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BACKGROUND AND AIMS: Computed tomography (CT) scan is frequently used to detect hepatocellular carcinoma (HCC) in
routine clinical practice. The aim of this study is to develop a deep-learning AI system to improve the diagnostic accuracy of HCC by
analysing liver CT imaging data.
METHODS: We developed a deep-learning AI system by training on CT images from 7512 patients at Henan Provincial Peoples’
Hospital. Its performance was validated on one internal test set (Henan Provincial Peoples’ Hospital, n= 385) and one external test
set (Henan Provincial Cancer Hospital, n= 556). The area under the receiver-operating characteristic curve (AUROC) was used as the
primary classification metric. Accuracy, sensitivity, specificity, precision, negative predictive value and F1 metric were used to
measure the performance of AI systems and radiologists.
RESULTS: AI system achieved high performance in identifying HCC patients, with AUROC of 0.887 (95% CI 0.855–0.919) on the
internal test set and 0.883 (95% CI 0.855–0.911) on the external test set. For internal test set, accuracy was 81.0% (76.8–84.8%),
sensitivity was 78.4% (72.4–83.7%), specificity was 84.4% (78.0–89.6%) and F1 (harmonic average of precision and recall rate)
was 0.824. For external test set, accuracy was 81.3% (77.8–84.5%), sensitivity was 89.4% (85.0–92.8%), specificity was 74.0%
(68.5–78.9%) and F1 was 0.819. Compared with radiologists, AI system achieved comparable accuracy and F1 metric on internal
test set (0.853 versus 0.818, P= 0.107; 0.863 vs. 0.824, P= 0.082) and external test set (0.805 vs. 0.793, P= 0.663; 0.810 vs. 0.814,
P= 0.866). The predicted HCC risk scores by AI system in HCC patients with multiple tumours and high fibrosis stage were
higher than those with solitary tumour and low fibrosis stage (tumour number: 0.197 vs. 0.138, P= 0.006; fibrosis stage: 0.183
vs. 0.127, P < 0.001). Radiologists’ review showed that the accuracy of saliency heatmaps predicted by algorithms was 92.1%
(95% CI: 89.2–95.0%).
CONCLUSIONS: AI system achieved high performance in the detection of HCC compared with a group of specialised
radiologists. Further investigation by prospective clinical trials was necessitated to verify this model.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the sixth most common cancer
type and the fourth leading cause of cancer-related death
worldwide. The annual incidence of HCC is estimated to be
841,000 new cases in the world, 80% of which are in sub-Saharan
Africa and eastern Asia [1, 2]. Computed tomography (CT) is a

primary screening method for HCC surveillance. Contrast-
enhanced multiphasic CT examination can detect dysplastic
lesions and HCC nodules at early stages [3–8]. At present, all
guidelines recommend multiphasic CT with extracellular agents as
one of the first-line noninvasive modalities during the diagnosis
and staging of HCC [9–11]. Interpretation of CT imaging data is
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conducted by radiologists according to liver imaging reporting
and data system (LI-RADS) drafted by the American College of
Radiology [12]. The LI-RADS guideline stratifies the detected
lesions into five categories ranging from definitively benign (LR 1)
to definitively HCC (LR 5). Subsequently, clinicians determine
whether to proceed with invasive therapy or observational
management of the lesions.
Clinically, HCC can be diagnosed by puncture biopsy or typical

imaging examination according to the American Association for
the Study of Liver Diseases (AASLD) guideline [9, 13, 14].
However, in routine clinical practice, precise biopsy for
malignant lesions is not always possible. The discrepancy of
puncture technique and variabilities of inter-pathologists can
also affect the accuracy of biopsy [15]. Meanwhile, the
performance of CT for HCC diagnosis is closely related to
tumour size. In a meta-analysis including 33 comprehensive
studies, the sensitivity was 0.70–0.86 in tumours larger than 2
cm. For tumours smaller than 1 cm, the sensitivity decreased to
0.34–0.62 [16]. Inaccurate diagnosis leads to inappropriate
treatment, increased psychological burden and higher medical
costs. Therefore, improving the diagnostic accuracy of suspi-
cious lesions is imperative as lesions with high suspicion of HCC
will be treated more appropriately.
Recently, a deep convolutional neural network (DCNN) has been

increasingly investigated as an auxiliary technique in the field of
medical imaging diagnosis [17–19]. Deep-learning algorithms
enable-feature representation learning from a large volume of
imaging data in an end-to-end manner to avoid the extensive
labour of hand-crafted feature engineering. Previous studies
reported on-par performance of deep-learning models as
compared with specialists in diabetic retinopathy grading, skin
lesion classification and thyroid cancer diagnosis [20–22]. Deep-
learning models have also been applied to detect head CT scan
abnormalities requiring urgent neurosurgical intervention and
predict the risk of lung cancer using a patient’s current and prior
CT volumes [23, 24]. From this point of view, an automated deep-
learning model that can interpret liver CT imaging data to detect
HCC is valuable for patients at high risk of HCC, especially in
community hospitals.
In this study, we aimed to develop an end-to-end HCC

diagnostic artificial intelligence (AI) system to differentiate HCC
from other liver lesions. This clinically applicable AI system
consisted of two deep-learning models: HCCNet and NoduleNet.
Both HCCNet and NoduleNet models were deep residual
convolutional networks trained by a large amount of CT imaging
data. We used pathological examination as the golden standard to
diagnose HCC and evaluate AI performance. We examined the
performance of our AI system on one internal and one external
test set.

METHODS
Study design and data sources
The liver CT imaging data of patients from in-hospital and outpatient
radiology centres were retrospectively collected from two tertiary
hospitals in China. We retrieved plain and contrast-enhanced CT imaging
data from the picture archiving and communication system (PACS) at
Henan Provincial Peoples’ Hospital between November 2016 and March
2019 as the training set. We used liver CT imaging data at Henan
Provincial Peoples’ Hospital (internal test set) between December 2016
and September 2019 and at Henan Provincial Cancer Hospital (external
test set) between February 2018 and April 2019 as test sets. All images
and electronic clinical reports were anonymously processed before they
were transferred to investigators. The HCC group consisted of patients
not only treated by surgical resection but also treated by intervention,
radiofrequency ablation, cryoablation, microwave therapy or any other
invasive treatment therapy. Both solitary and multiple HCC tumour
nodules were enrolled. Patients diagnosed with malignant lesions other
than HCC such as hemangioendothelioma, sarcoma, intrahepatic

cholangiocarcinoma and metastatic tumour were included in the control
group. Patients diagnosed with benign lesions such as leiomyolipoma,
hemangioma, cyst, abscess, adenoma and focal nodular hyperplasia
were also included in the control group. All HCC patients in the
validation sets had pathological examination after surgical resection or
needle biopsy as the golden standard to evaluate AI performance.
Surgically resected HCC tumours were staged according to the 7th
edition of the TNM staging system drafted by the American Joint
Committee on Cancer (AJCC). A flowchart illustrating this study is shown
in Fig. 1.
This study was approved by the ethics committee of Henan Provincial

Peoples’ Hospital (No. 2019068) and performed in accordance with
principles of Good Clinical Practice and Declaration of Helsinki guidelines
(1975, revised in 1983). All patients provided written informed consent
before undergoing CT examinations.

Liver CT scanning
All selected patients underwent standard three-phase dynamic contrast-
enhanced CT scan at initial diagnosis. Multiphase CT scans were
performed using a 64-row scanner (General Electric Company Discovery
CT750 HD, Milwaukee, Wisconsin, USA). The contrast agent was Ultravist
370 (Bayer AG, Berlin, Germany) and the flow rate was 3 mL/s. When the
Hounsfield unit was set at +50, the arterial, portal venous and delayed
phases were scanned 5 s after abdominal aorta enhancement, 30 s after
the end of the arterial phase, and 90 s after the end of the portal venous
phase, respectively. Scanning parameters were as follows: collimation, 64
rows × 0.625 mm; gantry rotation speed, 0.6 s; section thickness, 5 mm;
image reconstruction increment, 1 mm; and tube voltage, 120 kV.
Effective tube current was automatically set based on the weight of
patients. Intense contrast uptake during the arterial phase and washout
during the venous phase was defined as typical imaging features of HCC
in cirrhotic patients.

Image classification procedures
All images obtained were transferred from DICOM format to jpeg
format. The transaxial section from the apex to the bottom of the liver
was used. Coronal or sagittal sections were excluded. Five senior
radiologists (FFF, BJZ, YB, QXW and XYM) were asked to manually
review all the images of HCC and non-HCC patients in the training set
based on clinical radiology reports. If no consensual agreement was
reached, the case was exempted. Images of each HCC patient in the
training set featured by HCC tumour nodules were selected as positive
samples, whereas those were not featured by HCC tumour nodules
were discarded. All images from non-HCC patients were used as
negative samples. Both plain CT scan images and enhanced CT images
were included. Low-quality images such as artifacts, blank or blurred
images were also excluded by these five radiologists. The performance
of HCCNet model was evaluated by one internal test set and one
external test set. At the patient level, to compare the HCCNet model
with the expert group, a random subset of 80–100 cases were selected
from these two test sets. We performed random selection via random
sample function in R software. Three 8–10 year experienced radiologists
(FFF, YB and QXW) reviewed all CT images from selected patients and
interpreted these images according to LI-RADS system guidelines. Each
radiologist read both test sets. These three senior radiologists were
then asked to sort each patient as HCC or not HCC based on their
clinical experience. Pathological reports were used to assess the
prediction accuracy of both radiologists and HCCNet. Then the
performance of radiologists was compared with HCCNet. Pathological
results were obtained from surgically resected liver tissue specimen or
ultrasound-guided liver biopsies.

Preliminary data processing
Four radiologists (FFF, QXW, XYM and JQW) manually reviewed 115,876
images of 331 patients to differentiate images with nodule from those
without nodule. The consensual interpretation outputs of these four
radiologists were used to develop an AI model NoduleNet to identify
nodule images, which functioned as a subsidiary to HCCNet. Subsequently,
we applied NoduleNet to identify images with HCC nodules in the training
set. Together with the clinical report, images with HCC nodules predicted
by NoduleNet were grouped into HCC, whereas, images without HCC
nodules predicted by NoduleNet and images from non-HCC patients were
placed in the non-HCC group.
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AI model development
Two deep-learning AI models NoduleNet and HCCNet were developed
in this study. NoduleNet acted as an assistant to HCCNet and the results
of its analysis were directly integrated into HCCNet. Both NoduleNet
and HCCNet are two deep residual convolutional network of 34 layers.
The prominent feature of the residual network is the use of shortcut
connection, which can speed up convergence at the early training
stage [25] (Supplementary Fig. 1). We initialised the weights of
NoduleNet and HCCNet from the same network that has been trained
on the ImageNet data set except the last fully connected layer [26]
(Supplementary Fig. 2). The output unit of the last fully connected layer
was set to two to match the number of classes in this study and its
weight was randomly initialised. We trained NoduleNet and HCCNet in
an end-to-end fashion with stochastic gradient descent for 120 epochs
by using cosine learning rate decay scheduling and a learning rate
warmup scheme. We set an initial learning rate of 0.2, a momentum of
0.9 and a minibatch of 256. Data augmentation included random resize

and crop, perspective, horizontal flip, rotation, colour jittering and
mixup [27]. In addition, label-smoothing was enabled during training.
We used a random subset of images as test set, which was not included
during training, to calculate the loss of the model at the end of each
epoch. Finally, we evaluated its performance on test sets. This
procedure was developed with Python (version 3.7.1), MxNet (version
1.5.1), GluonCV (version 0.8.0), PyTorch (version 1.3.0) and torchvision
(version 0.5.0).

Visual explanation
We used Saliency Map Order Equivalence (SMOE) algorithm to assess the
importance of the spatial locations in convolutional layers [28]. Quantified
pixel was also calculated by SMOE algorithm to describe contribution to
the final prediction results. We sketched saliency heatmaps to highlight
features most influenced NoduleNet prediction in malignant hepatocel-
lular carcinoma images (Supplementary Fig. 3).
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Fig. 1 A flowchart depicting the procedures to develop and evaluate HCCNet. a Model development procedure consisted of data
acquisition and HCCNet training. b Evaluation of HCCNet on one internal and one external test set. c Comparison between HCCNet and three
radiologists on subsets of randomly selected cases. 425 HCC patients, 1184 non-HCC patients of the training set and all patients of two test
sets underwent surgery or biopsy for pathological examination.
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Calculation of HCC risk score
For each patient, we used the weighted mean of predicted probabilities of
all images from that patient to calculate a HCC risk score. Specifically, we
denoted the number of all images from that patient as n and the
probability of each image predicted to be HCC as p= [p1, p2, …, pn]. The
predicted HCC risk score for that individual patient was calculated as=
−[w1 × log10(1− p1)+w2 × log10(1− p2) + ··· + wn × log10 (1− pn)]/n,
where wi is calculated as wi= pi/(p1+ p2 + … + pn). The correlation
between pathological parameters (tumour size, AJCC tumour stage,
tumour number, METAVIR fibrosis stage [29], major vascular invasion and
histologic grade) and HCC risk scores were evaluated.

Statistical analysis
We used the area under the receiver-operating characteristic curve
(AUROC) as the primary metric to describe the classification performance
of HCCNet. The operating characteristic curve (ROC) was generated by
plotting sensitivity against specificity for different thresholds. The other
metrics used to measure the performance of HCCNet included accuracy,
sensitivity, specificity, positive predictive rate, negative predictive rate,
kappa coefficient and F1 metric. The kappa coefficient measures the
inter-rater agreement among radiologists, an agreement between
prediction results and pathological examination. The F1 metric is
calculated as F1= 2 × precision × recall/(precision+ recall). The
Clopper–Pearson method was used to calculate sensitivity, specificity,
positive predictive rate, and negative predictive rate. We used R package
pROC (version 1.3.1) to plot the ROC curve and calculate AUROC. Inter-
radiologists agreement rate and Fleiss’ kappa were calculated by R
package irr (version 0.84). Statistical analysis was conducted with R
software (version 3.4.3).

RESULTS
Baseline characteristics of training and test datasets
Between November 2016 and March 2019, we obtained CT images
of 9185 patients from Henan Provincial Peoples’ Hospital as the
training set. After quality control, the ultimate training set

consisted of 8,082,076 images from 7512 individuals: 647 patients
with HCC and 6865 controls. The internal test set consisted of 385
individuals (413,251 images) from Henan Provincial Peoples’
Hospital. The external test set consisted of 556 individuals
(674,869 images) from Henan Provincial Cancer Hospital. In the
training set, 425 (65.7%) HCC cases and 1184 (17.2%) non-HCC
cases underwent pathological examination. All patients in two test
sets had pathological examination results. The non-HCC patients
in the training set (n= 6865) consisted of malignant tumours such
as sarcoma (0.1%, n= 9), intrahepatic cholangiocarcinoma (0.8%,
n= 59), metastatic tumour (3.6%, n= 271) and neuroendocrine
neoplasm (0.3%, n= 24); benign tumours such as angioleiomyo-
lipoma (0.2%, n= 16), hemangioma (25.2%, n= 1896), cyst (14.6%,
n= 1097), abscess (0.5%, n= 36), adenoma (0.2%, n= 13) and
focal nodular hyperplasia (0.3%, n= 23). The rest of the patients
(3421, 45.5%) are normal liver cases. Detailed characteristics of
patients concerning gender, age and disease subtype are shown
in Table 1.

Performance of AI model HCCNet on two test sets
To verify the general applicability of our AI diagnostic model,
HCCNet performance was tested in two different hospitals using
different datasets. In the two retrospectively collected cohorts,
the AI model HCCNet achieved high performance in identifying
hepatocellular carcinoma patients on the internal and external
test sets. The classification metrics of HCCNet are provided in
Table 2 and Fig. 2. For the internal test set, AUROC was 0.887
(95% CI: 0.855–0.919), accuracy was 81.0% (76.8–84.8%),
sensitivity was 78.4% (72.4–83.7%), specificity was 84.4%
(78.0–89.6%) and F1 was 0.824. For external test set, AUROC
was 0.883 (0.855–0.911), accuracy was 81.3% (77.8–84.5%),
sensitivity was 89.4% (85.0–92.8%), specificity was 74.0%
(68.5–78.9%), and F1 was 0.819. (Table 2). The ROC curves are
shown in Fig. 2.

Table 1. Baseline characteristics of the training set and two test sets.

HPPH training set HPPH test set HPCH test set

HCC Non-HCC HCC Non-HCC HCC Non-HCC

Patients 647 6865 218 167 264 292

Male 509 3710 168 45 214 101

Female 138 3155 50 122 50 191

Age (years) 57.36 (8–86) 54.19 (2–93) 56.38 (17–87) 52.42 (20–84) 55.43 (28–82) 53.74 (17–90)

Age ≤60 years male 320 (49.46%) 2314 (33.71%) 115 (52.75%) 38 (22.75%) 149 (56.44%) 56 (19.18%)

Age >60 years male 189 (29.21%) 1396 (20.34%) 53 (24.31%) 7 (4.19%) 65 (24.62%) 45 (15.41%)

Age ≤60 years female 58 (8.96%) 2045 (29.79%) 27 (12.39%) 92 (55.09%) 24 (9.09%) 142 (48.63%)

Age >60 years female 80 (12.36%) 1110 (16.17%) 23 (10.55%) 30 (17.96%) 26 (9.85%) 49 (16.78%)

Non-HCC disease variety

Intrahepatic cholangiocarcinoma -- 59 -- 0 -- 0

Liver metastasis -- 271 -- 5 -- 205

Sarcoma -- 9 -- 0 -- 0

Hepatic hemangioma -- 1896 -- 119 -- 49

Focal nodular hyperplasia -- 23 -- 0 -- 1

Angioleiomyolipoma -- 16 -- 0 -- 0

Hepatic adenoma -- 13 -- 0 -- 0

Liver abscess -- 36 -- 7 -- 3

Hepatic cyst -- 1097 -- 36 -- 16

Neuroendocrine neoplasm -- 24 -- 0 -- 18

Normal -- 3421 -- 0 -- 0

Surgery or biopsy pathology 425 (65.7%) 1184 (17.2%) 218 (100.00%) 167 (100.00%) 264 (100.00%) 292 (100.00%)
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The performance of NoduleNet was evaluated by comparing its
classification results with the consensus interpretation of radi-
ologists. In total, 14,778 images of 31 patients were randomly

selected. NoduleNet achieved an AUROC of 0.901 (95% CI
0.893–0.910), sensitivity of 91.5% (89.5–93.2%) and specificity of
76.0% (74.7–77.2%) (Supplementary Fig. 4).

HCC risk scores predicted by AI model
Among both internal and external test sets, except biopsy cases,
204 HCC patients of the internal test set and 184 HCC patients of
external test set underwent surgical resection. Pathological
parameters were further evaluated and the relationship with
HCC risk score was assessed (Table 3). For HCC patients with
tumour size >5 cm, the predicted HCC risk scores by AI
model were higher than those ≤5 cm, but not statistically
different (0.1594 ± 0.1404 vs. 0.1328 ± 0.1332, P= 0.057). Mean-
while, in terms of AJCC tumour stage, the predicted HCC risk
scores of Stage III, IV patients were also slightly higher than
Stage I, II patients (0.1767 ± 0.1596 vs. 0.1417 ± 0.1324, P= 0.104)
(Fig. 3).
However, for HCC patients with multiple tumours, the predicted

HCC risk scores by AI model were remarkably higher than those
with solitary tumour (0.1971 ± 0.1606 vs. 0.1376 ± 0.1307, P=
0.006). When separated by METAVIR fibrosis stage, patients with
severe fibrosis or cirrhosis had significant higher HCC risk scores
than patients with none to moderate fibrosis (F3-4: 0.1826 ±
0.1492 vs. F0-2: 0.1265 ± 0.1260, P < 0.001). For major vascular
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Fig. 2 Performance of the AI model HCCNet and radiologists on two test sets. The receiver-operating curve of HCCNet on test sets were
displayed in blue lines. Classification performance of each radiologist (grey star) and their average values (red star) were provided. Area under
the curve and corresponding confidence interval are shown. a Internal test set, n= 385, b external test set, n= 556, c subset of the internal
test set, n= 95, d subset of the external test set, n= 82.

Table 2. Classification performance of HCCNet on test sets.

Performance
metrics

The performance of deep-learning model on two
test sets

Internal test set (n=
385; HCC= 218, non-
HCC= 167)

External test set (n=
556; HCC= 264, non-
HCC= 292)

Accuracy (95% CI) 0.810 (0.768–0.848) 0.813 (0.778–0.845)

Sensitivity (95% CI) 0.784 (0.724–0.837) 0.894 (0.850–0.928)

Specificity (95% CI) 0.844 (0.780–0.896) 0.740 (0.685–0.789)

Precision (95% CI) 0.868 (0.813–0.912) 0.756 (0.705–0.803)

Negative predictive
value (95% CI)

0.750 (0.682–0.810) 0.885 (0.838–0.922)

Kappaa 0.620 0.628

F1
b 0.824 0.819

aMeasures the agreement between predicted classification and patholo-
gical report.
bHarmonic average of the precision and recall rate.
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invasion and histologic grade, no significant difference was
observed (P= 0.124 and 0.285).

AI model HCCNet versus radiologists
We randomly selected 95 individuals from the internal test set and
82 individuals from the external test set for manual interpretation
by radiologists. The entire image set of each selected patient was
presented to three radiologists. Every radiologist read all the 177
patients. The total number of images read and interpreted by each
radiologist were 192,772 (Table 4).
Among these radiologists, for internal test set, accuracy ranged

from 80.0% (95% CI 70.5–87.5) to 84.2% (75.3–90.9), sensitivity
from 72.2% (58.4–83.5) to 77.8% (64.4–88.0), and specificity from
85.4% (70.8–94.4) to 92.7% (80.1–98.5). For the external test set,
accuracy ranged from 74.4% (95% CI 63.6–83.4) to 81.7%
(71.6–89.4), sensitivity from 76.1% (61.2–87.4) to 84.8%
(71.1–93.7), and specificity from 72.2% (54.8–85.8) to 80.6%
(64.0–91.8). HCCNet achieved an AUROC of 0.899 (95% CI
0.838–0.961) for internal test set, 0.869 (95% CI 0.793–0.945) for
external test set (Fig. 2).
As compared with radiologists, the accuracy, sensitivity, specificity,

precision, negative predictive value and F1 score of HCCNet were
similar on internal test set (0.853 versus 0.818, P= 0.107; 0.815 vs.
0.753, P= 0.064; 0.902 vs. 0.903, P= 0.981; 0.917 vs. 0.911, P= 0.801;
0.787 vs. 0.735, P= 0.056; 0.863 vs. 0.824, P= 0.082). On external test
set, besides a slightly higher specificity (0.889 vs. 0.769, P= 0.039),
HCCNet also achieved comparable accuracy, sensitivity, precision,
negative predictive value, and F1 score with radiologists (0.805 vs.
0.793, P= 0.663; 0.739 vs. 0.812, P= 0.109; 0.895 vs. 0.817, P= 0.061;
0.727 vs. 0.762, P= 0.360; 0.810 vs. 0.814, P= 0.866). Detailed

classification metrics for each radiologist were provided in Table 4,
Supplementary Tables 1 and 2. Inter-rater agreement rate for this
group of three experienced radiologists was 82.1% (78/95, Fleiss’
Kappa 0.761; two-sided z test, P < 0.001) in internal test set, and
62.2% (51/82, Fleiss’ Kappa 0.489; two-sided z test, P < 0.001) in
external test set.

Radiologists versus radiologists with AI assistance
To investigate whether our AI model HCCNet could help
radiologists to improve their diagnostic performance, every
radiologist was given diagnostic probability result on each case
by HCCNet model. These three radiologists were asked to make a
diagnosis with the assistance of HCCNet-generated results. The
subsequent HCCNet-assisted diagnostic test was performed
12 months after the primary test. Compared with previous results,
the follow-up performance by radiologists was significantly
improved. Among these radiologists, for the internal test set, the
mean accuracy of radiologists was 0.873, which was significantly
higher than the previous one (0.873 vs. 0.818 P= 0.026). For the
external test set, the mean accuracy of radiologists was also
significantly better than the previous one (0.854 vs. 0.793 P=
0.017) (Fig. 4). The classification performance of radiologists with
HCCNet assistance is shown in Table 5.
Furthermore, to avoid a potential memorisation bias, we

selected dozes of new cases, which did not overlap with the
previous two subsets data. These new cases consisted of 42
patients (26 HCC, 16 non-HCC) from internal test set, and
50 patients (23 HCC, 27 non-HCC) from external test set. The
performance of radiologists was improved compared to the
previous one, but not significantly. Among these radiologists, for

Table 3. HCC risk scores predicted by AI model HCCNet on test sets.

Pathological variables The predicted HCC risk scores on two test sets

Internal test set
(HCC= 204)

P External test set
(HCC= 184)

P Total P

Tumour size 0.123 0.111 0.057

≤5 cm 0.1398 ± 0.1429 0.1201 ± 0.1136 0.1328 ± 0.1332

>5 cm 0.1712 ± 0.1446 0.1507 ± 0.1370 0.1594 ± 0.1404

TNM stage 0.041 0.838 0.104

Stage I + II 0.1435 ± 0.1324 0.1394 ± 0.1329 0.1417 ± 0.1324

Stage III + IV 0.2393 ± 0.2031 0.1438 ± 0.1216 0.1767 ± 0.1596

Tumour number 0.007 0.341 0.006

Solitary tumour 0.1390 ± 0.1319 0.1361 ± 0.1298 0.1376 ± 0.1307

Multiple tumours 0.2334 ± 0.1800 0.1607 ± 0.1316 0.1971 ± 0.1606

Major vascular invasion 0.979 0.017 0.124

Non-portal or hepatic vein invasion 0.1546 ± 0.1506 0.1208 ± 0.1169 0.1390 ± 0.1359

Portal or hepatic vein invasion 0.1534 ± 0.1368 0.1689 ± 0.1433 0.1613 ± 0.1399

Fibrosis stage <0.001 0.826 0.001

F0: no fibrosis 0.0892 ± 0.0817 0.1454 ± 0.1400 0.1228 ± 0.1225

F1: portal fibrosis without septa 0.1434 ± 0.1381 0.1540 ± 0.1385 0.1498 ± 0.1378

F2: portal fibrosis with few septa 0.0512 ± 0.0368 0.1031 ± 0.1081 0.0858 ± 0.0936

F3: numerous septa without
cirrhosis

0.1997 ± 0.2003 0.0989 ± 0.1160 0.1637 ± 0.1794

F4: cirrhosis 0.1929 ± 0.1478 0.1659 ± 0.1159 0.1871 ± 0.1416

Histologic Grade 0.507 0.395 0.285

G1 0.1298 ± 0.1496 0.1656 ± 0.1381 0.1439 ± 0.1447

G2 0.1577 ± 0.1353 0.1291 ± 0.1236 0.1427 ± 0.1298

G3 0.1502 ± 0.1647 0.1769 ± 0.1495 0.1580 ± 0.1581

G4 0.2269 ± 0.1742 NA 0.2511 ± 0.1603
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internal test set, the mean accuracy of radiologists on new cases
was 0.826, which is slightly higher than previous cases, but not
significantly different (0.826 vs. 0.818 P= 0.712). For external test
set, the mean accuracy of radiologists on new cases was 0.820,
also slightly higher, but not remarkably different from previous
cases (0.820 vs. 0.793 P= 0.673). Detailed classification metrics for
each radiologist are provided in Supplementary Table 3 and
Supplementary Fig. 5. Classification performance of radiologists on
new cases with HCCNet assistance is shown in Supplementary
Tables 4 and 5.

SMOE heatmaps
Saliency Map Order Equivalence algorithm was applied to identify
image areas that contributed mostly to the prediction results of
NoduleNet. In total, 13,868 images of 63 HCC patients were
randomly selected to sketch saliency heatmaps. Examples of HCC
with accompanying heatmaps and haematoxylin–eosin staining
images are shown in Fig. 5 and Supplementary Fig. 6. Non-HCC
images such as focal nodular hyperplasia, hemangioma, intrahe-
patic cholangiocarcinoma, angioleiomyolipoma are displayed in
Supplementary Fig. 7. Meanwhile, all the 13,868 randomly
selected HCC images and accompanying saliency heatmaps were
inspected by five radiologists respectively. The accuracy of
heatmaps capturing the main area of HCC tumour nodules was

assessed, and the comprehensive percentage was 92.1% (95% CI:
89.2–95.0%). Results of each radiologist are shown in Supplemen-
tary Table 6.

DISCUSSION
To our knowledge, this study consisted of by far the largest
number of liver CT images to train a deep-learning model for HCC
detection. The developed deep-learning AI system can be a
valuable tool for HCC diagnosis and clinical decision-making in
high-risk patients. It achieved robust performance across two test
sets and comparable accuracy versus a group of three radiologists.
Specifically, as the diagnosis of HCC is usually carried out with LI-
RADS standard, the standardisation of this model has great
potential in reducing the interobserver variability of HCC
evaluation.
Deep learning is currently widely used in medical imaging,

including disease diagnosis, risk management and clinical
decision-making. Radiologists often assess medical images and
report their findings based on education level and clinical
experience, which sometimes may be subjective. In contrast to
physicians’ judgement, the deep-learning model can automati-
cally assess imaging data in a quantitative mode. Efforts have
been delivered to the exploration of using deep-learning models
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Table 4. Classification performance of HCCNet and radiologists on subsets of two test sets.

Performance
metrics

Internal test set (n= 95; HCC= 54, non-HCC= 41) External test set (n= 82; HCC= 46, non-HCC= 36)

Radiologist 1 Radiologist 2 Radiologist 3 AI Radiologist 1 Radiologist 2 Radiologist 3 AI

Accuracy
(95% CI)

0.811
(0.717–0.884)

0.842
(0.753–0.909)

0.800
(0.705–0.875)

0.853
(0.765–0.917)

0.744
(0.636–0.834)

0.817
(0.716–0.894)

0.817
(0.716–0.894)

0.805
(0.703–0.884)

Sensitivity
(95% CI)

0.722
(0.584–0.835)

0.778
(0.644–0.880)

0.759
(0.624–0.865)

0.815
(0.686–0.907)

0.761
(0.612–0.874)

0.848
(0.711–0.937)

0.826
(0.686–0.922)

0.739
(0.589–0.857)

Specificity
(95% CI)

0.927
(0.801–0.985)

0.927
(0.801–0.985)

0.854
(0.708–0.944)

0.902
(0.769–0.973)

0.722
(0.548–0.858)

0.778
(0.608–0.899)

0.806
(0.640–0.918)

0.889
(0.739–0.969)

Precision
(95% CI)

0.929
(0.805–0.985)

0.933
(0.817–0.986)

0.872
(0.743–0.952)

0.917
(0.800–0.977)

0.778
(0.629–0.888)

0.830
(0.692–0.924)

0.844
(0.705–0.935)

0.895
(0.752–0.971)

Negative
predictive
value (95% CI)

0.717
(0.577–0.832)

0.760
(0.618–0.869)

0.729
(0.582–0.847)

0.787
(0.643–0.893)

0.703
(0.530–0.841)

0.800
(0.631–0.916)

0.784
(0.618–0.902)

0.727
(0.572–0.850)

Kappa 0.627 0.686 0.601 0.705 0.482 0.627 0.630 0.613

F1 0.813 0.848 0.812 0.863 0.769 0.839 0.835 0.810
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for emergency diagnosis, cancer screening and evaluation of
tumour treatment effect [23, 24, 30–35]. Chilamkurthy et al.
developed a deep-learning approach to automatically identify
head CT scan abnormalities in patients with head trauma [23].
Ardila et al. reported high AUC in predicting the risk of lung cancer
by using patients’ current and previous computed tomography
volumes [24]. More recently, Sun and colleagues used the
contrast-enhanced CT images and RNA sequencing data to
develop a radiomic signature of CD8 cells to predict immunother-
apy response in patients treated with anti-programmed cell death
protein (PD)-1 [35].
This study indicated that artificial intelligence might not only

provide a potential for standardisation of HCC risk stratification
but also can supplement the LI-RADS system. The AASLD
guidelines proposed hypervascular arterial profile demonstrated
by two dynamic imaging techniques as HCC in patients with

cirrhosis [9, 13, 14]. This diagnostic criterion is only restricted to
tumour nodules larger than 2 cm in a cirrhotic liver. For nodules
smaller than 2 cm, a fine needle aspiration biopsy is recom-
mended. Nevertheless, biopsy usually is not an optimal strategy
due to a series of limitations such as pain, bleeding, tumour
needle track seeding and repeated biopsies due to negative
results [15, 36]. Meanwhile, in patients with cirrhosis, only 14–23%
of 1 to 2 cm indeterminate nodules monitored by ultrasound are
confirmed as malignant [37]. Although the AASLD suggests
several other options other than biopsies, such as follow-up
imaging, a different imaging modality and an alternative contrast
agent, but could not recommend the best option. Therefore, it is
important to classify liver nodules correctly and evaluate their risk
accurately, as different nodules warranting different treatment
therapies. At present, the LI-RADS categories classify nodules into
the different likelihood of HCC in patients with cirrhosis and can
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be used as a reference in some clinical circumstances [38].
Nonetheless, LI-RADS system is subjectively assessed by the
radiologists and the variability of results is inevitable. Therefore,
HCCNet model may provide an alternative way to quantify the risk
of HCC.
Our study is unique as it integrated the contrast-enhanced CT

based HCC diagnostic algorithm into a fully automated processing
pipeline which allows radiologists to overcome the bottleneck
effect due to un-quantitative analysis. This study consisted of the
largest number of liver CT images used for deep-learning
algorithm development so far. All patients in the two test sets
underwent surgical resection or biopsy and had pathological
examination results, which enabled objective evaluation of
HCCNet. Our HCCNet produced fairly good and comparable
performance on both test sets (AUROC= 0.887 and 0.883).
Compared with the expert group, the accuracy of HCCNet was
comparable on the internal test set (0.853 vs. 0.818) and external
test set (0.805 vs. 0.793). On the image level, NoduleNet also
showed relatively high degrees of fidelity, stability and consis-
tency in distinguishing images of tumour nodules from normal
images. In addition, the trained NoduleNet model correctly
pinpointed malignant HCC tumour nodules through saliency
analysis, suggesting that it can serve as an auxiliary tool to help
radiologists speed up the interpretation process.
Although the prognosis of HCC patients is closely related to

tumour stage, liver function and treatment effect, tumour size is
still an inevitable factor associated with clinical outcome. This
model demonstrated an unbiased performance in assessing HCC
patients with different tumour diameters and AJCC stages. For
both the internal and external test sets, the HCC risk scores of HCC
patients with tumour size ≤5 cm were comparable with those
tumour sizes>5 cm (P= 0.273 and 0.111). This point suggested
that HCCNet performed equally well in detecting small tumour
nodules as those large tumour nodules. To some extent, it could
reduce the probability of unnecessary biopsy for smaller neoplasm
masses. Further clinical trials are required to validate the
aforementioned HCCNet diagnostic advantage.
Integration of our AI system into the PACS system can assist

radiologists in speeding up the interpretation process. However,
HCCNet cannot replace radiologists in diagnosing HCC. It only uses
CT images for analysis but does not take into account other auxiliary
diagnostic parameters, such as viral hepatitis, liver cirrhosis, long-
term alcohol intake and aflatoxin. Future deep-learning model
taking into account radiological image data, laboratory reports,
medical history and pathological graphics will potentially increase
the performance of artificial intelligence diagnosis.
Our study has several limitations. Firstly, this AI system was

trained based on plain and contrast-enhanced CT images.
Theoretically, compared with CT, MRI demonstrates a higher
superiority in the diagnosis of liver tumour nodules. In daily
clinical practice, CT scan has features of more efficiency, lower cost
and higher popularity in rural Chinese hospitals, which may
increase the generalisability of HCCNet. With the increasing
installation of MRI appliances among Chinese community
hospitals, algorithm models based on MRI images will display
better performance in future clinical trials. Secondly, our current
DCNN model can only distinguish between HCC and non-HCC
cases. Although other malignant and benign tumours were
included in the training set, this model can only classify two
categories, not multiple categories. In the future, we will expand
this model to further discern liver metastases, hemangioma, focal
nodular hyperplasia, hepatic cyst and other rare neoplasms.
Thirdly, patients in the two cohorts are mainly from central China.
Variation of patients’ lifestyle and ethics may affect model
accuracy and generalisability. Multiregional investigations could
potentially mitigate these shortcomings. Fourthly, the present
HCCNet did not incorporate other staging parameters, such as
hepatic or portal vein invasion, solitary or multiple tumours,Ta
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regional lymph node status, and distant metastasis. Integrating
these variables will provide a promising way to stage HCC tumour
accurately and grosso modo, predict the prognosis of patients.
Our results showed that HCCNet can detect hepatocellular

carcinoma on liver CT scans with improved accuracy, sensitivity,
and specificity at levels similar to a group of experienced
radiologists. Given the unbalanced medical resources between
community hospitals and large general hospitals, such a model
could be a helpful adjunct in underdeveloped areas. We
established a website to provide free access to HCCNet.
Prospective randomised clinical trials are necessary to further
verify the efficacy of HCCNet.
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