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Aim. To explore the mechanism of resveratrol in reducing the soft tissue damage of osteoarthritis (OA) based on network
pharmacology. Methods. Pharmmapper was used to predict the target of resveratrol, OMIM and Genecards were used to collect
OA-related disease genes, and David ver 6.8 was used for enrichment analysis. /en, animal experiments were carried out for
verification. /e rat OA model was established and the rats were randomly divided into 4 groups: model group, resveratrol low-
dose group, resveratrol high-dose group, and blank control group for follow-up experiments. Hematoxylin-eosin (HE) staining
was used to detect the degree of pathological damage of rat bones and joints. Enzyme-linked immunosorbent assay (ELISA) was
used for the content of inflammatory factors. Western blot was used to detect the expression of Toll-like receptor 4 (TLR4),
Myeloid differentiation factor 88 (MyD88), nuclear factor kappa B protein (NF-κB), cysteine protease-9 (CASP-9), Bcl-2 protein,
and Bax protein. Results. /rough network pharmacological analysis, this study found that resveratrol may regulate the TLR4
signaling pathway, PI3K-Akt signaling pathway, FoxO signaling pathway, Osteoclast differentiation, Rheumatoid arthritis, etc.
Animal experiments showed that compared with the model group, the pathological damage of bone and joint in the resveratrol
low-dose and high-dose groups was significantly improved. Compared with the model group, the serum levels of IL-1beta, IL-6,
IL-17, TNF-α, andMCP-1 in the resveratrol low-dose and high-dose groups were significantly reduced (P< 0.05); protein levels of
TLR-4, MyD88, and NF-κB p65 were significantly reduced (P< 0.05); caspase-9 and Bax protein levels were significantly reduced
(P< 0.05), and Bcl-2 was significantly increased (P< 0.05). Conclusion. Resveratrol may inhibit the activation of the TLR4-
mediated NF-κB signaling pathway and has a repairing effect on soft tissue damage in OA.

1. Introduction

Osteoarthritis (OA) is a degenerative joint disease charac-
terized by progressive articular cartilage destruction, sub-
chondral bone changes, osteophyte formation, and synovial
inflammation [1]. /e clinical symptoms are mainly joint
pain, swelling, stiffness, and mobility disorders, which se-
riously affect the quality of life of patients [2–4]. In the past
20 years, the number of patients with OA has increased
dramatically [5, 6]. It is estimated that the current prevalence
of OA in people over 50 years old worldwide is as high as

10% to 20%, and in the next 30 years, its prevalence may
double [7]. So far, the clinical treatment of OA is mainly to
relieve pain and maintain joint function. At present, non-
steroidal anti-inflammatory drugs (NSAIDs) have been used
as a routine treatment for OA, but their adverse events
should not be underestimated [8]. /erefore, it is very
important to explore the occurrence and development
mechanism of OA and find safer and more effective treat-
ments for the prevention and treatment of OA.

Resveratrol is a natural polyphenol plant compound with
a symmetric diphenylethylene structure. Its content is high
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in the rhizomes of grapes, cranberries, peanuts, mulberries,
and other plants and the traditional Chinese medicine
Polygonum cuspidatum [9–11]. It has almost no toxic and
side effects on the human body and has been proven to have
anti-inflammatory, antitumor, antioxidant, and immune-
regulating effects [12]. Studies have shown that resveratrol
has anti-inflammatory and chondroprotective effects in a
rabbit OAmodel induced by endotoxin (LPS) [13]. Hua et al.
found that resveratrol can prevent sodium nitro-
soferricyanide-induced OA-like inflammation [14]. How-
ever, the mechanism of resveratrol in the treatment of OA is
still unknown.

As a new interdisciplinary developed in recent years,
network pharmacology has changed the previous drug
discoverymodel of “single gene, single target, single disease.”
/e emergence of network pharmacology is of great sig-
nificance for the discovery of new drugs and the multitarget
research of drugs, and it is mainly used for drug toxicity
prediction and drug readjustment indications [15, 16]. For
different kinds of diseases, the location and characteristics of
drug targets and disease genes in the network are different.
Research shows that the distance between the drug target
and the key node of the disease network has certain char-
acteristics in the network. In addition, studies have found
that in the process of rational drug design, the network
distance between drug targets and corresponding disease
genes has a tendency to become smaller and smaller [17].
/is suggests that it is of great significance to probe the
characteristics of drug targets in biological networks.
/erefore, this study would explore the molecular network
of resveratrol in the treatment of OA through network
pharmacology and further verify the related signaling
pathways and biological processes in OA rat models. /e
idea and process of this research are shown in Figure 1.

2. Materials and Methods

2.1. Potential Targets of Resveratrol Prediction andOADisease
Gene Collection. /e relevant chemical information and
several potential targets of resveratrol were searched through
the PubChem database (https://www.ncbi.nlm.nih.gov) [18],
and the chemical structure of resveratrol was drawn using
ChemDraw 3D software and saved in sdf format. /e
SMILES structure of resveratrol was also collected from
Pubchem. /e “sdf” format of resveratrol was input into
Pharmmapper (http://lilab-ecust.cn/pharmmapper/) to
predict its potential targets [19]. /e SIMES structure of
resveratrol was input into Swiss Target Prediction (http://
www.swisstargetprediction.ch/) [20], Similarity ensemble
approach (SEA) (http://sea.bkslab.org/) [21], and STITCH
Database (http://stitch.embl.de/) [22] to obtain the potential
targets. /e resveratrol targets were imported into UniProt
(http://www.uniprot.org/) to obtain the official gene symbol.
Finally, those targets were combined and deduplicated to
obtain the set of resveratrol potential targets.

OA disease genes were searched and collected using the
OMIM database (http://omim.org/) and Genecards (http://
www.genecards.org) [23, 24]. /e search results of Gene-
cards and OMIM were merged and deduplicated to obtain

OA-related genes set. /e resveratrol targets and OA genes
are shown in Table S1 (see supplementary materials). /e
potential target set of resveratrol and the OA target set were
compared, and the overlapping part of the two was con-
sidered as the target of resveratrol in the treatment of OA
(Table S2).

2.2. Resveratrol-OA Protein-Protein Interaction (PPI) Net-
work Construction and Analysis. /e String database
(https://string-db.org/) is a database for searching protein
interactions, including both direct physical interactions
between proteins and indirect functional correlations [25].
/e targets were input into String to collect the PPI data.
Cytoscape 3.7.1 software was utilized for visualization. /e
node degree and betweenness centrality are used to reflect
the importance of the node. /e larger the value of the
degree and the betweenness centrality, the more important
the node in the network.

In order to further understand the functions of core
target genes and the main pathways of resveratrol in the
treatment of OA, the resveratrol-OA targets in the resver-
atrol-OA PPI network were input into David database
(https://david.ncifcrf.gov/home.jsp) for Gene Ontology
(GO) enrichment analysis and KEGG pathway enrichment
analysis, and the species was selected as “Homo sapiens”
[26].

2.3. ExperimentalAnimals. Eighty (80) 6-week-old, SD male
healthy rats were purchased from Guangdong Experimental
Animal Center and raised in a standard environment, license
number SCXK (Guangdong) 2018–0016. /e weight of the
rat is (180± 10) g. /e rats were kept in a temperature-
controlled (22°C± 1°C) and light-controlled animal facility
(200 lux, 12-hour light-dark cycle) for 7 days. /e experi-
ment was approved by the Animal Ethics Committee of
Shantou University Medical College.

2.4. Reagents and Instruments. Resveratrol was purchased
from the National Institute for the Control of Pharma-
ceutical and Biological Products (batch number:
110742200517, purity 99.9%). Collagenase Type II, (Cat. No.:
C2-28, sigma company); BCA protein quantitative kit (batch
number Q1220551), phenylmethylsulfonyl fluoride (PMSF,
batch number: RE2173411), ethyl iodide Amide (IAA, batch
number QL224490), RIPA high-efficiency lysate (batch
number TJ272371), Ammonium bicarbonate powder (batch
number BCBN6056V) were purchased from Sigma Inc. /e
PVDF membrane was purchased from Millipore, USA (Cat.
No. IPVH00010). Trypsin-EDTA digestion solution was
purchased from Jiangsu KGI Biotechnology Co., Ltd. (Cat.
No. KGY0012). HRP goat anti-rabbit secondary antibody
IgG (Cat. No. ZB 2306) was purchased from Beijing
Zhongshan Jinqiao Biotechnology Co., Ltd. /e chemilu-
minescent substrate (Cat. No. A38555) was purchased from
/ermo Company. IL-1β (H002), IL-6 (H007), IL -17
(H014), TNF-α (H052), and MCP-1 (H115) ELISA kits were
purchased from Nanjing Jiancheng Institute of
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Figure 1: /e idea and process of this research.
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Bioengineering. Antibody TLR-4 (BA1717) and Antibody
MyD88 (A00025-1) were purchased from Boster Biological
Technology Co, Ltd. Antibody NFκB p65 (ATA33904) was
purchased from AtaGenix (Wuhan) Technology Co., Ltd.
Antibody Caspase-9 (ab32539), antibody Bcl -2 (ab182858),
antibody Bax (ab32503), and antibody β-actin (ab8226) were
purchased from Abcam Inc. /e desktop high-speed re-
frigerated centrifuge was purchased from Sigma Inc. /e
microplate reader was purchased from /ermo Company.
/e tissue disrupter was purchased from SPEX SamplePrep.

2.5. Animal Modeling, Grouping, and Intervention. /e rats
were randomly divided into a model group, resveratrol low-
dose group, resveratrol high-dose group, and blank control
group, with 20 rats in each group. /e rats in the model
group, resveratrol low-dose group, and resveratrol high-
dose group were modeled [27, 28].

After the rats were anesthetized with 3% sodium pen-
tobarbital (40mg/kg), the right knee joint was disinfected
with iodophor 3 times, and then the knee joint was punc-
tured with a 1mL syringe. 50 μL of Type II collagenase (425
U/mg) with a concentration of 4mg/mL was injected into
the joint cavity. No other special treatment was given after
the operation. On the 4th day, the above operation was
repeated once, and the animals were raised freely for 3 days
after making the model. /e rats in the control group were
injected with the same volume of normal saline at the same
place and time point.

After the model was completed, the drug was started
after 3 days of free breeding. Resveratrol low-dose group was
given resveratrol 40mg/kg and the resveratrol high-dose
group was given resveratrol 80mg/kg by gavage, twice daily
for 4 weeks. /e control group and the model group were
given the same amount of normal saline intragastrically.

2.6. Collection, Preparation, and Observation of Knee Joint
Specimens. After 4 weeks of intervention, the rats were
fasted for 10 hours. After the rats were anesthetized by 3%
sodium pentobarbital (40mg/kg) intraperitoneal injection,
about 4mL of blood was taken from the abdominal aorta and
placed in a 5mL heparin sodium anticoagulation tube. After
the blood was taken, the rats were sacrificed by neck dis-
location. /e entire knee joint was dissected and fixed with
4% paraformaldehyde for 24 h and decalcified with 15%
ethylenediaminetetraacetic acid (EDTA) for 4 weeks. /e
cartilage was cut along the coronal surface of the joint,
dehydrated by ethanol, transparent in xylene, embedded in
paraffin, and sectioned. /e thickness of the section was
7 µm. /e isolated cartilage tissue is used to detect protein
inflammation and apoptotic protein expression by the
Western Bolt method.

2.7. Pathological Observation. /e articular cartilage sec-
tions were deparaffinized in xylene, then hydrated with
gradient alcohol, and stained according to the instructions of
the HE staining kit./e sections were stained in hematoxylin
for 5min, dyed in eosin staining solution for 2min, soaked

in distilled water, and then dehydrated in gradient alcohol in
turn. Finally, it was made into pathological sections.

2.8. Detection of Serum Inflammatory Factors by ELISA.
/e rat blood was centrifuged at 3,000 r/min for 10min, and
the supernatant was taken. /e antigen is dissolved in
50mmol/L carbonate coating buffer at 4°C, 100 µL/well is
transferred to a 96-well microtiter plate, the antigen is coated
overnight, and the coating solution is discarded. After
washing, each well was blocked with 150 µL of 1% BSA for 1
hour, washed with PBST 3 times, 100 µL of serum with
different dilution ratios was added, and control samples were
added and incubated at 37°C for 2 hours./en it was washed
5 times with PBST, 100 µL of diluted HRP-labeled secondary
antibody was added and incubated at 37°C for 1 h. After
washing 5 times with PBST, the color developer was added to
develop color for 20min and measured with a microplate
reader.

2.9. Detection of Inflammatory Factors by Western Blot.
/e rat cartilage tissue was prepared as a tissue homogenate,
dissolved on ice for 25min, centrifuged at 12,000 r/min for
10min, and cell lysate containing protease inhibitors was
added for total protein extraction. /e BCA kit was used to
determine protein content. An equal amount of protein
sample (20mg) was extracted and denatured at 100°C for
5min. /e proteins were then separated using SDS-PAGE
gel electrophoresis and transferred to PVDF membranes. At
4°C, the PVDF membrane was added with corresponding
monoclonal primary antibodies [TLR4 (1 : 200), MYD88 (1 :
500), NF-KBp65 (1 : 500), Caspase-9 (1 :100), Bcl- 2, Bax (1 :
100), β-actin (1 : 500)] and incubated overnight. /en the
horseradish peroxidase-labeled secondary antibody (1:2 000)
was added at 4°C. /e color was developed by the chemical
substrate luminescence method. ChemiDoc XRS+ System
gel imager was used for image scanning analysis, Image-
QuaNT software was used to measure its absorbance, and
each β-actin was used as an internal reference to analyze the
relative expression level.

2.10. Statistical Analysis. All the experimental data are
statistically analyzed with the statistical software SPSS 20.0.
/e experimental results are expressed as mean± standard
deviation. An Independent t-test was used for pairwise
comparison, and differences between groups were tested by
one-way analysis of variance.

3. Results and Discussion

3.1. Resveratrol-OA PPI Network Analysis. A total of 671
resveratrol potential targets and 3114 OA genes (3114 genes
were searched from Genecards and 42 were searched from
OMIM) were obtained. /ere are a total of 302 common
targets in the resveratrol potential target set and OA gene set,
which are considered as potential targets for resveratrol to
treat OA. Among the 302 Resveratrol-OA targets, 297 can
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interact with each other. Hence, these 297 were used to
construct the Resveratrol-OA PPI network (Figure 2).

3.2. Enrichment Analysis of Resveratrol-OA Targets. /e 297
Resveratrol-OA targets in Resveratrol-OA targets PPI net-
work were input into David for enrichment analysis. In the
enrichment results of FDR<0.05, the biological processes,
cell components, molecular functions, and signal pathways
that may be related to OA were screened. Finally, a total of
171 OA-related biological processes, 43 cell components, 90
molecular functions, and 30 signal pathways were obtained
(Table S3 and Figure 3). /e top 30 biological processes, cell
components, molecular functions, and signaling pathways
are shown in Figure 4. /e relationship between signaling
pathways and targets is shown in Figure 5. /e targets and
genes in the Toll-like receptor signaling pathway and NF-kB
signaling pathway are shown in Figure 6 as an example (the
Resveratrol-OA targets were marked in pink) [29].

OA is a common degenerative disease that plagues
middle-aged and elderly people. /e degeneration of ar-
ticular cartilage caused by the degradation of the cartilage
extracellular matrix is the main pathological change of os-
teoarthritis. /e extracellular matrix is mainly composed of
type II collagen and Aggrecan. Mature chondrocytes can
synthesize and secrete extracellular matrix, which plays a key
role in maintaining the dynamic balance between extra-
cellular matrix anabolic and catabolism [30]. Matrix met-
alloproteinases (MMPs) play an important role in the
degeneration of osteoarthritis. MMP-13 is the most effective
type II collagen degrading enzyme [31]. In OA pathological
process, the secretion of MMP-13 increases and destroys
Aggrecan and type II collagen in the extracellular matrix,
which ultimately leads to cartilage degeneration and de-
struction [32].

In the OA model induced by medial meniscus instability
surgery, MMP-13 knockout mice inhibited the development
of OA by protecting cartilage from proteoglycan loss and
structural damage [33]. In clinical samples, MMP-13 is
abnormally expressed at different stages of OA: it is upre-
gulated in the cartilage of patients with OA in the early stage
and downregulated in the late stage [34]. In addition, MMP-
13 is a central node in the cartilage degradation network
[35], and its activity can be regulated at multiple levels such
as transcription, epigenetic changes, and autophagy [36, 37].
/e intervention of resveratrol can decrease the expression
of MMP-13, Nuclear factor kappaB (NF-kB) and other
inflammatory factors closely related to OA, such as Inter-
leukin-6 (IL-6), Cyclo-oxygenase-2 (COX-2) [38], IL-1β
[39], etc. However, the mechanism of resveratrol’s anti-OA
effect has not been elucidated. Studies have shown that OA
may be related to chronic low-grade inflammation, and the
expression of a variety of cytokines and inflammatory
mediators in the OA state is significantly increased [40], and
these inflammatory responses may be related to TLR4. TLR4
can induce synovial cells, chondrocytes, etc., to secrete and
release IL-1β and other inflammatory factors, which play a
key role in the pathogenesis of OA./e study also found that
the expression of TLR4 in OA chondrocytes induced by

IL-1β increased significantly, but after treatment with
resveratrol, its expression decreased significantly. /erefore,
it is believed that the occurrence and development of OA
may be related to the activation of the TLR4 signaling
pathway [41], and resveratrol can exert anti-OA effects by
inhibiting the Toll-like (TLR4) signaling pathway [42].

TLR4 is one of the important members of the TLRs family
and plays a vital role in the process of inducing inflammation
[38]. At present, studies have shown that resveratrol can exert
anti-OA effects by inhibiting TLR4/MyD88-dependent and
independent signaling pathways [43]. Other studies have
shown that resveratrol can also exert anti-inflammatory effects
through the PI3K/Akt signaling pathway in macrophages [44].
PI3K is an important member of the phospholipid kinase
family [45, 46]. Akt is an important direct downstream mol-
ecule of PI3K, and activation of PI3K can directly promote Akt
phosphorylation and activation. /e activation or inhibition of
Akt can directly act on its downstream signal molecules and
then play a role in regulating cell proliferation, apoptosis, or
other important physiological processes [47]. It has been re-
ported in the literature that when LPS acts on human pan-
creatic cancer cells, it can upregulate the expression of PI3K
and Akt. But after adding TLR4 siRNA to silence TLR4, the
expression of TLR4 and p-Akt decreased significantly, and after
silencing TLR4 and then stimulated by LPS, the expression of
TLR4 and p-Akt was still lower than that of the simple LPS
group [48]. Xu et al. found that, compared with the hypoxia
group, the expression of TNF-a, IL-6, and IL-1β mRNA in the
group treated with resveratrol was significantly reduced
compared with the hypoxia group. After resveratrol treatment
or using LY294002 to inhibit PI3K, the expression of p-Akt
decreased significantly. /is shows that resveratrol can protect
pulmonary artery smooth muscle cells by inhibiting the PI3K/
Akt signaling pathway [49]. However, studies have also shown
that resveratrol can increase the protein expression of p-Akt in
vascular smooth muscle cells while inhibiting the expression of
inflammatory factors, that is, by activating the PI3K/Akt sig-
naling pathway to protect vascular smooth muscle [50]. Zong
et al. found that when LPS acts on RAW264.7 cells, the protein
expression of p-Akt increases and the PI3K/Akt signaling
pathway is activated. Under the combined action of resveratrol
and LPS, the activation of the PI3K/Akt signaling pathway was
more significant, and the protein expression of p-Akt was
further higher than that of the LPS group [51]. It shows that
Veratrol may play an anti-LPS-induced inflammatory response
in RAW 264.7 cells by activating the PI3K/Akt signaling
pathway./e systematic pharmacology part of this study shows
that resveratrol can regulate inflammation pathways such as
PI3K/Akt signaling pathway, NK-KB signaling pathway, and
TNF-α signaling pathway.

3.3. Pathological Changes. /e surface of the articular car-
tilage of the blank control group is flat, the cartilage structure
and tidemark of 4 layers are clear, and the chondrocytes are
arranged neatly. /e cartilage surface in the model group is
irregular, cracks are generated, the tidemark recognition is
poor, the cartilage structure of 4 layers is unclear, and the
cartilage cells proliferate. /e cartilage surface of the
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resveratrol low-dose and high-dose groups was more reg-
ular, cracks were reduced, a small amount of chondrocyte
proliferation was seen, and the tidemark was visible.
Compared with the model group, the degree of cartilage
pathological damage was reduced (Figure 7).

3.4. Effect of Resveratrol on Serum IL-1β, IL-6, TNF-α, and
MCP-1 Content. Compared with the control group, the
levels of IL-1β, IL-6, TNF-α, and MCP-1 in the model group
were significantly increased (P< 0.05). Compared with the

model group, the levels of IL-1β, IL-6, TNF-α, andMCP-1 in
the resveratrol low-dose and high-dose groups were sig-
nificantly reduced (P< 0.05) (Figure 8).

3.5. Effect of Resveratrol on the Expression of TLR-4, MyD88,
and NF-Κb p65 Protein. /e expression levels of TLR-4,
MyD88, and NF-κB p65 protein in rat cartilage tissue were
performed by Western blot. Compared with the control
group, the expression of TLR-4, MyD88 and the ratio of NF-
κB p65 in the model group were significantly increased

Cellular response to nitrogen compound
Pathways in cancer
positive regulation of locomotion
regulation of defense response
regulation of cellular response to stress
Signaling by Interleukins

regulation of cytokine production
apoptotic signaling pathway
regulation of kinase activity
positive regulation of cell death

response to oxidative stress
AGE/RAGE pathway

cellular response to lipid
response to oxygen levels
circulatory system process
leukocyte migration
response to growth factor

response to inorganic substance

positive regulation of response to external stimulus

VEGFA-VEGFR2 signaling pathway

(a)

MCODE1
MCODE2
MCODE3
MCODE4
MCODE5
MCODE6

(b)

Figure 3: Visualizations of functional enrichment and interactome analysis result. (a) PPI network colored by cluster; (b) clusters.

Figure 2: Venn diagram and Resveratrol-OA PPI network (the size of the node is positively correlated with its betweenness centrality.).
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(P< 0.05). Compared with the model group, the expressions
of TLR-4, MyD88, and NF-κB p65 in the resveratrol low-
dose and high-dose groups were significantly reduced
(P< 0.05) (Figure 9).

3.6. Effect of Resveratrol on the Expression of Bcl-2, Bax, and
Caspase-9 Protein. Compared with the blank control group,
the expression of Bcl-2 in the model group decreased
(P< 0.05), and the expression of Bax and Caspase-9 in-
creased (P< 0.05). Compared with the model group, the
expression of Bcl-2 in the resveratrol low-dose and high-
dose groups increased (P< 0.05), and the expression of Bax
and Caspase-9 decreased (P< 0.05) (Figure 10).

/rough network pharmacological analysis, this study
found that resveratrol was concentrated in the TLR4 sig-
naling pathway, and animal experiments were used to verify
the results. Experimental studies have shown that resveratrol

can improve the degree of pathological damage in OA rats.
Apoptosis is positively correlated with the severity of car-
tilage destruction and matrix depletion in human osteoar-
thritis tissue specimens. /e Caspase family plays an
important role in the process of cell apoptosis, and the
excessive activation of Caspase-9 and Caspase-3 in the
apoptotic cascade can promote cell apoptosis. /e anti-
apoptotic member Bcl2 can prevent cell apoptosis, while the
proapoptotic member Bax is located in the outer mito-
chondrial membrane or cytoplasm and oligomerizes under
stress to promote the release of factors from mitochondria,
thereby triggering apoptosis [52]. Burlacu found that the
ratio of Bcl-2 to Bax can reflect the relationship between Bcl-
2 and Bax in the process of cell apoptosis: an increase in the
ratio of Bcl2/Bax inhibits cell apoptosis, and vice versa
promotes cell apoptosis [53]. In this experiment, resveratrol
can reduce the level of Caspase-9 protein and increase the
ratio of Bcl-2/Bax. It shows that resveratrol inhibits the
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Figure 4: Bubble chart of enrichment analysis results. (a) biological processes; (b) cell components; (c) molecular function; (d) signaling
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apoptosis of chondrocytes in OA rats. In the pathology of
bone and joint, proinflammatory cytokines play a key role.
/e levels of TNF-α and IL-6 are recognized cytokines that
reflect the degree of inflammation. /e high expression of
IL-6 can lead to the degradation of articular cartilage and
induce pain. TNF-α is an inflammatory response mediator
secreted by monocytes and macrophages. Long-term high
TNF-α levels may be the main reason for the development of
OA in wounded joints. IL-17 is a proinflammatory cytokine
secreted by T lymphocytes and monocytes. MCP-1 is a
representative of the β subfamily of chemotactic cytokines
and an important inflammatory response mediator of OA
[54]. /is study found that resveratrol can reduce the levels
of IL-1β, IL-6, IL17, TNF-α, and MCP-1 in the serum of OA
rats. It shows that resveratrol can maintain the normal

structure and function of joints by reducing the content of
proinflammatory cytokines.

TLR4/myeloid differentiation factor 88 (My D88) signal
transduction pathway is an inflammatory signal pathway
that has been studied in the prevention and treatment of
knee OA in recent years [55]. TLR4 is an important signal
pathway transduction protein, which is closely related to the
pathogenesis of OA. It is highly expressed in OA chon-
drocytes and participates in cartilage destruction. It can
activate various inflammatory factors through its down-
streamMyD88-dependent signal transduction pathway [56].
NF-κB is a primary transcription factor that controls the
expression of many proinflammatory genes and plays an
important role in cell processes. Literature reports that plant
extracts can affect the NF-κB pathway [57]. Studies have

Figure 5: Signaling pathway-target network. Blue diamond stands for signaling pathway. Green circles stand for Resveratrol-OA targets.
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reported that the use of siRNA to interfere with the ex-
pression of NFκB p65 can reduce the pathological process of
OA in rats, indicating that inhibiting the activity of NF-κB
can be used as a target for the treatment of osteoarthritis
[58]. /is study found that resveratrol downregulated the
protein levels of TLR-4, MyD88 and the ratio of pNF-κB
p65/NF-κB p65 in osteoarthritis rats. /is shows that

resveratrol can treat OA rats by inhibiting TLR-4/MyD88
and NF-κB signaling pathways.

In summary, resveratrol improves the degree of path-
ological damage in rats with bone OA, reduces cartilage
tissue apoptosis, increases the proportion of trabecular bone
and the proportion of cartilage, inhibits the degradation of
extracellular matrix, promotes the synthesis of extracellular
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matrix, and reduces the content of proinflammatory cyto-
kines. /is may be achieved through the NF-κB signaling
pathwaymediated by TLR4./is study provides a theoretical
basis for the clinical application of resveratrol in the
treatment of OA.

4. Conclusion

Resveratrol may inhibit the activation of the TLR4-mediated
NF-κB signaling pathway and has a repairing effect on soft
tissue damage in OA.
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