Skip to main content
. 2021 Oct;137:104815. doi: 10.1016/j.compbiomed.2021.104815

Table 3.

Results for the Kvasir-SEG dataset. Boldface numbers denote the highest values for each metrics.

Model mDSC mIoU Recall Precision
U-Net [23] 0.715 0.433 0.631 0.922
Double U-Net [27] 0.813 0.733 0.840 0.861
FCN8 (VGG16 backbone) [20] 0.831 0.737 0.835 0.882
PSPNet (ResNet50 backbone) [75] 0.841 0.744 0.836 0.890
HRNet [76] 0.845 0.759 0.859 0.878
ResUNet++ with CRF [26] 0.851 0.833 0.876 0.823
DeepLabv3+ (ResNet101 backbone) [77] 0.864 0.786 0.859 0.906
U-Net (ResNet34 backbone) [23] 0.876 0.810 0.944 0.862
FANet [34] 0.880 0.81 0.906 0.901
PolypSegNet [28] 0.887 0.826 0.925 0.917
HarDNet-MSEG [31] 0.904 0.848 0.923 0.907
Focus U-Net 0.910 0.845 0.916 0.917