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It has been proposed that binge eating reflects a pathological compulsion driven by the “addictive” properties of foods. Proponents
of this argument highlight the large degree of phenomenological and diagnostic overlap between binge eating disorder (BED) and
substance use disorders (SUDs), including loss of control over how much is consumed and repeated unsuccessful attempts to
abstain from consumption, as well as commonalities in brain structures involved in food and drug craving. To date, very little
attention has been given to an additional behavioral symptom that BED shares with SUDs—sleep dysregulation—and the extent to
which this may contribute to the pathophysiology of BED. Here, we review studies examining sleep outcomes in patients with BED,
which collectively point to a heightened incidence of sleep abnormalities in BED. We identify the orexin (hypocretin) system as a
potential neurobiological link between compulsive eating and sleep dysregulation in BED, and provide a comprehensive update on
the evidence linking this system to these processes. Finally, drawing on evidence from the SUD literature indicating that the orexin
system exhibits significant plasticity in response to drugs of abuse, we hypothesize that chronic palatable food consumption

likewise increases orexin system activity, resulting in dysregulated sleep/wake patterns. Poor sleep, in turn, is predicted to
exacerbate binge eating, contributing to a cycle of uncontrolled food consumption. By extension, we suggest that
pharmacotherapies normalizing orexin signaling, which are currently being trialed for the treatment of SUDs, might also have utility

in the clinical management of BED.

Neuropsychopharmacology (2021) 46:2051-2061; https://doi.org/10.1038/s41386-021-01052-z

INTRODUCTION
Binge eating disorder (BED) is characterized by repeated episodes
of excessive pathological, non-homeostatic food consumption [1].
These binge episodes occur in repeated, discrete time periods, and
are accompanied by a perceived loss of control over how much is
consumed. BED is highly comorbid with obesity—an estimated
5-15% of obese people have BED, and individuals with BED are 3-6
times more likely to be obese than individuals without an eating
disorder [2]. Psychological treatments such as cognitive behavioral
therapy and interpersonal therapy are generally considered the first
line of treatment for BED [3, 4] although the efficacy of these
approaches is limited [5]. Presently, only one medication, lisdex-
amfetamine (LDX)—a d-amphetamine prodrug—has gained reg-
ulatory approval specifically for the treatment of moderate to
severe BED in adults [6]. Although daily LDX administration is highly
effective at reducing binge frequency, only ~40% of patients report
complete binge cessation at 4 weeks, leaving the majority of
BED patients with ongoing symptomology [7-9], underscoring the
need to better understand the phenomenology of BED and
associated neurobiological mechanisms.

Recently, there has been significant attention given to the
possibility that compulsive overeating, including but not limited to

that observed in BED, might reflect the “addictive” properties of
foods, particularly those high in sugar and fat content. Proponents
of this terminology highlight similarities between the phenomen-
ology of BED and the diagnostic characterization of substance use
disorders (SUDs) as outlined in the Diagnostic and Statistical
Manual of Mental Disorders (DSM), including frequent and intense
cravings (often elicited by exposure to food/drug cues), the
consumption of larger amounts than intended, repeated unsuc-
cessful attempts to reduce intake, and continued consumption
despite negative consequences [1, 10-15]. Moreover, common
neural circuits have been demonstrated to underlie food- and
drug-seeking and craving [16-21], and there is a high (25%)
lifetime incidence of SUDs in individuals with BED [22, 23]. In an
effort to operationalize food addiction and “addictive eating,” the
Yale Food Addiction Scale (YFAS) was developed in 2009, which
adapts DSM-IV criteria for substance dependence to eating
behavior [10, 24]. Per the YFAS, the majority (57%) of obese BED
patients meet the criteria for “food addiction” [25], and one meta-
analysis using data from 196,211 predominantly female, over-
weight/obese individuals indicates that approximately 20% of
individuals report experiencing symptoms that align with
addictive eating, with an increased rate of addictive eating among
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not been explored directly. Importantly, these effects do not
appear to be mediated by obesity, which is highly comorbid with
BED (approximately 36.2% of individuals with BED report lifetime
obesity [50]) and is associated with a higher incidence of sleep
disorders irrespective of binge eating status [51]. Indeed,
significant associations between binge eating and self-reported
sleep problems persist when data are adjusted for obesity status
[45], and studies that have directly compared patients with obesity
and BED, and obese controls with no eating disorders, report an
increased incidence and severity of insomnia symptoms in the
former population [45, 47]. Notably, one study also reported a
higher number of dysregulated sleep symptoms in individuals
meeting the criteria for food addiction on the YFAS (independent
of BED and obesity) compared to non-food-addicted individuals
[52]. We note that, to date, no study has verified self-reported
sleep outcomes in patients diagnosed with BED or “food addicted”
individuals using polysomnography, an objective measure of sleep
that collects several indices (e.g. heart and breathing rate, eye
movement, brain dynamics of electroencephalography, etc.) to
determine sleep stage/wakefulness status [53]. Moreover, several
studies are limited by the small subgroups identified as binge
eaters, as well as the lack of a normal weight binge eating
comparison group (see Table 1). Nevertheless, these data
collectively indicate that compulsive overeating is associated with
poor sleep outcomes.

Significant attention has been paid to sleep dysregulation in
night eating syndrome (NES), an eating disorder characterized by
a circadian delay in food intake and excessive intake (at least 25%
of daily caloric intake) after the evening meal and into the night
[54-58]. NES is closely tied to sleep disturbances, after being
defined by Albert Stunkard in 1955 as a “distinctive syndrome
characterized by nocturnal hyperphagia, insomnia and morning
anorexia” [59]. BED, described by Stunkard 4 years later as a
separate disorder marked by “enormous amounts of food may be
consumed in relatively short periods” [60] has a substantial
overlap in symptomology with NES [46, 57] and, like BED, NES is
associated with a reduction in sleep efficacy and increased sleep
disturbance [55, 61]. However, the etiology of NES is different from
that of BED—eating behavior in NES is associated with nocturnal
anxiety, under-eating relative to unaffected individuals through-
out the day, and beliefs about not being able to sleep, or return to
sleep, without eating, which is not typically the case with binge
eating behavior observed in BED [57, 62]. Furthermore, BED is
marked by more frequent, objectively large, eating episodes
whereby there is a loss of control over how much is eaten. People
with NES, on the other hand, rarely report a loss of control,
suggesting that these individuals do not experience true “night
binges” [63]. Thus, BED and NES are likely two distinct syndromes
mediated, at least in part, by different brain circuits.

WHAT CAN PRECLINICAL MODELS OF BINGE/COMPULSIVE

EATING TELL US ABOUT SLEEP DYSREGULATION IN BED?

Several rodent models of BED and “addictive” eating effectively
recapitulate psychopathological markers of BED, including hyper-
phagia and the development of food anticipatory activity
[17, 18, 64-69]. Briefly, binge-like behavioral patterns are often
developed through repeated limited access to palatable foods,
including sucrose solutions, fat/sucrose mixtures, shortening, and
fat presented as solid emulsions [70, 71]. Although periods of food
restriction or fasting can be incorporated to mimic dieting patterns
often observed in BED (and BN/AN) [66, 72, 73], several models
successfully replicate the escalation of intake observed in clinical
populations without a food-restriction component, eliminating
hunger as a potential confounding variable [74, 75]. Environmental
stressors, including noise and overcrowding, further enhance BED-
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like symptomology [76]. For example, restricted access to food,
when combined with a foot shock stressor just prior to palatable
food access, induces strong hyperphagia mimicking stress-induced
overeating [77]. Although studies have focused primarily on food
intake during these discrete binge-like eating sessions, others have
examined the expression of “addiction-like” behaviors as a result of
binge experience. For example, rats trained to respond for
palatable foods on an operant task in brief (1h) daily sessions
exhibit higher motivation for food on a progressive ratio task and
continue to consume palatable food in an aversive environment
[68, 78]. Interestingly, similar insensitivity to aversive stimuli can
also be induced by maintaining rats on palatable high-fat diet ad
libitum [18].

Despite the developments in animal models of binge-like
eating, remarkably little has been done to examine how a history
of binge-like eating disrupts the well-defined neural circuits and
mechanisms that mediate sleep and arousal [79-81]. To our
knowledge, no published works have examined the extent to
which sleep disruptions are observed at a phenomenological level
in an animal model of BED, let alone the mechanistic under-
pinnings. This stands in stark contrast to the extensive body of
preclinical studies indicating that both acute and chronic drug
exposure is associated with significant sleep dysregulation that
persists into withdrawal [82, 83]. Some insight can be gleaned,
however, from the well-established food entrainment literature,
whereby food availability is restricted to a single period scheduled
at a fixed time of day, resulting in a temporal decoupling of
activity in feeding-related brain regions from the “master clock”,
the suprachiasmatic nucleus (SCN), and a subsequent increase in
activity aligned with food delivery rather than diurnal light
patterns [84]. Although many food entrainment studies restrict
access to regular chow [85, 86], a set of studies have reported that
intermittent access to palatable foods in otherwise sated animals
induces behavioral entrainment, indicating the presence of an
endogenous self-sustained neural oscillator entrained specifically
by palatable food [87-92]. These data are particularly noteworthy
given the greater probability of individuals to binge eat in later
hours of the day indicated in clinical literature (although see [58]).
Early functional analysis studies on binge eating found an
increased likelihood of binge eating from 5p.m. to midnight in
all people regardless of binge eating status, and a decreased
probability of binge eating in the morning hours from 5 a.m. to 9
a.m. [93]. More recent ecological momentary assessment (EMA)
studies, which examine self-reported behavior across several time
points throughout the day, indicate heightened binge eating
probability at around 1 p.m. and 7-9 p.m. in women with bulimia
nervosa [94], and between 6 p.m. and 1 a.m. among women with
BED [95]. It is unclear whether these patterns of intake result in
behavioral entrainment per se. However, it is possible that regular,
timed consumption of palatable food might recruit neural
oscillators that drive the search of and craving for palatable food
and disrupt normal circadian rhythms [89, 96, 97], thus contribut-
ing to uncontrolled food intake.

There is some evidence to indicate that sleep dysregulation
itself may contribute altered feeding behavior, possibly via a
reduction in “top-down” executive control and increased impul-
sivity. Corticostriatal projections, which mediate inhibitory control
of motivated behavior [98, 99], are selectively weakened in mice
following acute (6 h) sleep deprivation [100]. These changes are
accompanied by increased sucrose consumption in both an
operant and free access task, which is reversed by optogenetic
stimulation of corticostriatal projections. Similar effects are
observed for drugs of abuse [101], which aligns well with clinical
data pointing to increased drug and alcohol use following the
emergence of sleep dysregulation in childhood and adolescence
[102, 103] and sleep disturbances being a strong risk factor of
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relapse following protracted abstinence [104]. There is also
evidence that drug abuse is associated with a range of cognitive
deficits resulting from sleep deprivation [105-107], which may
compromise attempts to remain abstinent. Although it remains to
be tested how sleep deprivation might affect binge eating
behavior, a bidirectional relationship likely exists between food
intake and sleep dysregulation in BED, whereby dysregulated
sleep patterns result in heightened impulsivity and binge-eating
behaviors, and binge eating itself produces disruptions to the
molecular mechanisms that control sleep.

THE HYPOTHALAMIC OREXIN SYSTEM—A COMMON
MEDIATOR OF FEEDING AND SLEEP

Significant advances have been made to characterize the
hypothalamic cell types and circuits involved in reward-seeking
and sleep. Perhaps most notable in this regard is the identification
in 1998 of the hypothalamic orexin (hypocretin) system,
composed of a pair of neuropeptides, orexin-A and orexin-B,
synthesized by a relatively small (~4000 in rat, ~70,000 in humans)
population of neurons in the caudal hypothalamus [108-111].
Orexins act on two G-protein coupled receptors, orexin receptor-1
and -2 (Ox1R, Ox2R), with orexin-A having equal affinity for Ox1R
and Ox2R, and orexin-B preferentially binding both receptors
[108, 109]. The orexin system has manifold roles, simultaneously
mediating reward behavior and sleep/wake processes. This
dichotomy of function is achieved via broad projections through-
out the brain, and to some extent via actions at Ox1R versus Ox2R.
For example, orexin acts at Ox1R to modulate the activity of
dopamine neurons and promote seeking of food and drug
rewards [112-114], whereas orexin’s actions at Ox2R in key arousal
centers, including tuberomammillary nucleus, appears to underlie
its involvement in sleep/wake processes [115-117]. Thus, the
orexin system is uniquely positioned to serve as a potential
common neurobiological substrate underlying aberrant food
seeking and sleep dysregulation in BED and other disorders
characterized by uncontrolled eating.

OREXIN AND PALATABLE FOOD INTAKE

A role for orexin in feeding was first identified by Sakurai et al.
[108], who demonstrated that intracerebroventricular (i.c.v.)
infusions of both orexin-A and orexin-B dose-dependently
stimulated chow consumption in freely fed rats. Subsequent
studies extended these findings to show that the orexin system
acts as a critical link between the peripheral energy balance
systems and central nervous system mechanisms that regulate
homeostatic feeding behavior, particularly following periods of
fasting [118]. Similar to other systems that evolved to promote
feeding, the orexin system is readily recruited by highly salient
rewards and related stimuli, including palatable foods and drugs
of abuse [119]. Indeed, orexin neurons show activation in
response to stimuli that predict the availability of food [120] or
drugs of abuse [121-123]. Moreover, exogenous application of
orexin peptides increases both consumption and willingness to
work for palatable foods and drugs of abuse; i.c.v. infusions of
orexin-A in sated rats increase breakpoint responding for sucrose
pellets on a progressive ratio task [124] and local infusions of
orexin-A into various reward regions [125-127] stimulate binge-
like intake of a range of high-sugar and high-fat foods. Similarly,
orexin-A peptide infusions increase motivated responding for
cocaine [128] and are highly effective at eliciting reinstatement of
extinguished drug seeking [129-131].

A substantial body of evidence now indicates that orexin
mediates reward-seeking and hedonic feeding behavior primarily
via actions at Ox1R. Several studies have directly tested the
efficacy of Ox1R antagonists in reducing binge-like eating in
models of BED. Both selective orexin-1 receptor antagonists
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(SORA-1s) and dual Ox1R/Ox2R antagonists (DORAs), but not
selective Ox2R antagonists (SORA-2s), reduce binge-like eating,
often at doses that do not affect homeostatic feeding [132-135].
Similarly, in low-effort operant schedules of reinforcement,
systemic injections of the SORA-1 SB334867 (SB) reduce respond-
ing for a variety of palatable foods [136-139], whereas similar
effects are not observed with SORA-2s [140, 141]. SB also reduces
responding for palatable foods on operant tasks that require
higher effort [124, 136, 138, 142-144] (although see [145-147]),
and also lowers Qg values (a measure of low-effort intake) and
increases alpha values (an inverse measure of motivated, high-
effort responding) across a variety of palatable foods on a
behavioral economics task [148]. Furthermore, the efficacy of
SORA-1s in reducing non-homeostatic intake is enhanced in
animals susceptible to diet-induced obesity, indicating that
obesity may increase the salience of food-based rewards and
induce a propensity for responding to such rewards [149].
Together, these data highlight the possibility of a therapeutic
window whereby low dosing of SORA-1s might selectively impair
hedonic feeding while leaving homeostatic consumption intact,
particularly in those with comorbid obesity. Notably, SORA-1s are
also effective at reducing motivated drug seeking across all drugs
of abuse tested, often at doses that do not affect homeostatic
feeding [150-159]. SORA-1s are especially effective at reducing
craving in response to drug-associated cues and contexts
[114, 150, 160-165], and thus these compounds may have some
utility in reducing binge eating elicited by environmental stimuli.
Some of these effects might be driven by improvements in
cognitive control, as compounds that block Ox1R signaling
improve some (but not all) forms of impulsive responding for
food reward [144, 166, 167], and exogenous application of orexin
peptides improve cognitive outcomes in aged rats [168]. Currently
however, it is unclear what role, if any, the orexin system plays in
mediating impulsivity/cognitive control in the context of binge-
like eating.

A ROLE FOR OREXIN IN OBESITY

Somewhat counterintuitive to the pro-feeding effects of orexin
described above, evidence from both clinical populations and
animal studies indicate that under some circumstances, orexin
serves to enhance metabolism and confers anti-obesogenic effects.
Obese (non-BED) patients have depressed orexin plasma levels
compared to lean patients, and low orexin levels in obese (non-BED)
patients rapidly return to normal levels following bariatric surgery
[169, 170]. Moreover, human narcoleptic patients, who are orexin
deficient (see below), have been reported to average a higher body
mass index and a higher incidence of metabolic syndrome [171].
Consistent with these data is evidence that genetic overexpression
of orexin in rodents is associated with increased energy expenditure
and a resistance to diet-induced obesity [172-174]. These effects are
eliminated in OxR2 knockout mice and can be recapitulated by
chronic treatment with an OxR2 agonist [172], and endogenous
OxR2 levels are higher in obesity-resistant rats compared to obesity-
prone rats [174, 175], highlighting a specific role for OxR2 signaling
in promoting energy metabolism. In light of these findings, it is
notable that chronic exposure to a high-fat diet, which promotes an
obesogenic state in rodents, has been routinely demonstrated to
result in enhanced hypothalamic orexin mRNA and cell numbers
[176-178]. It is possible that this increase reflects a compensatory
response designed to promote increased metabolism, or it may
reveal a differential role for increased orexin levels specifically in
obesogenic states induced by overeating (as in BED) compared to
genetically driven metabolic dysfunction (as in overexpression
studies and narcolepsy). Indeed, given the role for orexins acting
at Ox1R in processing salience for palatable foods (reviewed above),
it is conceivable that a history of overeating could promote
increased signaling at Ox1R in key reward areas, which might then

Neuropsychopharmacology (2021) 46:2051-2061



outweigh any protective metabolic effects of orexin signaling
at Ox2R.

THE OREXIN SYSTEM MEDIATES SLEEP AND WAKEFULNESS

A role for orexin in sleep stemmed from the discovery that orexin-
B has neuroexcitatory properties [109], which subsequently led to
an extensive body of work indicating that orexin peptides
promote and stabilize wakefulness via broad projections to central
arousal centers [179-182]. Extracellular orexin-A levels exhibit
time-dependent changes across 24-h periods, gradually increasing
during active periods and rapidly decreasing during inactive
periods [183], and Fos immunoreactivity of orexin cells is
increased during periods of wakefulness and decreased during
non-rapid eye movement (NREM) and rapid eye movement (REM)
sleep [184]. Optogenetic and chemogenetic stimulation of orexin
neurons increases the number of transitions from both NREM and
REM sleep to wakefulness, and increases c-Fos expression in both
orexin cells and downstream regions involved in arousal, and
inhibition of orexin neurons has the opposite effect [185-188].
Perhaps the most compelling evidence linking the orexin system
to sleep is the demonstration that a deficiency of orexin-
producing cells underlies sleep instability in narcolepsy
[189, 190]. Individuals with narcolepsy have abnormally low to
undetectable orexin-A levels in cerebrospinal fluid and an 85-95%
decrease in orexin neuron cell counts [191, 192]. These findings
are supported by preclinical studies, including the demonstration
that prepro-orexin knockout mice and mice with ablated orexin
neurons exhibit fragmented waking patterns and intrusions of
REM sleep during active periods [180, 182].

These arousal-promoting effects of orexin are primarily
mediated by Ox2R [115-117], and thus this receptor subtype
has become a target for pharmacological therapeutics to manage
sleep disorders, including insomnia [193-197]. Preclinical studies
show that administration of SORA-2s or DORAs, but not SORA-1s,
improves several sleep parameters, decreasing the latency for
persistent sleep and increasing N-REM and REM time [198]. In
2010, Merck’s DORA (MK-4305/suvorexant; subsequently marketed
as Belsomra™), was developed as a treatment for insomnia [199];
following successful preclinical and clinical studies, it was
approved by the FDA in 2013. Suvorexant dose dependently
promotes sleep and improves sleep architecture [200]. In humans,
suvorexant reduces latency to persistent sleep and promotes
sleep maintenance, is generally well-tolerated, and has a strong
safety profile [201]. Another DORA, lemborexant (marketed by
Eisai as DAYVIGO), was granted FDA approval for the treatment of
insomnia in 2019 and has also been demonstrated to be safe for
use in patients with mild obstructive sleep apnea [202]. Several
other DORAs, as well as SORA-2s, are currently in development,
with the view to expanding treatment options for insomnia and
related sleep disorders [197, 203].

DOES THE OREXIN SYSTEM OFFER A MECHANISTIC LINK
BETWEEN BINGE EATING AND SLEEP DYSREGULATION?

In a 1986 clinical case study describing a patient with nocturnal
binge eating behavior, the author speculated that the comorbidity
of overeating and dysregulated sleep might be underscored by a
common neurobiological substrate—the hypothalamus [204].
Here, with the benefit of several decades of additional research
in related fields, we extend this hypothesis to speculate that
aberrant hypothalamic orexin system function contributes to the
manifestation of both compulsive eating and dysregulated sleep
in BED and related disorders. Indeed, we propose that dysregula-
tion of orexin system signaling may contribute to BED pathology
in a cyclical manner (Fig. 1), such that binge-eating itself causes
orexin system function plasticity, resulting in aberrant sleep
patterns that, in turn, promotes further binge eating.
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Fig. 1 Binge-induced plasticity of orexin neurons contributes to
the pathophysiology of BED. We propose that binge eating results
in orexin system plasticity similar to that induced by drugs of abuse,
including increased hypothalamic orexin cell numbers, greater
orexin input to reward and arousal centers, and greater reactivity
to food-related stimuli. This general enhancement of orexin function
is associated with the development of a hypermotivated state for
food, which in turn increases proclivity to binge eat. Additionally,
inappropriately high orexin system function results in hyperarousal
and sleep dysregulation, which in turn promotes an increased risk of
binge eating due to weakened inhibitory control, as a strategy to
combat drowsiness during the daytime, and/or behavioral entrain-
ment. Combined, this creates a self-promoting loop that serves to
exacerbate the pathophysiology of BED. Thus, strategies that
dampen orexin system signaling, such as orexin receptor antago-
nists, might be effective at breaking this loop and treating both
dysregulated eating and sleep in BED.

Evidence to support this hypothesis comes from a series of
recent studies indicating that the number of orexin-producing
neurons in hypothalamus is increased in response to repeated
exposure to chronic palatable food exposure. For example,
increased orexin levels (cell numbers and mRNA) are observed
in the hypothalamus of rats and mice exposed to a high-fat diet
[176, 177], and this is maintained following a return to a low-fat
chow diet [178] (although see [205] and [206]). Similarly, orexin
cell numbers and mRNA are increased in monkeys and rats
exposed to a high-fat diet during early life [207, 208], further
indicating the potential for persistent changes in orexin levels. In
addition, antipsychotic medications that are associated with
enhanced appetite and weight gain are associated with increased
plasma orexin-A levels [209]. Notably, these findings parallel
recent demonstrations that rats exposed to several drugs of
abuse, including cocaine, alcohol, morphine, and fentanyl, exhibit
a robust (~20-25%) upregulation in the number of orexin neurons
[122, 152, 210-212], which persists well-beyond the cessation of
drug use [122]. We predict that chronic, intermittent access to
palatable foods (high fat, high sugar or a combination) on a
schedule that promotes binge-like eating in rats, would also
induce plasticity in the orexin system, resulting in higher orexin
gene expression and cell numbers, and potentially increased Ox1R
expression in key reward regions, collectively resulting in
hyperresponsivity to food-related stimuli. In turn, we predict that
binge-induced disruption to the normal orexin levels results in
hyperarousal and subsequent sleep dysregulation, which itself
would contribute to increased binge-eating behavior via com-
pensatory behaviors (eating to stay awake), reduced inhibitory
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control, and/or behavioral entrainment. A history of binge eating
in conjunction with dieting may also increase the excitability of
orexin neurons, as acute food restriction upregulates the number
of excitatory glutamatergic inputs onto orexin neurons similar to
that seen following cocaine [213-215], and the balance of these
inputs plays a critical role in regulating the diurnal activity of
orexin neurons [216]. Repeated binge-withdrawal cycles might
therefore result in hyperarousal and irregular sleep patterns.
Significant work is required to test this hypothesis, beginning with
experiments to confirm dysregulated sleep in animals with a
history of binge-like eating and test whether this is associated
with a concomitant increase in orexin levels (central and
peripheral). Such correlative studies should be followed by
functional studies to show a causal link between these
phenomena. For example, orexin system upregulation could be
achieved via genetic overexpression [172]; this approach might
perturb the diurnal fluctuations of orexin levels in a manner similar
to what we propose is observed following chronic binge-like
eating, thus affecting both binge eating and sleep outcomes. In
contrast, studies focused on ameliorating binge eating might
consider reducing orexin signaling at appropriate times of
the day/night cycle (i.e. during the inactive period) using
approaches that allow for extended periods of cellular inhibition
or reduced receptor signaling, including chemogenetics (e.g.
[217]) or pharmacology, with a focus on next-day binge outcomes.
Similarly, inhibition of orexin neurons using either chemogenetic
or pharmacological approaches could be used to test the role of
the orexin system in the development versus the expression of
these outcomes. Such studies should also consider the circuits
through which enhanced orexin signaling might mediate binge
eating and/or sleep dysregulation. Orexin neurons project to
regions containing monoamine neurotransmitters that exhibit
altered signaling in BED, including ventral tegmental area
(dopamine) and locus coeruleus (norepinephrine) [218, 219]; it is
therefore interesting to consider that binge-induced increases in
orexin cell function could result in altered baseline cellular activity
or changes in Ox1R vs Ox2R expression in these regions.
Moreover, orexin neurons provide excitatory input onto serotoni-
nergic neurons in dorsal raphe nucleus (DRN) [220], and DRN
serotonin neurons in turn act to maintain appropriate orexinergic
tone by directly inhibiting orexin neuron activity which is critical
for the regulation of normal sleep/wake architecture [221, 222].
Thus, effort should be devoted to examining how this
orexin-serotonin circuit may be dysregulated in BED and its
implications for both sleep and feeding outcomes.

We note that our hypothesis that aberrant eating and sleep
in BED are linked with higher orexin activity is seemingly at
odds with studies indicating a higher incidence of BED in
narcoleptic patients. Indeed, a 1992 case study of a 9-year-old
male child with narcolepsy noted, “considerable concern about
his voracious appetite with bingeing, which had resulted in
excessive weight gain” [223]. Subsequent broader-scale studies
have reported that narcolepsy is associated with increased
impulsivity and binge-eating behaviors [224-226]. A possible
explanation for this phenomenon is the use of binge eating as
a behavioral intervention to reduce drowsiness and to stave off
intrusive sleep episodes [226]. Barson proposes an alternative,
developmental stage-based theory, suggesting that postnatal
orexin cell loss reduces food intake, while oppositely, adult-
hood orexin cell loss increases intake [118]. Consistent with this
idea, the average age onset of narcolepsy is approximately 24
years [227], and adult orexin cell-knockout mice exhibit an
overeating and obesity phenotype, indicating that orexin cell
loss in adulthood may lead to binge-like eating and weight
gain [228]. In contrast, a second study in which orexin cell loss
occurred in mice between weeks 1 and 8 of age reported that
cell loss reduced food intake by nearly 30% [182]. Notably
however, one study failed to identify heightened rates of binge
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eating in patients with narcolepsy [229], suggesting such a
correlation may be weak, if present at all.

Evidence that orexin signaling is decreased in obese patients
and that orexin overexpression confers an obesity-resistant
phenotype (discussed above) poses an additional potential
challenge to our hypothesis. However, given the dichotomy of
roles between OxR1 and OxR2 in mediating food seeking and
energy expenditure, respectively, we speculate that binge-
induced plasticity to the orexin system results in an imbalance
between Ox1R/Ox2R signaling that overall promotes excessive
food intake (via Ox1R) which outweighs the metabolic effects of
orexin signaling at OxR2. Additionally, orexin’s anti-obesogenic
effects are dependent on leptin signaling [172], which is known to
decrease in patients with reduced sleep, such as individuals with
insomnia [230]. Collectively therefore, we propose that these data
do not discount our hypotheses but rather highlight the likely
complexity of this relationship when comorbid with other
disorders (e.g., diet-induced obesity, metabolic disorder, narco-
lepsy), which necessitate significant future work to unravel these
associations. Relatedly, future studies should also examine the
extent to which the orexin system is involved in the delayed
circadian rhythm of food intake observed in NES.

IMPLICATIONS FOR NOVEL PHARMACOTHERAPIES FOR BED
The potential involvement of the orexin system as a common
mediator of both compulsive eating and sleep dysregulation in
BED raises the possibility that more effective clinical management
of BED might be achieved via pharmacotherapies designed to
reduce orexin signaling. As outlined above, preclinical studies
strongly point towards the potential efficacy of SORA-1s to
manage food craving and intake in BED. Although there are
currently several SORA-1s in the drug development pipeline, no
such compounds are yet approved for human use. However, we
suggest that a strong rationale exists for the repurposing of
already approved DORAs for use in BED patient populations. In
addition to reducing food-seeking via actions at Ox1R, these
compounds may have the additional benefit of indirectly
improving binge eating by normalizing sleep outcomes in BED
patients via actions at Ox2R. Indeed, animal studies indicate
efficacy of suvorexant and its analogs in reducing drug-seeking
and normalizing  abstinence-related  sleep  outcomes
[166, 231, 232], and several early-phase clinical studies are
currently examining DORA effects in SUD populations [233]. With
respect to BED, we are aware of only one study that has reported
anti-bingeing effects of a DORA in rats; interestingly, this study
also reported that the same DORA had strong hypnotic properties,
although bingeing and sleep outcomes were studied in separate
groups of rats [132]. Moreover, even though no clinical studies
have examined the effect of DORAs on binge eating per se, one
report showed efficacy for suvorexant in patients with nighttime
eating [234; cited in 235]. Thus, there is a clear need for both
preclinical and clinical studies to directly test the efficacy of
DORAs on both bingeing and sleep outcomes in BED.

CONCLUSIONS

Binge eating and associated disorders, including BED, are character-
ized by a compulsivity to eat akin to the excessive drive to seek and
consume drugs in SUDs, prompting some to propose that these
eating disorders reflect an “addiction” to food. Here, we bring
together evidence from clinical populations indicating that BED and
SUDs share another core, yet non-diagnostic, symptomology: a
heightened incidence of sleep disorders, particularly insomnia.
Limited evidence from human studies points to an increased
incidence of insomnia-related symptoms in BED patients that appears
to be independent of any effects of comorbid obesity. Significantly
more work is required, both at a clinical and preclinical level, to
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understand the directionality of the relationship between excessive
eating and poor sleep in BED. Regardless, these observations add to a
growing body of work supporting the parallels between disordered
eating and substance abuse. Animal models of BED, which allow for
more invasive interrogation of the neurobiological systems, should be
utilized to begin to understand whether excessive eating and
dysregulated sleep share common neural substrates, as has been
shown in SUD. We propose that a likely candidate system is the
hypothalamic orexin system, which is central to the regulation of both
hedonic food-seeking and arousal/wakefulness, and shows significant
plasticity in response to repeated exposure to salient rewards
including palatable food and drugs of abuse. One hypothesis is that
chronic binge eating results in hyperactive orexin system function,
disrupting the normal diurnal fluctuations in orexin signaling that
regulate the sleep/wake cycle. As a consequence, pharmacotherapies
that ameliorate orexin signaling might have some therapeutic value
in BED; in particular, DORAs might reduce binge eating outcomes by
simultaneously reducing food craving via actions at Ox1R and normal-
izing sleep by reducing signaling at Ox2R. Clearly, significant work is
required to test and refine these hypotheses, and it is our hope that
this review provides some impetus in this direction.
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