0.709 £0.029 0.892 +£0.009 0.794 £0.014
8 0.887 £0.019 0.726 £ 0.027 0.890 £0.013 0.799 £ 0.015
WILCOXON 0.925+0.013 0.707 £0.036 0.910+0.013 0.810+£0.019
TaBLE 3: Performance comparison when using top two features for lesion representation.
No. AUC ACC SEN SPE
2 0.711 £0.012 0.636 +0.013 0.714 £ 0.027 0.572 +0.030
CFS 0.715+0.011 0.642 +0.012 0.718 £0.019 0.573 +0.026
2 0.734+£0.013 0.660 = 0.012 0.755 +0.026 0.581 +0.024
ECES 0.759 £ 0.010 0.677 £0.011 0.785+0.018 0.579+0.021
2 0.678 £ 0.012 0.606 +0.012 0.698 +0.023 0.530 £ 0.026
ILES 0.724+0.011 0.635+0.011 0.752+£0.016 0.529 £ 0.025
2 0.649 £ 0.014 0.603 +0.012 0.738 £0.025 0.492 +0.024
LAPLACIAN 0.626 +0.014 0.590 £ 0.011 0.737 £0.023 0.458 +0.020
2 0.557+£0.014 0.526 +0.013 0.651 £0.025 0.422 +0.028
LASSO 0.552+0.010 0.525+0.010 0.653 +0.023 0.410 £ 0.023
2 0.517+£0.013 0.499 £ 0.013 0.645 +£0.028 0.379 £ 0.024
LLCES 0.507 +0.012 0.498 £0.011 0.648 £ 0.025 0.363 +0.025
2 0.611+£0.013 0.568 +0.014 0.689 +£0.022 0.486 +0.028
RELIEFE 0.604 +0.073 0.574 £ 0.066 0.668 £ 0.021 0.490 £ 0.129
2 0.632+0.013 0.582+0.013 0.694 +0.025 0.491 £ 0.027
ROC 0.616 £0.011 0.571£0.011 0.716 £ 0.021 0.440 £ 0.034
2 0.543 £0.015 0.514+£0.012 0.654 +0.027 0.399 +0.021
UFSOL 0.527+0.013 0.513+£0.011 0.652 £0.024 0.388 +0.023
2 0.605 +£0.015 0.563 £ 0.015 0.686 +0.024 0.461 £ 0.028
WILCOXON 0.629 +0.075 0.587 £0.069 0.679 £0.020 0.505+0.133
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TaBLE 4: Feature selection results. The top-most important features that achieve AUC larger than 0.85 are in bold to each FS method.
The most to the least important features

CFS 16 14 3 11 15 6 2 8 13 17 10 9 1 4 12 18
ECFS 8 9 17 4 10 2 1 16 12 3 14 6 13 15 7 11 18
ILES 11 14 18 5 3 15 13 1 4 2 10 6 9 7 16 12 17
LAPLACIAN 8 5 4 3 2 1 16 18 11 15 10 13 14 17 12
LASSO 17 18 15 13 6 16 4 1 2 8 9 5 3 7 11 14 10 12
LLCFES 3 5 4 2 8 9 7 16 11 18 15 10 14 13 17 12
RELIEFF 10 14 11 7 18 4 12 3 9 13 17 16 6 15 5
ROC 9 17 4 10 1 16 12 11 15 6 14 13 18 7
UFSOL 9 1 2 3 5 8 16 11 18 6 17 12 15 10 13 14
WILCOXON 10 16 9 17 12 6 8 14 2 1 13 3 18 7 11 15 5
Third, RF performs as the classifier, since it is important in ~ SVM: Support vector machine
classification tasks due to its interpretability [21]. From the RF: Random forest
technical perspective, other MLCs, such as ANN and SVM,  ANN: Artificial neural network
are also feasible [12, 17, 20, 21, 24, 30]. It is also desirable to DDSM: Digital database for screening
investigate the effects of RF parameters on the lesion diagnosis. mammography
However, it might lead to massive result reports and thus, only ~ PGM: Portable gray map
the number of trees is empirically determined and other = LJPEG: Lossless joint photographic experts group
parameters are set as default. Last but not the least, how to GLCM: Grey-level cooccurrence matrix
choose a proper FS method is a long-term problem in the field  CFS: Correlation-based feature selection
of computer-aided diagnosis. It should be admitted that feature =~ ECEFS: Feature selection via eigenvector centrality
extraction, FS methods, and MLCs are closely related to the  EC: Eigenvector centrality
ultimate goal of breast cancer diagnosis. Depending on specific =~ ILFS: Infinite latent feature selection
purposes, such as diagnosis accuracy, model simplicity, inter- ~ LAPLACIAN: Laplacian score
pretability, and generalization capacity, the selection of features, = LASSO: Least absolute shrinkage and selection
FS methods, and MLCs is different. Fortunately, the proposed operator
framework can be expanded to incorporate more features as ~ LLCEFS: Feature selection using local learning-based
radiomics, more FS methods, and MLCs for classification or clustering
diagnosis tasks. Therefore, it is promising that systematicand ~ LLC: Local learning-based clustering
comprehensive analysis on additional mammographic data-  ROC: Receiver operating characteristic
bases could deepen our understanding of breast cancer diagno- ~ UFSOL: Unsupervised feature selection with ordinal
sis from mammographic images. locality

WILCOXON: Wilcoxon rank-sum test
5. Conclusions TP: True pOSitiVe

FN: False negative
This study evaluated ten feature selection methods for breast ~ TN: True negative
cancer diagnosis based on the digital database for screening  FP: False positive
mammography, where the random forest served as the  SD: Standard deviation.
machine learning classifier. Different methods led to distinct
feature ranking results, and the correlation-based feature  PData Availability

selection method was found to have superior performance
in general. The way to find discriminative features out of
thousands of features is challenging but indispensable for
intelligent diagnosis and thus, extra efforts should be made
towards accurate and efficient feature selection.

Abbreviations

FS: Feature selection

AUC: The area under the curve
ACC: Accuracy

SEN: Sensitivity

SPE: Specificity

MLC: Machine learning classifier

The data and toolboxes are available online. The data used to
support the findings of this study are from http://www.eng
.usf.edu/cvprg/Mammography/Database.html; the Feature
Selection  Library is  https://www.mathworks.com/
matlabcentral/fileexchange/56937-feature-selection-library;
and the toolbox DDSM Utility from https://github.com/
trane293/DDSMUtility is for data format transformation.
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