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Auto-inhibition is a common transcriptional control mechanism that is well characterized in the regulatory
transcription factor Ets-1. Autoinhibition of Ets-1 DNA binding works through an inhibitory module that exists
in two conformations. DNA binding requires a change in the inhibitory module from the packed to disrupted
conformation. This structural switch provides a mechanism to tightly regulate Ets-1 DNA binding. We report
that the Ets-1 partner protein core-binding factor 2 (CBFa2; also known as AML1 or PEBP2) stimulates
Ets-1 DNA binding and counteracts auto-inhibition. Support for this conclusion came from three observations.
First, the level of cooperative DNA binding (10-fold) was similar to the level of repression by auto-inhibition
(10- to 20-fold). Next, a region necessary for cooperative DNA binding mapped to the inhibitory module. Third,
an Ets-1 mutant with a constitutively disrupted inhibitory module did not bind DNA cooperatively with CBFa:2.
Furthermore, two additional lines of evidence indicated that CBFa2 affects the structural switch by direct
interactions with Ets-1. First, the retention of cooperative DNA binding on nicked duplexes eliminated a
potential role of through-DNA effects. Second, cooperative DNA binding was observed on composite sites with
altered spacing or reversed orientation. We suggest that only protein interactions can accommodate this
observed flexibility. These findings provide a mechanism by which CBF relieves the auto-inhibition of Ets-1 and

illustrates one strategy for the synergistic activity of regulatory transcription factors.

Auto-inhibition modulates a variety of transcription factor
activities (21). In this regulatory mechanism, inhibitory se-
quences act in cis to repress such functions as DNA binding,
transcriptional activation, nuclear localization, and ligand in-
teraction. The picture emerging from the study of several tran-
scription factors suggests that protein partnerships can coun-
teract auto-inhibition. For example, serum response factor
counteracts the auto-inhibition of Elk-1 DNA binding (36).
The DNA binding of Pip, which contains an auto-inhibitory
domain, requires interactions with PU.1 (9), and Pbx activates
the DNA binding of its partner protein Hoxb (10, 11). Simi-
larly, DNA binding by the yeast repressor al requires forma-
tion of a ternary complex with a2 (63). Examples within basal
transcriptional machinery include the auto-inhibition of the o
subunit of Escherichia coli RNA polymerase. Interaction with
core RNA polymerase counters this inhibitory effect (13).
Also, the inhibitory function of the amino terminus of TATA-
binding protein is abrogated by interactions with SNAPc (40).
In each of these DNA binding scenarios, auto-inhibition gen-
erates a tighter control switch from the off to on state. To
decipher the molecular basis of the interplay between auto-
inhibition and protein partnerships, we focus on Ets-1, for
which auto-inhibition is well characterized at the mechanistic
and structural levels (21).

Auto-inhibition, together with protein partnerships, can pro-
vide specificity within a family of highly related transcription
factors (22). Ets-1 belongs to the ets gene family, which in-
cludes over 50 genes throughout the metazoa. The ets proteins
display common DNA binding properties due to conservation
in the ETS domain (22, 56). Nevertheless, each ets protein
appears to have a specific function, presumably by regulating
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unique target genes. For example, Ets-1 is in the mesodermal
compartment of several tissues in the mouse embryo (33) and
in T and B lymphocytes, natural killer cells, endothelial cells,
and the brain of the adult mouse (4, 7, 17, 18, 73). Targeted
disruption of ets-1 in the mouse results in abnormal T- and
B-cell function, as well as defective natural killer cell develop-
ment (4, 8, 42). However, there are other ETS domain proteins
found in these tissues. For example, T lymphocytes contain the
ets proteins TEL, PU.1, Elf-1, Fli-1, Erg, Ets-2, and GABP, in
addition to Ets-1 (1). Thus, some level of control beyond DNA
binding must determine specificity. Auto-inhibition of DNA
binding provides a regulatory framework with which to gener-
ate this specificity.

We have developed a structural and mechanistic model of
Ets-1 auto-inhibition based on biophysical and biochemical
studies (21) (Fig. 1). Ets-1 binds DNA through the ETS do-
main, which consists of three « helices and four B strands
folded into a winged helix-turn-helix motif (5, 15, 32, 41, 72).
Two regions that flank the ETS domain work together to
repress the DNA binding activity of Ets-1. Deletion of either
region leads to derepression, resulting in DNA binding affinity
that is 10- to 20-fold higher than that measured for full-length
Ets-1 (25, 27, 35, 51, 71). Nuclear magnetic resonance analyses
indicate that the flanking inhibitory regions consist of three o
helices, HI-1 and HI-2 amino terminal and H4 carboxyl termi-
nal to the ETS domain (15, 59). These data support a model in
which the three inhibitory helices and H1 of the ETS domain
pack together in a four-helix bundle to form an inhibitory
module. Upon DNA binding, helix HI-1 unfolds, causing a
disruption of the inhibitory module (27, 51). We have pro-
posed that this conformational change is responsible for the
relatively low DNA binding affinity of the native Ets-1. In this
study, we tested whether a partnership with a second DNA
binding protein counteracts the auto-inhibition of Ets-1.

We have chosen the Ets-1-core-binding factor (CBF) part-
nership as a model system. CBF represents a small family of
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FIG. 1. Ets-1 domains and conformational change. (A) Schematic of the
structural and functional domains of full-length Ets-1, Ets-1*N?%9 and Ets-
1AN331 The asterisk indicates the mutation in helix H4 of Ets-12N280:L4294 (B)
Schematic representation of the secondary structure of Ets-14N2%0 a5 determined
by nuclear magnetic resonance spectroscopy (14, 59). Shown are the tertiary
structure of the ETS domain (15) and proposed structure of the inhibitory
module in the absence (left) and presence (right) of DNA (15, 21, 59). The K,
value is for the SCl/core composite site.

heterodimeric proteins (62). Three genes in vertebrate ge-
nomes (in humans, CBFAI, CBFA2 [AMLI], and CBFA3) en-
code o subunits that contain a conserved DNA binding do-
main, termed the Runt domain (28). A single vertebrate gene,
CBFB, encodes the non-DNA-binding subunit, CBFB (2, 3, 28,
34,48, 49, 70). CBFa2 is found in most hematopoietic lineages
and is required for hematopoiesis (45, 46, 50, 53, 54, 68, 69).
Thus, both Ets-1 and CBF are important proteins in mamma-
lian immune system development and function.
Experimental approaches demonstrate the functionality of
the Ets-1 and CBF partnership. Several cellular and viral en-
hancers contain adjacent Ets-1 and CBF binding sites, includ-
ing the T-cell receptor (TCR) o and B enhancers, immuno-
globulin w heavy-chain enhancer, osteopontin promoter, and
enhancers of the polyomavirus and Moloney murine leukemia
virus (Mo-MLYV) (16, 24, 29, 39, 55, 74). Mutation of the Ets-1
and CBF binding sites in the Mo-MLYV enhancer reduces viral
enhancer activity and alters viral disease specificity (60, 61). In
vivo footprinting assays show occupancy of the Mo-MLYV Ets-1
and CBF binding sites in T cells, thus confirming the in vivo
function of these adjacent sites (20). Ets-1 and members of the
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CBF family synergistically activate the TCRa and TCRp en-
hancers, the immunoglobulin w heavy-chain enhancer, the os-
teopontin promoter, as well as the Mo-MLV enhancer in vivo
(16, 19, 31, 39, 55, 65, 74). Cooperative DNA binding between
Ets-1 and CBFa2 is detected in in vitro studies of the TCRa
and TCRp enhancers (19, 31, 39, 74). Furthermore, the ac-
companying report quantifies the level of cooperativity and
demonstrates that enhancement of Ets-1 and CBFa2 DNA
binding is reciprocal (23). These findings suggest that DNA
binding cooperativity is a mechanism for transcriptional syn-
ergy.

This study links the auto-inhibition phenomenon of Ets-1 to
the DNA binding cooperativity of the Ets-1 and CBFa?2 part-
nership. The regions of Ets-1 necessary for cooperativity and
auto-inhibition overlap. In addition, disruption of the inhibi-
tory module abrogates the effect of CBFa2 on Ets-1 DNA
binding. Finally, the binding sites can be topologically uncou-
pled and widely spaced, suggesting that through-DNA effects
do not mediate cooperativity. These findings support a mech-
anistic model of the Ets-1 and CBF protein partnership in
which protein interactions counteract the auto-inhibition
mechanism.

MATERIALS AND METHODS

Protein synthesis and purification. Full-length Ets-1 was synthesized in bac-
teria and purified from the insoluble fraction by conventional chromatography
(27). Ets-12N289 (wild type and L429A mutant) and Ets-14N33! were produced in
bacteria and purified from the soluble fraction by conventional chromatography
(51). CBFa2 with amino acids 1 to 331 of the 451-amino-acid native CBF
residues, termed CBFa2€, was produced in Sf9 insect cells with a baculovirus
expression system and purified by affinity chromatography with FLAG and His
tag methodology (23). Purified Ets-1 and CBFa2 proteins were incubated first
with 1/10 volume of fresh 0.1 M dithiothreitol at 4°C for 30 min before each use
to reverse any artifactual oxidation. Activity of protein preparations was deter-
mined by DNA titration experiments (23, 27).

Synthetic oligonucleotides. Oligonucleotides were synthesized (Applied Bio-
systems model 394 or 3948 apparatus) and purified either by gel purification as
described previously (27) or by reverse-phase chromatography on an automated
DNA synthesizer (Applied Biosystems model 3948) followed by gel filtration
(BioSpin-6; Bio-Rad). Radiolabeling of 5’ termini was performed with T4
polynucleotide kinase and [y**PJATP (7,000 Ci/mol) prior to annealing of com-
plementary oligonucleotides, as described previously (27).

Synthetic complementary oligonucleotides containing the composite Ets-1 and
CBF binding sites were used for the DNA binding assays. The sequences of the
Mo-MLYV enhancer (ets/cbf) oligonucleotides were 5'-GATCCCAAACAGGAT
ATCTGTGGTAAGCA-3’ (top strand) and 5'-GATCTGCTTACCACAGATA
TCCTGTTTGG-3' (bottom strand). Sequences of the SC1/core oligonucleotides
were 5'-GGCCAAGCCGGAAGTGTGTGGTAAACACTTT-3" (top strand)
and 5'-AAAGTGTTTACCACACACTTCCGGCTTGGCC-3' (bottom strand).
Mutant versions of these duplexes are listed in Tables 1 and 2 with only the top
strand presented. In the case of the oligonucleotides in which the binding site
orientation was reversed, 9 and 14 bp for the Ets-1 and CBF binding sites,
respectively, were reversed to accommodate both requisite core sequences (un-
derscored in Table 2) and the preferred flanking sequences. This engineering
altered the native spacing. Nicked duplexes were generated by annealing two
separate oligonucleotides that represented the top strand to an intact comple-
mentary bottom strand. This DNA duplex has a nick at the junction of the two
upper-strand oligonucleotides. Furthermore, the 5" phosphate in the nick (junc-
tion) of the two upper strands is missing.

EMSA. Equilibrium dissociation constants (K,s) of CBFa2€ and Ets-1 were
determined by electrophoretic mobility shift assays (EMSA) using conditions
described previously (47). In brief, the reaction mixtures were in TGEK, buffer,
which consisted of 25 mM Tris-Cl (pH 7.9), 10% glycerol, 6 mM MgCl,, 0.5 mM
EDTA, and 60 mM KCI with 0.5 mM dithiothreitol and 200 pg of bovine serum
albumin per ml. Following a 20-min incubation on ice (40 min for Ets-14N280),
reaction products were loaded onto a native polyacrylamide gel (acrylamide:
bisacrylamide, 30:0.8, 45 mM Tris-borate [pH 8.3], 1 mM EDTA). The full-
length Ets-1 protein was resolved on 6% polyacrylamide gels (16 cm), while the
truncated Ets-1 proteins were resolved on 8% gels (20 cm). The gels were dried
and exposed to a PhosphorImager screen (Molecular Dynamics), and relative
radioactivity was quantified as the volume integration of individual bands. When
protein titrations were used, the concentrations were in a range that resulted in
approximately 0 to 100% binding. For experiments in which CBFa24¢ was added
in saturating amounts, the concentration was at least 10-fold higher than the K,
of CBFa22€ for its specific site (=2 X 107% M). This ensured >90% DNA
occupancy. In all assays, the DNA concentrations were at least 10-fold below the
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TABLE 1. Autoinhibition on the Mo-MLYV and the SC1 Ets-1 binding sites

Mean K, (nM) = SE”

Site Composite site sequence” CBF
Ets-1 AN280 AN331 AN280 L429A
MLV ets/cbf 5'-GATCCCAAACAGGATATCTGTGGTAAGCA - 7.10 = 0.58 0.25 = 0.0090
+ 0.34 £ 0.028
MLV ets—/cbf 5'-GATCCCAAACATTATATCTGTGGTAAGCA - 430 = 44
+ 380 = 55
SCl/core 5'-GGCCAAGCCGGAAGTGTGTGGTAAACACTTF  0.85°*=0.13  1.50 = 0.22 0.044 = 0.18 0.097 = 0.0090
+ 0.086° = 0.0060 0.15 = 0.020  0.047 = 0.0040 0.077 = 0.0080
SC1 5'-TCGACGGCCAAGCCGGAAGTGAGIGCC — 0207 = 0.020 0.44¢ 0.0085¢ = 0.00070

“ Underscored sequences indicate Ets-1 and CBFa2 recognition sequences.

b Values are the means of two to three independent experiments. SE expresses the accuracy of the curve fit rather than the error reflected in the error bars (as

described in Materials and Methods).
¢ From accompanying report (23).
@ Published data (27).
¢ Published data (51).

estimated Kj, of the Ets-1 species (=10~'! M), ensuring that the total Ets-1
species concentration [P,] was an accurate estimate of free Ets-1 species con-
centration [P].

Quantitative analysis of DNA binding. For assays containing only a single
binding species, Ets-1, the Kj,s were measured as described previously (27).
Specifically, the fraction of free DNA, [D]/[D,], was determined by measuring the
ratio of the free DNA signal analyzed at each protein concentration to the DNA
signal in a control lane containing no protein. The fraction of DNA in complex
with protein, [PD]/[D,], was derived from the relationship [PD]/[D,] = 1 —
[DJ[D,]. To derive the Kj, with standard error (SE), the data were fit to the
rearranged mass action equation, [PD])/[D,] = 1/(1 + Kp/[P]), using nonlinear
least squares analyses (Kaleidagraph; Synergy Software). Multiple experiments
were performed with the same range of protein concentrations to provide mean
and SE values for each data point. Mean values were used for curve fitting. SEs
of means are displayed as error bars. SEs of the K, values, which were provided
by the curve fitting, are presented in tabular form.

To measure cooperative DNA binding, the apparent DNA binding affinities of
Ets-1 species were determined in the presence of a large molar excess of the
CBFa2%€ fragment. To perform curve fitting with the equation [PD]/[D,] =
1/(1 + Kp/[P]), several assumptions were made. (i) The disappearance of the
binary complex (DNA + CBFa2“C) was the key parameter to be measured;
therefore, [D,] was defined as the binary complex signal in a control lane that
contained DNA and only CBFa22€. (ii) The binary complex signal (DNA +
CBFa24) was used as [D] for reaction mixtures with DNA + CBFa24€ + Ets-1
species. (iii) The fraction of DNA bound in the ternary complex was defined as
[PD)/[D,], which was derived from 1 — [D]/[D,].

RESULTS

Ets-1 binding to the Mo-MLV enhancer is repressed by
auto-inhibition and enhanced by CBFa2. The initial goal was
to provide a biological context for the hypothesis that CBF
counteracts Ets-1 autoinhibition. Our approach was to docu-
ment the phenomena of auto-inhibition and cooperativity on a
biologically relevant site that displays synergistic transcrip-

tional activation by Ets-1 and CBF. Our previous studies of
Ets-1 DNA binding often used an artificial, high-affinity bind-
ing site, termed SC1 (47). For our initial experiments, we
switched to the composite element in the Mo-MLV enhancer
that binds both Ets-1 and CBFa2 (24, 65). To investigate the
autoinhibition of Ets-1 on the Mo-MLV enhancer site, we
measured the DNA binding affinity of full-length Ets-1 and the
amino-terminal deletion mutant, Ets-12N33!) which lacks the
amino-terminal inhibitory helices (Fig. 1). DNA binding by
purified proteins was detected by EMSA. K,s were determined
from full binding curves. The affinity of Ets-1 was 27-fold lower
than that of Ets-14~3*! (Fig. 2A; Table 1). This result is similar
to the 23-fold auto-inhibition observed previously on the SC1
site (Table 1) (27). Also, as expected from previous studies,
Ets-1 affinity for the Mo-MLYV site was 10-fold lower than that
for the high-affinity SC1 site (24, 43, 47). The detection of
autoinhibition on the Mo-MLYV enhancer establishes that this
phenomenon is not dependent on the sequence or affinity of
the binding site.

To characterize cooperative DNA binding of Ets-1 and CBF
on the Mo-MLYV enhancer site, Ets-1 DNA binding was mea-
sured in the presence and absence of saturating levels of
CBFa2. We used a fragment of CBFa2 (spanning amino acids
1 to 331) designated CBFa2”<, which is the largest version of
CBFa2 obtainable in a pure state from a baculovirus expres-
sion system (23). The presence of CBFa2* enhanced Ets-1
DNA binding affinity 20-fold (Fig. 2B and C; Table 1). This
result is similar to the 10-fold enhancement of Ets-1 affinity for
the artificial composite site, SC1/core, which contains the high-

TABLE 2. Effects of altered spacing and orientation of Ets-1 and CBFa2 binding sites

Site Composite site sequence”

Mean K, (nM) = SE”

Ets-1 Ets-1 + CBF

SCl/core

5'-GGCCAAGCCGGAAGTGTGTGGTAAACACTTT

0.85¢ = 0.13 0.086¢ = 0.0060

Nicked SCl1/core 5'-GGCCAAGCCGGAAG_TGTGTGGTAAACACTTT 3.30 = 0.61 0.21 £ 0.010

invCBF 5'-GGCCAAGCCGGAAGTCCTCGTTTACCACACGACTTT 1.90 = 0.29 0.14 £ 0.0010
invEts 5'-GGCCAACTTCCGGCTCCTCGGTGTGGTAAAGACTTT 0.67 = 0.050 0.19 = 0.0080
A+5 5'-GGCCAAGCCGGAAGTGCATCGTGTGGTAAAGACTTT 1.90 = 0.26 0.24 £ 0.0020
A+10 5'-GGCCAAGCCGGAAGTGCATTCGCTCGTGTGGTAAAGACTTT 220 = 0.23 0.25 £ 0.0030
A—4 5'-GGCCAAGCCGGATGTGGTAAACAGTTT 2.30 = 0.28 0.069 = 0.0050
Nicked A—4 5'-GGCCAAGCCGGA TGTGGTAAACAGTTT 6.80 = 0.41 0.027 = 0.0050

¢ Underscored sequences indicate the Ets-1 and CBFa2 recognition sequences.

® Values are a result of two to three independent experiments. SE expresses the accuracy of the curve fit rather than the error reflected in the error bars (as described

in Materials and Methods).
¢ From accompanying report (23).
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FIG. 2. Ets-1 autoinhibition and DNA cooperativity with CBFa2*< on the
Mo-MLYV enhancer. (A) Measurement of auto-inhibition. Equilibrium DNA
binding curves for Ets-1 (filled squares) and Ets-12N33! (open squares) were
obtained from EMSA as described in Materials and Methods. [DP]/[D,] is pre-
sented as the mean (£SE) of two or three independent experiments. The K,
(molar) was derived by fitting the data to the equation [PD)/[D,] = 1/(1 +
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affinity Ets-1 binding site SC1 juxtaposed with native spacing to
the CBEF site found in the Mo-MLYV enhancer (Table 1) (23).
DNA binding of Ets-1 and CBFa2 also was measured on a
Mo-MLV enhancer site, ets—/cbf, in which the Ets-1 recogni-
tion sequence was mutated (Fig. 2C; Table 1). Nonspecific
Ets-1 binding was detected, but only at the highest concentra-
tions of Ets-1. Dual occupancy, but no cooperative DNA bind-
ing, was observed with CBFa2”€. In conclusion, cooperative
binding of Ets-1 and CBF«24€ is independent of the sequence
and affinity of the binding site; however, sequence-specific
DNA binding by Ets-1 is required. In summary, the Mo-MLV
composite site displays both autoinhibition and DNA binding
cooperativity. Thus, these initial findings link the auto-inhibi-
tion and DNA binding cooperativity phenomena to a biologi-
cally relevant enhancer element.

Regions required for cooperativity and auto-inhibition over-
lap. In studies of the Mo-MLV enhancer site, the level of
auto-inhibition (10- to 20-fold) was in the same range as the
level of cooperative binding. This was our first clue that CBFa2
might enhance Ets-1 DNA binding by affecting auto-inhibition.
These results also suggested that both phenomena might in-
volve the same region of Ets-1. To map the regions of Ets-1
that are necessary for cooperativity with CBFa2, the DNA
binding affinities of amino-terminal deletion mutants Ets-
14N280° and Ets-14N*3! were measured with and without
CBFa2*€ (Fig. 1). The composite site, SC1/core, composed of
a high-affinity Ets-1 site juxtaposed to the CBF site of the
Mo-MLYV enhancer, was used because the higher affinity leads
to sharper bands on the EMSA gel and thus an increase in the
precision of the assay. Ets-12N* displayed a 10-fold enhance-
ment of DNA binding in the presence of CBFa2*€, demon-
strating cooperativity similar to that of full-length Ets-1 (Fig.
3A; Table 1) (23). In contrast, Ets-14™**' and CBFa2*€ did
not bind DNA cooperatively (Fig. 3B; Table 1). Our results
indicate that sequences necessary for cooperativity lie between
positions 280 and 331. Two amino-terminal inhibitory helices,
HI-1 and HI-2, that play a key role in auto-inhibition are found
in this region (Fig. 1B) (59). Because this region is part of a
structural domain that includes these two helices as well as the
carboxyl-terminal inhibitory helix, H4, and the ETS domain
(Fig. 1B), we did not attempt to further delineate functional
sequences. In conclusion, the structural domain required for
auto-inhibition is also required for DNA binding cooperativity.

Analyses of DNA determinants for cooperativity implicate
flexible protein-protein interactions. Two potential mecha-
nisms could mediate cooperativity. CBFa2 could enhance
Ets-1 DNA binding indirectly through the topological connec-
tion between the two binding sites. This would represent a
through-DNA effect, with CBFa2 causing a change in the
DNA conformation that affects the binding of Ets-1. Alterna-
tively, CBFa2 could directly contact Ets-1 and mediate its
effect through protein interactions. In this case, DNA could
play a relatively passive role by simply tethering the two pro-
teins for optimal interaction.

To distinguish between protein-protein interactions and
through-DNA effects, we investigated the DNA determinants
for cooperativity. To test the proposed through-DNA mecha-
nism, the two sites were topologically uncoupled by nicking

(Kp/[P])), using nonlinear least squares analysis. (B) EMSA of equilibrium DNA
binding studies of Ets-1 titrated onto DNA alone (top) or in the presence of a
constant (~2 X 107 M) amount of CBFa22¢ (bottom). The wedge indicates
increasing amounts of Ets-1 in each binding assay as indicated in panel C. (C)
Equilibrium DNA binding curves for Ets-1 (data from panel B), as well as from
a repeat of these experiments performed on a mutant Mo-MLYV site, ets—/cbf.



VoL. 20, 2000

A

1
08F
06
[PD] i
— 04
(Dl [
021 o AN280
0Ff ® AN280 + CBF02AC
MWM&J
1012 10710 10® 10°®
B 1L
N [ ]
08
o] %€ F
0.2 - O AN331
oF ® AN331 + CBF022C
1012 1010 10® 10°®
[Protein]

FIG. 3. Mapping regions required for cooperativity between Ets-1 and
CBFa24€. (A) Equilibrium DNA binding curves for Ets-14N?% obtained from
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(filled circles) of a constant (~2 X 10~% M) amount of CBFa24€.

one strand of the composite binding site, SC1/core. This break
in the phosphodiester backbone did not lower the level of
cooperativity (Table 2). This result suggests that DNA binding
by one protein does not indirectly influence the binding of the
second protein. It is worth noting that this experiment does not
address the long-distance effects of DNA conformation that
have been detected in ternary complexes formed on more
widely spaced binding sites (66).

The DNA determinants for cooperative binding also were
explored by manipulating the orientation of the binding sites
(Table 2). Both the Ets-1-DNA and CBFa2-DNA binary com-
plexes are expected to show polarity because the Runt domain
and the ETS domain each bind DNA as a monomer with no
apparent pseudosymmetry. In the case of Ets-1, structural data
demonstrate the asymmetry of the ETS domain-DNA interac-
tion (5, 32, 41, 72). Structural information for CBFa2 also
predicts an asymmetric complex (6, 44). Thus, a change in the
orientation of either binding site could alter the putative pro-
tein-protein interface. Surprisingly, changing the orientation of
the CBF site (invCBF) did not change cooperative DNA bind-
ing (Table 2). These results indicate that considerable flexibil-
ity exists in the CBF elements that participate in the cooper-
ativity and implicate sequences outside the highly structured
Runt domain as being important for cooperativity. This pro-
posal is consistent with mapping data in the accompanying
report (23). We propose that these flanking elements display
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sufficient flexibility or perhaps are located centrally within the
structure, such that reversal of site orientation does not affect
the CBFa2 and Ets-1 interactions. In contrast, reversal of the
Ets-1 binding site orientation (invEts) reduced cooperativity
from 10- to 3.5-fold (Table 2). We propose that the asymmetric
location of the inhibitory module within Ets-14™28 causes this
reduction (Fig. 1). Because sequences within this module are
necessary for cooperativity, the optimal interface between
Ets-1 and CBF may be compromised by the change in binding
site orientation.

DNA requirements were investigated further by varying the
spacing between the recognition sequences for Ets-1 and CBF.
To disrupt or retain helical phasing, the spacing of 4 bp be-
tween the SC1 and core sites was expanded by 5 (A+5) or 10
(A+10) bp (Table 2). In addition, we tested a duplex in which
the spacing was eliminated (A—4). The changes in spacing
reflect the variability of spacing in native sites. For example,
the polyomavirus enhancer and osteopontin promoters have
the added 9 or 10 bp, whereas the TCRB enhancer is identical
to A—4 (19, 55, 65, 74). Both the A+5 and A+10 duplexes
displayed cooperativity between Ets-1 and CBFa2 (Table 2).
(These results provide an important control for the site orien-
tation experiments above, in which spacing was altered.) Be-
cause locally altered DNA conformation does not easily lead to
long-distance effects (75), this retention of cooperativity sup-
ports the conclusion that through-DNA effects are not in-
volved in the 10-fold enhancement of Ets-1 binding. Again,
these results imply that protein elements that mediate coop-
erativity must accommodate considerable structural flexibility.

In contrast to results from widely spaced binding sites, the
A—4 duplex displayed a higher level of cooperative DNA bind-
ing than the SCl/core composite site (Fig. 4; Table 2). The
33-fold cooperativity could be mediated by additional direct
contacts that would be possible due to the closer proximity of
the proteins. Alternatively, the proximity of the recognition
sequences could facilitate through-DNA effects. To test this
latter alternative, a nick was introduced into one strand of the
A—4 duplex (Table 2). Nicking did not lower the level of
cooperativity. The retention of cooperativity eliminates an in-
direct mechanism that uses the topological coupling of the
binding sites. Instead, the nicked binding site displayed an
increase in cooperative DNA binding, from the 33-fold effect
observed with A—4 to a 250-fold effect (Fig. 4; Table 2). There
are several possible reasons for this increase. A torsional strain
in the DNA backbone could develop due to the proximity of
the sites, and the nick relieves the strain by uncoupling the
sites. Alternatively, the loss of phosphate at the site of the nick
could affect the energetics of binding. These findings suggest
that an additional mechanism contributes to cooperativity of
closely apposed sites. Future investigations will explore this
possibility.

Derepressed Ets-1 mutant is resistant to CBF cooperative
effects. The results of quantitative binding assays and mapping
experiments suggested that cooperativity could function by
counteracting auto-inhibition of Ets-1. Furthermore, the anal-
ysis of DNA determinants suggested that the mechanism in-
volves protein interactions rather than through-DNA effects.
Finally, considerable flexibility is expected in these protein
interactions. There are two possible models to explain how the
Ets-1-CBFa2 partnership counteracts auto-inhibition through
such flexible protein interactions. In one scenario, CBFa2
could cause a conformational change in the folded inhibitory
module. We envision this as a repositioning of structural ele-
ments such that unfolding of helix HI-1 is no longer necessary.
Alternatively, CBFa2 could favor a shift in the equilibrium
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FIG. 4. Effects of topological uncoupling of DNA binding sites for Ets-1 and
CBFa24€. (A) EMSA of equilibrium DNA binding studies of Ets-1 titrated onto
nicked A—4 DNA alone (top) or in the presence of a constant (~2 X 108 M)
amount of CBFa2€ (bottom). (B) Equilibrium DNA binding curves for Ets-1
obtained from EMSA in the absence (open symbols) and presence (filled sym-
bols) of CBFa22€. Cooperative DNA binding was measured on either the A—4
(circles) or nicked A—4 (triangles) DNA duplex (Table 2).

toward the disrupted inhibitory module. Unfolding and/or re-
folding of helix HI-1 could be affected.

To gain additional insight into the mechanism of cooperat-
ivity, we tested a version of Ets-1 in which the inhibitory mod-
ule is constitutively disrupted and that displays derepressed
DNA binding. Ets-14N28%:14294 bears an amino acid substitu-
tion in the inhibitory helix H4 (Fig. SA). Proteolysis experi-
ments indicate that helix HI-1 is constitutively unfolded in this
mutant version of Ets-1 (data not shown). In quantitative bind-
ing assays, Ets-14N280:L4294 haund DNA with a 15-fold-higher
affinity than Ets-14N?% (Fig. 5B; Table 1). More importantly,
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FIG. 5. Derepressed Ets-1 variant displays no DNA binding cooperativity
with CBFa2. (A) Schematic representation of the constitutive unfolding of Ets-
1ANZ80LA29A due to a leucine-to-alanine substitution in helix H4, as shown (X).
The K, value is for the SCl/core. (B) Equilibrium DNA binding curves for
Ets-14N280:L4294 obtained from EMSA in the absence (open circles) and pres-
ence (filled circles) of a constant (~2 X 10™% M) amount of CBFa24€,

CBFa22€ did not enhance the affinity of this mutant version of
Ets-1 (Fig. 5B; Table 1). The presence of a constitutively un-
folded inhibitory module resulted in insensitivity to CBFa2
effects. This finding strongly suggests that the DNA binding
cooperativity mechanism involves regulating the conformation
of the inhibitory module. As detailed in Discussion, these re-
sults are consistent with either mechanistic model. In conclu-
sion, the behavior of this mutant demonstrates that the inhib-
itory module is required for DNA binding cooperativity, thus
supporting our proposal that DNA binding cooperativity coun-
teracts auto-inhibition.

DISCUSSION

Auto-inhibition provides a mechanism by which protein ac-
tivity can be regulated tightly. In the case of Ets-1, this auto-
regulation decreases the DNA binding affinity 10- to 20-fold.
We predicted that a regulatory mechanism would counteract
this auto-inhibition and enable the full DNA binding potential
of the Ets-1 ETS domain to be used within a biological context.
Ets-1 functions in association with other transcription factors,
implicating cooperative DNA binding with other proteins as a
mechanism for rescinding auto-inhibition. Both this study and
the accompanying report (23) present quantitative analyses of
the DNA binding cooperativity between Ets-1 and CBFa2.
The quantitative approach of these experiments is distinctive,
representing one of only a few such comprehensive studies of
a DNA binding partnership in a eukaryotic system. These
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FIG. 6. Model of Ets-1 auto-inhibition and CBFa2 cooperativity. The inhibitory module is composed of three inhibitory helices, HI-1, HI-2, and H4, that pack with
helix H1 of the ETS domain. Ets-1 DNA binding in the absence of CBF is accompanied by unfolding of helix HI-1 (Fig. 1). We propose two alternative models by which
CBFa2 can counteract auto-inhibition. First, CBFa2 repositions the inhibitory elements such that the unfolding of helix HI-1 is no longer necessary. Alternatively,
CBFa2 enhances the unfolding or represses the refolding of helix HI-1. The K, value is for the ternary complex on the SCl/core composite site.

experiments also laid the groundwork for our mechanistic
model of CBF rescinding Ets-1 auto-inhibition.

Mechanistic model of CBFa2 and Ets-1 cooperative DNA
binding. There are two general mechanisms by which CBFa2
could affect Ets-1 DNA binding. Due to the close apposition of
the Ets-1 and CBF binding sites, we considered a through-
DNA mechanism that would require no direct protein inter-
actions. This model was discounted by the observations that
topological uncoupling of the two sites did not disrupt coop-
erativity. In addition, there was considerable flexibility in the
spacing and orientation of Ets-1 and CBFa2 binding sites.
Consistent with these observations, selection of consensus
binding sites for Ets-1 and CBFa2 also detected flexibility in
site configuration (74). The alternative mechanism evokes di-
rect protein interactions between the partners. Protein-protein
interactions could accommodate the observed flexibility. This
has been proposed previously for the ets protein Elk-1 and its
partner serum response factor, which display DNA binding
cooperativity on composite sites with a variety of spacing con-
figurations and orientations (67). Our study provides a rigor-
ous quantitative analysis of this type of flexibility.

Our proposed mechanism for DNA binding cooperativity is
built on the model of Ets-1 auto-inhibition (Fig. 1) (21). DNA
binding is accompanied by a conformational change that in-
cludes unfolding of one of the three inhibitory helices. We
have proposed that this requisite conformational change re-
duces the DNA binding affinity of full-length Ets-1 and other
repressed species such as Ets-14N?%°, This report links auto-
inhibition and DNA binding cooperativity. Quantitative bind-
ing studies showed that DNA binding cooperativity requires
the presence of the amino-terminal inhibitory helices. Because
this region is part of the inhibitory module, we envision that
CBFa2 could affect the conformational state of this structural
domain. Two possible models are envisioned (Fig. 6). First,
CBFa2 could alter the position of the inhibitory module such
that the unfolding of HI-1 is no longer necessary for DNA
binding. This repositioning model predicts a protein interface
between Ets-1 and CBFa2 that would stabilize the inhibitory
helices in the absence of their usual contact to the ETS do-
main. Such direct contacts could be made within any of the
inhibitory helices. Alternatively, CBFa2 could stimulate the
rate of unfolding and/or prevent refolding of helix HI-1. In

contrast to the first model, this disruption model need not
evoke a specific interface between the disrupted inhibitory
module and CBFa2 since no structural elements are being
stabilized. Either of these scenarios accommodates the flexi-
bility of the DNA determinants for cooperativity.

The behavior of the constitutively activated mutant, the
L429A derivative of Ets-14N?%° can be explained by both mod-
els. The inhibitory module of this mutant protein is constitu-
tively disrupted and thus predominantly in the unfolded state.
If CBFa2 alters the position of the inhibitory module by mak-
ing specific contacts with structural elements, the disrupted
inhibitory helices in Ets-14N?8014294 would not provide the
required protein interface, consistent with the repositioning
model. The behavior of Ets-14N28%14294 3150 can be explained
by the model in which CBF«2 shifts the conformational equi-
librium of helix HI-1 toward the unfolded state. This equilib-
rium would not be influenced in the constitutively unfolded
inhibitory module. Recall that this disruption model proposes
no specific binding interface between the disrupted inhibitory
module and CBF in the ternary complex. If such contacts were
to exist, the L429A variant might be expected to retain the
interface and, thus, cooperativity. Thus, the lack of cooperat-
ivity between CBFa2 and Ets-14N280:04294 g also consistent
with the disruption model. To distinguish between these alter-
native mechanisms, structural studies are under way to deter-
mine the conformational state of the inhibitory module within
the ternary complex.

Our preliminary analyses suggest that any interaction
between Ets-1 and CBFa2 at physiologically relevant concen-
trations occurs only on DNA. Specifically, surface plasmon
resonance experiments that were performed at protein con-
centrations in the 10 nM range failed to detect interactions
(data not shown). The interaction could have such a low affinity
that it will be difficult to detect by this approach. Alternatively,
DNA binding by one or the other partner may expose residues
necessary for the interaction. In this regard, it is interesting
that reciprocal cooperativity, which enhances CBFa2 DNA
binding, was observed only under conditions in which CBFa2
was incubated with DNA before the addition of Ets-1 (23).
Similarly, the enhancement of Ets-1 binding reported here and
in the accompanying report (23) was detected under conditions
in which CBFa2 is likely to bind before Ets-1. Although all
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components were added simultaneously to the reaction mix-
tures, the high concentration of CBFa2 (~10~% M) is expected
to cause a rapid association of CBFa2, facilitating preassembly
of a DNA-CBFa2 binary complex. The model in Fig. 6 reflects
this proposed sequence of events.

There are two reports that describe direct interactions be-
tween Ets-1 and CBFo2 in the absence of DNA. In one study,
the amino-terminal sequences of Ets-1 (amino acids 123 to
240), which lie outside the regions mapped here, interact di-
rectly with CBFa2 in a glutathione S-transferase pulldown
assay (19). In a second study, glutathione S-transferase pull-
down assays detected CBFa2 interactions with only the car-
boxyl-terminal half of Ets-1 (31). The concentration and folded
state of the proteins were not measured in these assays. Thus,
neither the affinity nor the specificity of these interactions has
been rigorously determined. High-resolution structural and ge-
netic analyses are necessary to describe the interface of Ets-1
and CBFa2 in the ternary complex.

In the accompanying report (23), which focuses on the DNA
binding properties of CBF, we report that Ets-1 enhances the
DNA binding activity of CBFa2*¢ at least sevenfold. Thus, as
expected from thermodynamic principles, the DNA binding
cooperativity between Ets-1 and CBFa2 is reciprocal. Several
studies report that CBFa?2 also displays auto-inhibition (23, 30,
31). We suggest that Ets-1 counteracts the auto-inhibition of
the CBFa2 Runt domain, perhaps also by altering an inhibitory
conformation. Interestingly, the cooperative binding of CBFa2
with Ets-1 is an alternative to the enhancement of CBFa2
DNA binding by its heterodimeric partner CBFB. For addi-
tional discussion of the interplay between Ets-1 and CBF see
the accompanying report (23).

By necessity our quantitative studies were performed with a
truncated version of CBFa2 that could be obtained highly
purified from a baculovirus expression system. We were ini-
tially concerned that this experimental design could compro-
mise our study. However, recently a less quantitative analysis
of DNA binding cooperativity between Ets-1 and CBFa?2 that
utilized full length CBFa2 prepared by in vitro transcription-
translation was reported (31). Importantly, the two studies
concur on the regions of Ets-1 that are important for DNA
binding cooperativity. These findings thus lend support to our
conclusions that are based on the behavior of truncated
CBFa2.

Combinatorial control of transcription. Partnerships be-
tween two transcription factors are the building blocks of com-
binatorial control of gene expression. These types of interac-
tions are predicted to enhance the specificity of regulatory
transcription factors. In the case of Ets-1 and CBF«a2, each
binds a sequence-specific region of only 9 to 10 bp as a mono-
mer, whereas the ternary complex binds to a composite site
that spans 18 to 20 bp of specific sequences. This extended
region of preferred sequence provides a higher degree of se-
quence specificity and thus could direct Ets-1 to function pref-
erentially on enhancer elements with CBFa2 binding sites, or
vice versa. Interestingly, in the case of Ets-1, there are other
putative DNA binding partners, including Jun/Fos, TFE3,
USF, and NF-kB (12, 37, 58, 66). Preliminary quantitative
studies indicate that NF-«kB has effects on Ets-1 DNA binding
comparable to those of CBFa2 (12) (T. Goetz, unpublished
data). This promiscuity of Ets-1 could reflect multiple path-
ways to transcriptional synergy, including alternative mecha-
nisms for DNA binding cooperativity. However, these other
partnerships could work also by counteracting auto-inhibition.
Indeed, a recent report implicates the basic helix-loop-helix
protein TFE3 in this role on the immunoglobulin w enhancer
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(66). The mechanistic models developed here could accommo-
date Ets-1 interactions with these other partner proteins.

The maximal activity of complex enhancers requires large
assemblies of DNA binding proteins. This phenomenon is well
illustrated by the TCRa enhancer, in which a basic helix-loop-
helix protein (either USF or TFE3) and the high-mobility-
group domain protein Lef-1 function with Ets-1 and CBFa2
(19, 26, 39). Therefore, the Ets-1 and CBFa2 partnership
works in the context of a much larger multiprotein complex.
Another such example is the function of Ets-1 on the human
immunodeficiency virus type 1 viral enhancer in collaboration
with Spl, NF-kB, Lef-1, and USF (or TFE3) (57, 64). Such
complexes provide additional opportunities to enhance the
specificity and affinity of regulatory transcription factors.

An additional interesting feature of this network of interac-
tions is the family membership of Ets-1 and CBFa2. As de-
scribed earlier, there are at least 20 vertebrate ets genes and
three CBFA genes. Other efs proteins also synergize with
CBFo2 (e.g., Fli-1, PU.1, GABP, and MEF) (38, 52, 65). Sim-
ilarly, another CBFA protein, CBFAL1, is functionally linked to
Ets-1 (55). Furthermore, multiple members of the ets family of
transcription factors display auto-inhibition of DNA binding
(22). It is possible that the mechanisms of auto-inhibition and
DNA binding cooperativity described here are sufficiently con-
served to provide a framework for understanding many of
these combinations of transcription factors.
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