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The biological mechanism underlying the pathogenesis of systemic lupus erythematosus (SLE) remains unclear. In this study, we
found 21 proteins upregulated and 38 proteins downregulated by SLE relative to normal protein metabolism in our samples using
liquid chromatography-mass spectrometry. By PPI network analysis, we identified 9 key proteins of SLE, including AHSG, VWF,
IGF1, ORM2, ORM1, SERPINA1, IGF2, IGFBP3, and LEP. In addition, we identified 4569 differentially expressed metabolites in
SLE sera, including 1145 reduced metabolites and 3424 induced metabolites. Bioinformatics analysis showed that protein
alterations in SLE were associated with modulation of multiple immune pathways, TP53 signaling, and AMPK signaling. In
addition, we found altered metabolites associated with valine, leucine, and isoleucine biosynthesis; one carbon pool by folate;
tyrosine metabolism; arginine and proline metabolism; glycine, serine, and threonine metabolism; limonene and pinene
degradation; tryptophan metabolism; caffeine metabolism; vitamin B6 metabolism. We also constructed differently expressed
protein-metabolite network to reveal the interaction among differently expressed proteins and metabolites in SLE. A total of
481 proteins and 327 metabolites were included in this network. Although the role of altered metabolites and proteins in the
diagnosis and therapy of SLE needs to be further investigated, the present study may provide new insights into the role of
metabolites in SLE.

1. Background

Systemic lupus erythematosus (SLE) is an autoimmune dis-
ease, which is related to substantial morbidity and increased
mortality [1]. The incidence rate of SLE in China is about
50-60/100000 and is higher in women than in men [2]. Dys-
regulation of a number of innate immune pathways has been
implicated in the pathogenesis of SLE [3, 4]. For example,
disturbance of interferon-α (IFN-α) homeostasis is crucial
to the pathogenesis of SLE [5]. Enhanced T cell antigen
receptor (TCR) signaling and immune complexes (IC) are
also reported to be related to SLE [6]. Moreover, the impor-
tant role of TNF alpha in the autoimmune diseases such as
SLE is widely accepted [7]. The biological mechanism under-
lying the development of SLE remains unclear. Therefore, it
is of great significance to understand the mechanisms of the

development of SLE and provide new strategies for the effec-
tive therapy for SLE.

Autoantibodies are one of the hallmarks of SLE, whose
overproduction led to the clinical manifestations of SLE
[8]. Antinuclear antibody (ANA) is the most commonly
used biomarker of SLE, whose sensitivity is high but specific-
ity is low; due to that, it could also be detected in other
autoimmune diseases [9]. Thus, we need to identify new
SLE biomarkers with higher sensitivity and specificity.

Metabolomics is a technology that is widely used to
identify disease biomarkers and provide detailed informa-
tion on disease progression because metabolites are the end
products of DNA, RNA, and proteins [10]. Metabolomic
variants represent an interaction of genetic and environmen-
tal factors and are associated with disease states, which could
provide new insight into the progression of disease [11].
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Figure 1: Identification of altered proteins in SLE. (a) The SDS-PAGE results show the protein quality of each sample. (b) Base peak analysis
showed relative abundance of peaks eluting at different times. (c) Heat map analysis of altered proteins in SLE. (d) Volcano map analysis of
altered proteins in SLE. (e) The PCA score plots of serum samples from SLE patients and control patients.
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Metabolomics has been successfully used to define the met-
abolic features of multiple human diseases [11]. For exam-
ple, Guo et al. identified a series of potential biomarkers
for the diagnosis of fatty liver hemorrhagic syndrome by
serum metabolic profiling [12]. Chen et al. reported blocked
tricarboxylic acid (TCA) cyclic metabolism plays an impor-
tant role in chronic DILI-associated cirrhosis [13]. Zhang
et al. identified 11 metabolites, such as hexadecanoic acid
(C16:0), as potential serum biomarkers for diabetic kidney
disease [14]. As a high-throughput method, metabolomics
could detect thousands of serum metabolites once during
the different progression stages of human diseases, which is
suitable for biomarker discovery. Very interestingly, several
recent studies also demonstrated this finding in SLE. For
example, Leda et al. reported serum metabolomic signatures
can predict subclinical atherosclerosis in patients with SLE.
George et al. found increased apolipoprotein-B :A1 ratio
predicts cardiometabolic risk in patients with juvenile-
onset SLE. However, the roles of metabolomics in SLE
remained to be unclear. In this study, we identified altered
proteins and metabolites in SLE by applying an untargeted
metabolomic analysis with UPLC-Q-TOF/MS. The identifi-
cation of a series of novel proteins and metabolites may pro-
vide novel biomarkers for SLE.

2. Materials and Method

2.1. Sample Preparation. Samples were thawed at 4°C, and
100μL blood serum per sample was transferred to a new
tube and then added 400μL methanol (MeOH) and 400μL
acetonitrile. After vortexing 30 s and sonicating 10min, pro-

teins were prone to precipitate by being incubated 1 h at
20°C. After centrifugation, the supernatant was dried in a
vacuum concentrator. The extracts were then resuspended
in 100μL of 1 : 1 acetonitrile :H2O and sonicated 10min
and stored at -80°C.

2.2. Liquid Chromatography-Mass Spectrometry (LC-MS)/MS.
The supernatant was analyzed by HPLC-MS/MS on Triple-
TOF™ 6600plus mass spectrometer (AB SCIEX, USA),
coupled to an Agilent 1290 liquid chromatography system
(Agilent, USA). For LC separation, the ACQUITY UPLC,
BEH C18 column was used. 5μL sample was injected and
separated with a 12min gradient. The electrospray ioniza-
tion mass spectra were acquired in positive and negative
ion mode, respectively. The ion spray voltage was set to
5000V for positive mode and 4000V for negative mode.

2.3. Data Processing. ProteoWizard (version 3. 0. 6150) was
used for normalizing [15]. All of MS files (mzXML format)
were processed using R package “XCMS” (version 1.46.0)
for peak detection and alignment [16]. Metabolite identifica-
tion was achieved by MetDNA (http://metdna.zhulab.cn/),
with the MS1 peak table and MS2 data files (mgf format).
In order to select differential metabolites, the MS1 peak table
was uploaded to MetaboAnalyst (https://www.metaboanalyst
.ca) to perform differential metabolite discovery [17]. Principal
component analysis (PCA) and partial least squares dis-
criminant analysis (PLS-DA) were performed using nor-
malized peak table by total intensity to investigate a
possible separation of metabolite profiles between control
and MG samples, and fold changes and p values (assessed

Table 1: The top 10 upregulated and 10 downregulated proteins in SLE are listed.

Gene
name

Abundances
SLE1

Abundances
SLE2

Abundances
SLE3

Abundances
CON1

Abundances
CON2

Abundances
CON3

Regulation SLE/CON p value

ORM1 192.3 163.1 135.6 34 37.6 37.5 Up 4.500 0.001

ORM2 176 147.8 146.7 41.9 45.8 41.8 Up 3.633 0.000

APOC3 167.6 141.7 119.2 56.9 58.7 55.9 Up 2.499 0.004

APOC4 134.8 99.4 179.2 59.1 64.5 63 Up 2.215 0.031

IGLV3-10 153.3 94.1 142.4 78.6 64 67.5 Up 1.855 0.033

MMP3 124.4 143.1 111.2 80.6 72.1 68.6 Up 1.711 0.006

SAA4 117.4 117.5 134 77.8 81 72.3 Up 1.596 0.002

IGLV3-27 131.4 112.7 115.5 74.9 68 97.5 Up 1.496 0.020

VWF 133.5 116.2 109 78 83.1 80.3 Up 1.486 0.006

PIGR 105.2 111.1 140.3 81.5 88.1 73.8 Up 1.465 0.031

LUM 73.9 89.6 79.6 107.1 121.4 128.6 Down 0.681 0.008

PI16 67.3 98.5 76.8 106.2 122.2 129 Down 0.679 0.029

AHSP 82.7 69 89.6 136.6 95.5 126.6 Down 0.673 0.047

IGF2 81.5 77.4 79.2 117.4 126.4 118.1 Down 0.658 0.000

FAP 83.3 70.3 79.7 116.7 127.1 123 Down 0.636 0.001

THBS4 74 74 79.7 115.6 126.1 130.5 Down 0.612 0.001

APEH 77.3 71.3 78.4 118.8 99.6 154.6 Down 0.609 0.040

CBLN4 71.8 78.9 75.7 98.8 140 134.9 Down 0.606 0.020

KIT 71.2 77.6 77.4 135.8 123.2 114.8 Down 0.605 0.002

OMD 82.4 69.6 70.1 105.3 119.5 153.1 Down 0.588 0.025
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by the Student t-test) were computed. The discovery data set
contained 76533 features, and 4569 features were signifi-
cantly differentiated with fold changes greater than 1.5, p
value less than 0.05, and VIP greater than 1.5.

2.4. Enrichment Analysis. Enrichment analysis was per-
formed using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) v6.8 (https://david
.ncifcrf.gov/) [18].

2.5. Protein-Protein Interaction (PPI) Network Analysis. We
used STRING (https://string-db.org/) [19] to construct the
PPI network in SLE.

2.6. Statistical Analysis. The data were analyzed by SPSS 22.0
software. Student’s t-test was used where appropriate. A p
value less than 0.05 was considered as statistically significant.

3. Result

3.1. Identification of Altered Proteins in SLE. In the present
study, 3 SLE samples and 3 healthy control samples were
used to identify SLE-related proteins. The SDS-PAGE results
show that the protein quality of each sample is good, the
total amount of each sample is sufficient, and the parallelism
between samples is good (Figure 1(a)). Base peak analysis
showed relative abundance of peaks eluting at different times
is relative abundance (Figure 1(b)).

After normalizing the raw data in the limma package
[20] using corrected p value < 0.05 of R software, we
revealed 21 proteins were induced and 38 reduced proteins
in SLE compared to normal samples. The top 5 induced
proteins included ORM1, ORM2, APOC3, APOC4, and
IGLV3-10. The top 5 reduced proteins included THBS4,
APEH, CBLN4, KIT, and OMD. The top 10 upregulated
and 10 downregulated proteins in SLE are listed in Table 1.
The heat map (Figure 1(c)) and volcano map (Figure 1(d))
of all DEGs are shown in Figure 1. PCA revealed the SLE
samples were clustered and separated from normal samples
(Figure 1(e)).

3.2. Functional Enrichment Analysis of Altered Proteins in
SLE. To explore the potential function of the proteins with
altered levels in SLE, we performed GO and KEGG pathway
analysis. Our results showed that these proteins were related
to regulate platelet degranulation, bone mineralization
involved in bone maturation, activated T cell proliferation,
cell division, acute-phase response, multicellular organism
reproduction, ovulation from ovarian follicle, regulation of
gene expression by genetic imprinting, and glycolate meta-
bolic process (Figure 2(a)). For CC enrichment, these
proteins were mainly related to insulin-like growth factor
ternary complex, platelet dense granule lumen, exocytic ves-
icle, nucleosome, platelet dense tubular network, and protein
C inhibitor complex (Figure 2(a)). For MF enrichment, these
proteins were mainly related to protease binding, dipeptidyl-
peptidase activity, heparin binding, and metalloendopepti-
dase activity (Figure 2(a)).

The domain enrichment analysis showed proteins with
altered levels in SLE were related to peptidase S9, serine
active site, peptidase S9, prolyl oligopeptidase, catalytic
domain, alpha-1-acid glycoprotein, coiled-coil domain, IlGF,
insulin, conserved site, insulin-like superfamily, insulin fam-
ily, insulin-like, and insulin-like growth factor (Figure 2(b)).
KEGG enrichment analysis showed proteins with altered
levels in SLE were related to growth hormone synthesis,
secretion and action, AMPK signaling pathway, and p53 sig-
naling pathway (Figure 2(c)). The protein location analysis
showed these proteins mainly located in extracellular, endo-
plasmic reticulum, plasma membrane, mitochondria, cyto-
sol, nucleus, and peroxisome (Figure 2(d)).

3.3. PPI Network Establishment. To reveal the potential
relationships among proteins with altered levels in SLE, a
PPI network was built using the STRING database. 43 nodes
and 111 edges were included in the PPI network (Figure 3).
Based on network analysis, we identified 9 hub proteins with
degree > 10, including alpha 2-HS glycoprotein (AHSG),
insulin-like growth factor 1 (IGF1), orosomucoid 2
(ORM2), von Willebrand factor (VWF), orosomucoid 1
(ORM1), serpin family A member 1 (SERPINA1), insulin-
like growth factor 2 (IGF2), insulin-like growth factor

Location_Pie

Extracellular : 56.7%

Endoplasmic reticulum : 3.3%

Plasma membrane : 26.7%

Mitochondria : 3.3%
Cytosol : 5.0%

Nucleus : 3.3%
Peroxisome : 1.7%

(d)

Figure 2: Functional enrichment analysis of altered proteins in SLE. (a) GO analysis of altered proteins in SLE. (b) The domain enrichment
analysis of altered proteins in SLE. (c) KEGG analysis of altered proteins in SLE. (d) The protein location analysis of altered proteins in SLE.
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binding protein 3 (IGFBP3), and leptin (LEP). These hub
proteins connected with more 10 other proteins.

3.4. PCA of Serum Samples in SLEs. As presented in Figure 4,
PLS-DA plots were applied to characterize the metabolic
profiles for both positive (Figures 4(a) and 4(b)) and nega-
tive (Figures 4(c) and 4(d)) modes. We revealed SLEs com-
pared to controls showed distinct separations in the score
plots, indicating global changes to serum metabolite compo-
sition in SLE.

3.5. Altered Metabolites Were Identified in SLE. Further-
more, altered metabolites were identified in SLE. In positive
modes, 3405 significant altered metabolites were identified,
including 3289 induced metabolites and 117 reduced
metabolites (Figures 5(a) and 5(c)). In negative modes,
1165 significant altered metabolites were identified, includ-
ing 136 induced metabolites and 1028 reduced metabolites
(Figures 5(b) and 5(d)). Also, the correlation among these
differentially expressed metabolites was also analyzed
(Figures 5(e) and 5(f)).
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Figure 3: PPI network analysis of altered proteins in SLE.
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Figure 4: Continued.
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By merging both the positive and negative modes, we
identified 4569 differentially expressed metabolites in SLE
serum samples, including 1145 reduced metabolites and
3424 induced metabolites in SLE samples compared to nor-
mal samples. The most differently expressed metabolites
included phoenicoxanthin, L-(+)-anaferine, isorenieratene,

psilocin, (S)-reticuline, deoxytubulosine, tetrahomomethio-
nine, cellopentaose, lobeline, 2-hexaprenyl-6-methoxy-1,4-
benzoquinone, nebramycin 5′, octacis-undecaprenol, glyco-
chenodeoxycholate 7-sulfate, coumaryl acetate, S-[2-(N7-
guanyl)ethyl]-N-acetyl-L-cysteine, protodeoxyviolaceinic
acid, and catharanthine (Figure 5).
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Figure 4: PLS-DA analysis for SLE and control samples. (a, b) PLS-DA plots for SLE versus control separation in positive mode with 2D and
3D format. (c, d) PLS-DA plots for SLE versus control separation in negative mode with 2D and 3D format.
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Figure 5: Continued.
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3.6. Pathway Enrichment Analysis of Altered Metabolites.
Pathway enrichment was performed using MetaboAnalyst
4.0, and the results are showed in Figure 6. The altered
metabolites are related to valine, leucine, and isoleucine bio-
synthesis; one carbon pool by folate; tyrosine metabolism;
arginine and proline metabolism; glycine, serine, and threo-
nine metabolism; limonene and pinene degradation; trypto-
phan metabolism; caffeine metabolism; and vitamin B6
metabolism (Figures 6(a) and 6(b)).

3.7. Construction of Differently Expressed Protein-Metabolite
Networks. We next constructed differently expressed protein-
metabolite network to reveal the interaction among differently
expressed proteins and metabolites in SLE. As shown in
Figures 7 and 8, 481 proteins and 327 metabolites were
included in this network.

4. Discussion

Over the past few decades, a number of regulatory factors
related to the progression of SLE have been identified. For
example, targeting Kv1.3 channels in T lymphocytes can
correct disease manifestations associated with SLE [21].
Systemic lupus erythematosus favors the production of
double-negative T cells that produce IL-17 [22]. The
REDD1/autophagy pathway is mediated by tissue factor
(TF) and interleukin-17a (IL-17a) promotes thrombotic
inflammation and fibrosis in human SLE [23]. NF-κB induc-
ible kinase is a therapeutic target for SLE. It should be noted
that some previous studies have identified multiple central

regulators of SLE, such as Zhang et al. who identified 23
different metabolites and 5 interference pathways between
the two groups through fecal metabolomic analysis,
including aminoacyl-tRNA biosynthesis [24]. Kalantari
et al. identified alanine, 2,2-dimethylsuccinic acid, and 3,4-
dihydroxyphenylacetaldehyde as diagnostic criteria for lupus
nephritis [25]. Yan et al. profiled the fecal metabolome using
gas chromatography-mass spectrometry and explored the
potential roles of metabolites in the diagnosis and progres-
sion of SLE [26]. In the present study, we revealed 21 proteins
were induced and 38 reduced proteins in SLE compared to
normal samples with UPLC-Q-TOF/MS.

In addition, we performed bioinformatics analysis of
altered proteins in SLE patients. Our findings indicated
altered proteins are involved in multiple immune pathways,
such as platelet degranulation, upregulation of activated T
cell proliferation, cell division, acute phase response, and
glycolate metabolism. Our research suggests that the
immune pathway plays an important role in SLE. Analysis
of KEGG pathway showed that TP53 and AMPK signals
were related to SLE. Of note, our findings were consistent
with previous report that T cell proliferation had a key role
in SLE, which was also considered as a fundamental immu-
nologic characteristic of SLE. In this study, we found that
AHSG, VWF, IGF1, ORM2, ORM1, SERPINA1, IGF2,
IGFBP3, and LEP were closely related to SLE and played a
crucial role in the occurrence and development of SLE.
AHSG is a glycoprotein synthesized by a variety of fetal tis-
sues. It has been shown that in SLE patients, the level of
AHSG is reduced and is inversely associated with carotid

−0.5 0.0 0.5 1.0

(e)

−0.5 0.0 0.5 1.0

(f)

Figure 5: Differentially expressed metabolites were identified in SLE. Volcano map analysis of altered metabolites in SLE in (a) negative
mode and (b) positive mode. Volcano map analysis of altered metabolites in SLE in (c) negative mode and (d) positive mode.
Correlation analysis of altered metabolites in SLE in (e) negative mode and (f) positive mode.
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Figure 6: (a, b) Pathway analysis of significant altered metabolites in SLE.
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intima-media thickness, which is consistent with our find-
ings, suggesting that AHSG is a biomarker of atherosclerosis
and can be used to evaluate SLE progression [27, 28]. IGF1
activates the cell proliferation pathway and inhibits cell apo-
ptosis, which is involved in tumor growth and is required for
B cell-independent T cell activation, the hallmark of SLE.
Free IGF1 has a positive metabolic role in SLE, which may

indirectly inhibit cellular immune response by suppressing
B cell and T cell activity [29]. Serum IGFBP-3 was higher
in systemic sclerosis than in controls, and elevated IGFBP-
3 levels were related to a lower incidence of telangiectasia
in systemic sclerosis [30]. Leptin is a cytokine-like hormone,
which can control energy consumption. Leptin had a key
role in immune imbalance in SLE. Multiple reports revealed

Figure 7: Construction of differently expressed protein-metabolite networks—1. The figure shows the relationship between compounds,
enzymes, reactions, and proteins. Different shapes represent different molecular types: hexagons represent compounds; diamonds
represent reactions; circles represent genes; rectangles represent enzymes. The connection between them indicates their relationship.
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elevated leptin levels promote SLE progression by inducing
autoantibody production and inhibiting immune regulation.
Leptin induced the Th17 differentiation by activating
NLRP3 inflammatory bodies [31]. In humans, the hominoid
bone meal (ORM) family contains two genes, ORM1 and
ORM2. The ORM family contains three subtypes, ORM1,
ORM2, and ORM3, which are the acute phase proteins of
inflammatory response [32]. Our study is the first to show
that ORM1 and ORM2 are associated with SLE.

By comparing the metabolism of SLE patients with that
of controls, we identified a series of metabolites, including
phoenicoxanthin, L-(+)-anaferine, isorenieratene, psilocy-
bin, (S)-reticuline, deoxyuracil, tetramethionine, cellopen-
taose, 2,3-bis-(O-phytyl)-sn-glycero-1-phospho-L-serine,

lobeline, 2-hexenyl-6-methoxy-1, 4-benzoquinone, and
nebramycin 5′. Bioinformatics analysis showed that the
elevated levels of these metabolites were associated with
biosynthesis of valine, leucine, and isoleucine; tyrosine
metabolism; tryptophan metabolism; and vitamin B6 metab-
olism. Interestingly, these metabolisms are associated with
SLE. For example, vitamin B6 was inversely associated with
unchanged/increased glucocorticoid dose, suggesting that
vitamin B6 may prevent GC dose increase. A prospective
study of Japanese women found an inverse association
between vitamin B6 intake and risk of active disease. Degra-
dation of tryptophan is found in patients with SLE. Mood
disorder in SLE is caused by decreased serum and brain
tryptophan and antiribosomal P protein antibodies [33].

Figure 8: Construction of differently expressed protein-metabolite networks—2. The figure shows the relationship between compounds,
enzymes, reactions, and proteins. Different shapes represent different molecular types: hexagons represent compounds; diamonds
represent reactions; circles represent genes; rectangles represent enzymes. The connection between them indicates their relationship.
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Dysregulation of the gut microbiota and altered tryptophan
catabolism lead to autoimmunity in lupus-prone mice in a
mouse model. Our results and previous reports suggest that
tryptophan deficiency and vitamin B6 may be associated
with neurological/psychiatric disorders in SLE.

Several limitations should also be noted. First, only 3 SLE
samples and 3 healthy controls were used to identify altered
proteins in SLE. The sample size is limited. More clinical
samples will be collected for further confirmation. Second,
many metabolites were identified to be related to SLE. How-
ever, the roles of these metabolites in SLE remained to be
further confirmed.

Altogether, we identified 21 proteins that were upregu-
lated by SLE and 38 that were downregulated. By PPI
network analysis, we identified 9 central genes of SLE,
including AHSG, VWF, IGF1, ORM2, ORM1, SERPINA1,
IGF2, IGFBP3, and LEP. In addition, we identified 4569
metabolites differentially expressed between SLE serum sam-
ples and normal samples, including 3le reduced metabolites
and 3424 induced metabolites. Bioinformatics analysis
showed that the protein changes of SLE were related to the
regulation of multiple immune pathways, TP53 signaling,
and AMPK signaling. In addition, we found that these
altered metabolites are involved in amino acid metabolism
and vitamin B6 metabolism. Although the exact role of these
metabolites in the diagnosis and treatment of SLE disease
requires further investigation, this study may still provide
novel information to understand the role of metabolites
in SLE.
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