Table 3.
Model | mDSC | mIoU | Recall | Precision |
---|---|---|---|---|
U-Net [23] | 0.715 | 0.433 | 0.631 | 0.922 |
Double U-Net [27] | 0.813 | 0.733 | 0.840 | 0.861 |
FCN8 (VGG16 backbone) [20] | 0.831 | 0.737 | 0.835 | 0.882 |
PSPNet (ResNet50 backbone) [75] | 0.841 | 0.744 | 0.836 | 0.890 |
HRNet [76] | 0.845 | 0.759 | 0.859 | 0.878 |
ResUNet++ with CRF [26] | 0.851 | 0.833 | 0.876 | 0.823 |
DeepLabv3+ (ResNet101 backbone) [77] | 0.864 | 0.786 | 0.859 | 0.906 |
U-Net (ResNet34 backbone) [23] | 0.876 | 0.810 | 0.944 | 0.862 |
FANet [34] | 0.880 | 0.81 | 0.906 | 0.901 |
PolypSegNet [28] | 0.887 | 0.826 | 0.925 | 0.917 |
HarDNet-MSEG [31] | 0.904 | 0.848 | 0.923 | 0.907 |
Focus U-Net | 0.910 | 0.845 | 0.916 | 0.917 |