Skip to main content
. 2021 Oct;137:104815. doi: 10.1016/j.compbiomed.2021.104815

Table 1.

Results from training on the CVC-ClinicDB for the U-Net, Attention U-Net and Focus U-Net. The best result is seen with the addition of the Focus Gate, short skip connections, deep supervision and use of the Hybrid Focal loss.

Model Loss function Focal parameter γ Short skip connections Deep supervision mDSC mIoU Recall Precision FPS
U-Net DSC + CE 0.828 ± 0.021 0.747 ± 0.022 0.817 ± 0.024 0.877 ± 0.021 27
Attention U-Net DSC + CE 0.801 ± 0.019 0.705 ± 0.023 0.799 ± 0.012 0.844 ± 0.030 25
Focus U-Net DSC + CE 1 g ✗ 0.838 ± 0.018 0.755 ± 0.018 0.833 ± 0.016 0.876 ± 0.028 25
Focus U-Net DSC + CE 1.25 0.844 ± 0.011 0.762 ± 0.011 0.844 ± 0.018 0.876 ± 0.020 25
Focus U-Net DSC + CE 1.5 0.842 ± 0.025 0.755 ± 0.027 0.845 ± 0.038 0.866 ± 0.016 25
Focus U-Net DSC + CE 2 0.817 ± 0.025 0.728 ± 0.030 0.817 ± 0.023 0.859 ± 0.026 25
Focus U-Net DSC + CE 3 0.825 ± 0.022 0.736 ± 0.022 0.820 ± 0.035 0.863 ± 0.022 25
Focus U-Net DSC + CE 1.25 0.867 ± 0.018 0.800 ± 0.011 0.852 ± 0.023 0.908 ± 0.017 25
Focus U-Net HFL 1.25 0.869 ± 0.013 0.797 ± 0.014 0.870 ± 0.017 0.892 ± 0.010 2
Focus U-Net HFL 1.25 0.875 ± 0.016 0.801 ± 0.017 0.878 ± 0.013 0.889 ± 0.018 25